Hopkins 155,
Motion Dataset
Online2007.
WWW Link.
Dataset, Motion. Testing feature based motion segmentation algorithms.
See also Johns Hopkins University.
BibRef
0700
Tracking Any Object, TAO, Dataset,
Motion Dataset
Online
WWW Link.
Dataset, Tracking. 2,907 high resolution videos, captured in diverse environments.
BibRef
Electro-Optical Imaging, Inc.,
WWW Link.
Vendor, Tracking.
Imago,
1987.
WWW Link.
Vendor, Tracking.
PerceptiVu, Inc.,
2002.
HTML Version.
Vendor, Tracking.
Polehemus, Motion Tracking,
2005.
WWW Link.
Vendor, Motion Tracking. Also does eye tracking and 3-D Laser Scanner
OTCBVS Benchmark Dataset Collection,
2001
WWW Link.
Dataset, Tracking.
Dataset, Face Recognition. Collection of datasets for benchmarking realted to the related
conferences. Includes face dataset.
UCF Parking Lot Tracking,
2012
WWW Link.
Dataset, Tracking.
Tracking multiple people in parking lot.
See also Part-based multiple-person tracking with partial occlusion handling.
See also GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs.
Nagarajan, V.,
Chideambara, M.R., and
Sharma, R.N.,
Combinatorial Problems in Multitarget Tracking:
A Comprehensive Survey,
IEE-P(F: 134), No. 1, 1987, pp. 113-118.
Survey, Target Tracking.
BibRef
8700
Mazor, E.,
Averbuch, A.,
Bar-Shalom, Y.,
Dayan, J.,
Interacting Multiple Model Methods in Target Tracking:
A Survey,
AeroSys(34), No. 1, January 1998, pp. 103-123.
9801
Survey, Target Tracking.
BibRef
Sundareshan, M.K.,
Amoozegar, F.,
Neural-Network Fusion Capabilities for Efficient Implementation of
Tracking Algorithms,
OptEng(36), No. 3, March 1997, pp. 692-707.
9704
BibRef
Amoozegar, F.,
Neural-Network-Based Target Tracking State-of-the-Art Survey,
OptEng(37), No. 3, March 1998, pp. 836-846.
9804
Survey, Target Tracking.
BibRef
Lepetit, V.[Vincent],
Fua, P.[Pascal],
Monocular Model-Based 3D Tracking of Rigid Objects: A Survey,
FTCGV(1), Issue 1, 2005, pp. 1-89.
DOI Link
1410
Survey, Tracking. Published August 2005.
BibRef
Yilmaz, A.[Alper],
Javed, O.[Omar],
Shah, M.[Mubarak],
Object tracking: A survey,
Surveys(38), No. 4 2006, pp. 13.
WWW Link.
0701
Survey, Target Tracking.
BibRef
Bernardin, K.[Keni],
Stiefelhagen, R.[Rainer],
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0811
BibRef
Stiefelhagen, R.[Rainer],
Bernardin, K.[Keni],
Bowers, R.[Rachel],
Rose, R.T.[R. Travis],
Michel, M.[Martial],
Garofolo, J.[John],
The CLEAR 2007 Evaluation,
MTPH07(xx-yy).
Springer DOI
0705
BibRef
Abidi, B.R.[Besma R.],
Aragam, N.R.[Nash R.],
Yao, Y.[Yi],
Abidi, M.A.[Mongi A.],
Survey and analysis of multimodal sensor planning and integration for
wide area surveillance,
Surveys(41), No. 1, December 2008, pp. 1-36.
WWW Link.
0804
Survey, Sensor Planning.
BibRef
Sankaranarayanan, A.C.[Aswin C.],
Veeraraghavan, A.,
Chellappa, R.[Rama],
Object Detection, Tracking and Recognition for Multiple Smart Cameras,
PIEEE(96), No. 10, October 2008, pp. 1606-1624.
IEEE DOI
0811
BibRef
Sankaranarayanan, A.C.[Aswin C.],
Chellappa, R.[Rama],
Optimal Multi-View Fusion of Object Locations,
Motion08(1-8).
IEEE DOI
0801
BibRef
Wu, H.[Hao],
Chellappa, R.[Rama],
Sankaranarayanan, A.C.[Aswin C.],
Zhou, S.H.K.[Shao-Hua Kevin],
Robust Visual Tracking Using the Time-Reversibility Constraint,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Wu, H.[Hao],
Sankaranarayanan, A.C.[Aswin C.],
Chellappa, R.[Rama],
Online Empirical Evaluation of Tracking Algorithms,
PAMI(32), No. 8, August 2010, pp. 1443-1458.
IEEE DOI
1007
BibRef
Earlier:
In Situ Evaluation of Tracking Algorithms Using Time Reversed Chains,
CVPR07(1-8).
IEEE DOI
0706
Without initial ground truth.
BibRef
Kasturi, R.[Rangachar],
Goldgof, D.B.[Dmitry B.],
Soundararajan, P.[Padmanabhan],
Manohar, V.[Vasant],
Garofolo, J.[John],
Bowers, R.[Rachel],
Boonstra, M.[Matthew],
Korzhova, V.N.[Valentina N.],
Zhang, J.[Jing],
Framework for Performance Evaluation of Face, Text, and Vehicle
Detection and Tracking in Video: Data, Metrics, and Protocol,
PAMI(31), No. 2, February 2009, pp. 319-336.
IEEE DOI
0901
BibRef
Soundararajan, P.[Padmanabhan],
Boonstra, M.[Matthew],
Manohar, V.[Vasant],
Korzhova, V.N.[Valentina N.],
Goldgof, D.B.[Dmitry B.],
Kasturi, R.[Rangachar],
Prasad, S.[Shubha],
Raju, H.[Harish],
Bowers, R.[Rachel],
Garofolo, J.[John],
Evaluation Framework for Video OCR,
ICCVGIP06(829-836).
Springer DOI
0612
BibRef
Manohar, V.[Vasant],
Soundararajan, P.[Padmanabhan],
Raju, H.[Harish],
Goldgof, D.[Dmitry],
Kasturi, R.[Rangachar],
Garofolo, J.[John],
Performance Evaluation of Object Detection and Tracking in Video,
ACCV06(II:151-161).
Springer DOI
0601
BibRef
Manohar, V.[Vasant],
Soundararajan, P.[Padmanabhan],
Boonstra, M.[Matthew],
Raju, H.[Harish],
Goldgof, D.[Dmitry],
Kasturi, R.[Rangachar],
Garofolo, J.[John],
Performance Evaluation of Text Detection and Tracking in Video,
DAS06(576-587).
Springer DOI
0602
BibRef
San Miguel, J.C.,
Cavallaro, A.,
Martinez, J.M.,
Adaptive Online Performance Evaluation of Video Trackers,
IP(21), No. 5, May 2012, pp. 2812-2823.
IEEE DOI
1204
BibRef
Yin, F.[Fei],
Makris, D.[Dimitrios],
Velastin, S.A.[Sergio A.],
Orwell, J.[James],
Quantitative evaluation of different aspects of motion trackers under
various challenges,
BMVA(2010), No. 5, 2010, pp. 1-11.
PDF File.
1209
BibRef
Carvalho, P.[Pedro],
Cardoso, J.S.[Jaime S.],
Corte-Real, L.[Luís],
Filling the gap in quality assessment of video object tracking,
IVC(30), No. 9, September 2012, pp. 630-640.
Elsevier DOI
1210
Tracking; Algorithm assessment; Evaluation metrics;
Information fusion
BibRef
San Miguel, J.C.[Juan C.],
Cavallaro, A.[Andrea],
Martinez, J.M.[Jose M.],
Standalone evaluation of deterministic video tracking,
ICIP12(1353-1356).
IEEE DOI
1302
BibRef
Earlier:
Evaluation of on-line quality estimators for object tracking,
ICIP10(825-828).
IEEE DOI
1009
See also semantic-guided and self-configurable framework for video analysis, A.
BibRef
Nawaz, T.[Tahir],
Cavallaro, A.[Andrea],
A Protocol for Evaluating Video Trackers Under Real-World Conditions,
IP(22), No. 4, April 2013, pp. 1354-1361.
IEEE DOI
1303
BibRef
Earlier:
PFT: A protocol for evaluating video trackers,
ICIP11(2325-2328).
IEEE DOI
1201
BibRef
Liu, Q.[Qi],
Zhao, X.G.[Xiao-Guang],
Hou, Z.G.[Zeng-Guang],
Survey of single-target visual tracking methods based on online
learning,
IET-CV(8), No. 5, October 2014, pp. 419-428.
DOI Link
1412
learning (artificial intelligence)
BibRef
Franz, A.M.[Alfred Michael],
Haidegger, T.,
Birkfellner, W.,
Cleary, K.,
Peters, T.M.,
Maier-Hein, L.[Lena],
Electromagnetic Tracking in Medicine:
A Review of Technology, Validation, and Applications,
MedImg(33), No. 8, August 2014, pp. 1702-1725.
IEEE DOI
1408
Biomedical imaging
BibRef
Wu, Y.[Yi],
Lim, J.W.[Jong-Woo],
Yang, M.H.[Ming-Hsuan],
Object Tracking Benchmark,
PAMI(37), No. 9, September 2015, pp. 1834-1848.
IEEE DOI
1508
BibRef
Earlier:
Online Object Tracking: A Benchmark,
CVPR13(2411-2418)
IEEE DOI
1309
Algorithm design and analysis.
BibRef
Dubuisson, S.[Séverine],
Gonzales, C.[Christophe],
A survey of datasets for visual tracking,
MVA(27), No. 1, January 2016, pp. 23-52.
WWW Link.
1601
Survey, Tracking.
Dataset, Tracking.
BibRef
Kristan, M.[Matej],
Matas, J.G.[Jiri G.],
Leonardis, A.[Ales],
Vojír, T.[Tomáš],
Pflugfelder, R.[Roman],
Fernández, G.[Gustavo],
Nebehay, G.[Georg],
Porikli, F.M.[Fatih M.],
Cehovin, L.[Luka],
A Novel Performance Evaluation Methodology for Single-Target Trackers,
PAMI(38), No. 11, November 2016, pp. 2137-2155.
IEEE DOI
1610
Benchmark testing
BibRef
Cehovin, L.[Luka],
Kristan, M.[Matej],
Leonardis, A.[Ales],
Is my new tracker really better than yours?,
WACV14(540-547)
IEEE DOI
1406
Accuracy
BibRef
Souza, É.L.[Éfren L.],
Nakamura, E.F.[Eduardo F.],
Pazzi, R.W.[Richard W.],
Target Tracking for Sensor Networks: A Survey,
Surveys(48), No. 3, February 2016, pp. 30.
DOI Link
1612
Survey, Tracking. Use three different formulations
for the target-tracking problem and classify the target-tracking
algorithms based on common characteristics.
Organize tracking into six components: target detection, node cooperation,
position computation, future-position estimation, energy management,
and target recovery.
BibRef
Zhang, B.C.[Bao-Chang],
Li, Z.G.[Zhi-Gang],
Perina, A.[Alessandro],
del Bue, A.[Alessio],
Murino, V.[Vittorio],
Liu, J.,
Adaptive Local Movement Modeling for Robust Object Tracking,
CirSysVideo(27), No. 7, July 2017, pp. 1515-1526.
IEEE DOI
1707
BibRef
Earlier: A1, A2, A3, A4, A5, Only:
Adaptive Local Movement Modelling for Object Tracking,
WACV15(25-32)
IEEE DOI
1503
Adaptation models, Boosting, Gravity, Object tracking, Robustness,
Target tracking, Gaussian mixture model (GMM), online learning, tracking.
Adaptation models
BibRef
Tapiero, J.E.[Juan E.],
Medeiros, H.[Henry],
Bishop, R.H.[Robert H.],
Predicting multiple target tracking performance for applications on
video sequences,
MVA(28), No. 5-6, August 2017, pp. 539-550.
WWW Link.
1708
BibRef
Nawaz, T.[Tahir],
Ellis, A.[Anna],
Ferryman, J.M.[James M.],
A method for performance diagnosis and evaluation of video trackers,
SIViP(11), No. 7, October 2017, pp. 1287-1295.
WWW Link.
1708
BibRef
Li, P.X.[Pei-Xia],
Wang, D.[Dong],
Wang, L.J.[Li-Jun],
Lu, H.C.[Hu-Chuan],
Deep visual tracking: Review and experimental comparison,
PR(76), No. 1, 2018, pp. 323-338.
Elsevier DOI
1801
Visual tracking
BibRef
Liu, F.,
Gong, C.,
Huang, X.,
Zhou, T.,
Yang, J.,
Tao, D.,
Robust Visual Tracking Revisited:
From Correlation Filter to Template Matching,
IP(27), No. 6, June 2018, pp. 2777-2790.
IEEE DOI
1804
correlation methods, image filtering,
image matching, image representation, object detection,
template matching
BibRef
Queirós, S.,
Morais, P.,
Barbosa, D.,
Fonseca, J.C.,
Vilaça, J.L.,
d'Hooge, J.,
MITT: Medical Image Tracking Toolbox,
MedImg(37), No. 11, November 2018, pp. 2547-2557.
IEEE DOI
1811
Code, Tracking. Medical diagnostic imaging,
Target tracking, Image sequences, Matlab,
motion estimation
BibRef
Guan, H.[Hao],
Cheng, B.Z.[Bao-Zhong],
How do deep convolutional features affect tracking performance:
An experimental study,
VC(34), No. 12, December 2018, pp. 1701-1711.
WWW Link.
1811
BibRef
El-Shafie, A.H.A.[Al-Hussein A.],
Habib, S.E.D.[Serag E.D.],
Survey on hardware implementations of visual object trackers,
IET-IPR(13), No. 6, 10 May 2019, pp. 863-876.
DOI Link
1906
BibRef
Fiaz, M.[Mustansar],
Mahmood, A.[Arif],
Javed, S.[Sajid],
Jung, S.K.[Soon Ki],
Handcrafted and Deep Trackers:
Recent Visual Object Tracking Approaches and Trends,
Surveys(51), No. 1, February 2019, pp. Article No 43.
DOI Link
1906
Survey, Tracking.
BibRef
Xu, Y.K.[Ying-Kun],
Zhou, X.L.[Xiao-Long],
Chen, S.Y.[Sheng-Yong],
Li, F.F.[Fen-Fen],
Deep learning for multiple object tracking: a survey,
IET-CV(13), No. 4, June 2019, pp. 355-368.
DOI Link
1906
BibRef
Guo, Q.,
Feng, W.,
Gao, R.,
Liu, Y.,
Wang, S.,
Exploring the Effects of Blur and Deblurring to Visual Object
Tracking,
IP(30), 2021, pp. 1812-1824.
IEEE DOI
2101
Tracking, Benchmark testing, Object tracking, Visualization,
Target tracking, Robustness, Video tracking, deblurring
BibRef
Fan, H.[Heng],
Bai, H.X.[He-Xin],
Lin, L.T.[Li-Ting],
Yang, F.[Fan],
Chu, P.[Peng],
Deng, G.[Ge],
Yu, S.J.[Si-Jia],
Harshit,
Huang, M.Z.[Ming-Zhen],
Liu, J.H.[Jue-Huan],
Xu, Y.[Yong],
Liao, C.Y.[Chun-Yuan],
Yuan, L.[Lin],
Ling, H.B.[Hai-Bin],
LaSOT: A High-quality Large-scale Single Object Tracking Benchmark,
IJCV(129), No. 2, February 2021, pp. 439-461.
Springer DOI
2102
BibRef
Earlier: A1, A3, A4, A5, A6, A7, A2, A11, A12, A14, Only:
LaSOT: A High-Quality Benchmark for Large-Scale Single Object Tracking,
CVPR19(5369-5378).
IEEE DOI
2002
BibRef
Liu, X.R.[Xin-Ran],
Liu, X.Q.[Xiao-Qiong],
Yi, Z.[Ziruo],
Zhou, X.[Xin],
Le, T.[Thanh],
Zhang, L.[Libo],
Huang, Y.[Yan],
Yang, Q.[Qing],
Fan, H.[Heng],
PlanarTrack: A Large-scale Challenging Benchmark for Planar Object
Tracking,
ICCV23(20392-20401)
IEEE DOI Code:
WWW Link.
2401
BibRef
Huang, L.H.[Liang-Hua],
Zhao, X.[Xin],
Huang, K.Q.[Kai-Qi],
GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking
in the Wild,
PAMI(43), No. 5, May 2021, pp. 1562-1577.
IEEE DOI
2104
WWW Link.
Dataset, Tracking. Training, Object tracking, Databases, Protocols, Benchmark testing,
Servers, Object tracking, benchmark dataset, performance evaluation
BibRef
Luo, W.H.[Wen-Han],
Xing, J.L.[Jun-Liang],
Milan, A.[Anton],
Zhang, X.Q.[Xiao-Qin],
Liu, W.[Wei],
Kim, T.K.[Tae-Kyun],
Multiple object tracking: A literature review,
AI(293), 2021, pp. 103448.
Elsevier DOI
2103
Survey, Tracking. Multi-object tracking, Data association, Survey
BibRef
Marvasti-Zadeh, S.M.[Seyed Mojtaba],
Cheng, L.[Li],
Ghanei-Yakhdan, H.[Hossein],
Kasaei, S.[Shohreh],
Deep Learning for Visual Tracking: A Comprehensive Survey,
ITS(23), No. 5, May 2022, pp. 3943-3968.
IEEE DOI
2205
Visualization, Target tracking, Tracking, Training,
Benchmark testing, Feature extraction, Correlation,
appearance modeling
BibRef
Zhang, Z.X.[Zhao-Xiang],
Wang, C.H.[Cheng-Hang],
Song, J.N.[Jia-Ning],
Xu, Y.L.[Yue-Lei],
Object Tracking Based on Satellite Videos: A Literature Review,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chen, F.[Fei],
Wang, X.D.[Xiao-Dong],
Zhao, Y.X.[Yun-Xiang],
Lv, S.H.[Shao-He],
Niu, X.[Xin],
Visual object tracking: A survey,
CVIU(222), 2022, pp. 103508.
Elsevier DOI
2209
Object tracking, Discriminative trackers, Deep neural networks
BibRef
Chen, Y.Z.[Yu-Zeng],
Tang, Y.Q.[Yu-Qi],
Xiao, Y.[Yi],
Yuan, Q.Q.[Qiang-Qiang],
Zhang, Y.W.[Yu-Wei],
Liu, F.Q.[Feng-Qing],
He, J.[Jiang],
Zhang, L.P.[Liang-Pei],
Satellite video single object tracking: A systematic review and an
oriented object tracking benchmark,
PandRS(210), 2024, pp. 212-240.
Elsevier DOI Code:
WWW Link.
2404
Satellite video, Deep learning, Correlation filter,
Single object tracking, Benchmark
BibRef
Zhao, X.[Xin],
Hu, S.Y.[Shi-Yu],
Wang, Y.[Yipei],
Zhang, J.[Jing],
Hu, Y.M.[Yi-Min],
Liu, R.[Rongshuai],
Ling, H.B.[Hai-Bin],
Li, Y.[Yin],
Li, R.[Renshu],
Liu, K.[Kun],
Li, J.[Jiadong],
BioDrone: A Bionic Drone-Based Single Object Tracking Benchmark for
Robust Vision,
IJCV(132), No. 5, May 2024, pp. 1659-1684.
Springer DOI
2405
BibRef
Zhao, S.C.[Shao-Chuan],
Xu, T.Y.[Tian-Yang],
Wu, X.J.[Xiao-Jun],
Kittler, J.V.[Josef V.],
A Spatio-Temporal Robust Tracker with Spatial-Channel Transformer and
Jitter Suppression,
IJCV(132), No. 5, May 2024, pp. 1645-1658.
Springer DOI
2405
Both position accuracy and smoothness of trajectory.
BibRef
Sun, D.D.[Deng-Di],
Cheng, L.L.[Lei-Lei],
Chen, S.[Song],
Li, C.L.[Cheng-Long],
Xiao, Y.[Yun],
Luo, B.[Bin],
UAV-Ground Visual Tracking: A Unified Dataset and Collaborative
Learning Approach,
CirSysVideo(34), No. 5, May 2024, pp. 3619-3632.
IEEE DOI Code:
WWW Link.
2405
Target tracking, Visualization, Autonomous aerial vehicles, Object tracking,
Task analysis, Fuses, Video sequences, collaborative learning
BibRef
Brewczynski, K.D.[Konrad D.],
Zyczkowski, M.[Marek],
Cichulski, K.[Krzysztof],
Kaminski, K.A.[Kamil A.],
Petsioti, P.[Paraskevi],
de Cubber, G.[Geert],
Methods for Assessing the Effectiveness of Modern Counter Unmanned
Aircraft Systems,
RS(16), No. 19, 2024, pp. 3714.
DOI Link
2410
evaluate the effectiveness of systems capable of detecting, tracking,
and identifying (DTI) UAVs
BibRef
Li, N.[Ning],
Zhong, B.[Bineng],
Zheng, Y.Z.[Yao-Zong],
Liang, Q.H.[Qi-Hua],
Mo, Z.Y.[Zhi-Yi],
Song, S.X.[Shu-Xiang],
Robust Tracking via Combing Top-Down and Bottom-Up Attention,
CirSysVideo(34), No. 10, October 2024, pp. 9774-9785.
IEEE DOI
2411
Visualization, Transformers, Task analysis, Bayes methods, Target tracking,
Feature extraction, Generators, Object tracking, top-down
BibRef
Xie, J.X.[Jin-Xia],
Zhong, B.N.[Bi-Neng],
Mo, Z.Y.[Zhi-Yi],
Zhang, S.P.[Sheng-Ping],
Shi, L.T.[Liang-Tao],
Song, S.X.[Shu-Xiang],
Ji, R.R.[Rong-Rong],
Autoregressive Queries for Adaptive Tracking with Spatio-Temporal
Transformers,
CVPR24(19300-19309)
IEEE DOI Code:
WWW Link.
2410
Adaptation models, Visualization, Target tracking,
Computational modeling, Transformers
BibRef
Zhang, L.[Lian],
Wang, L.X.[Ling-Xue],
Wu, Y.Z.[Yu-Zhen],
Chen, M.K.[Ming-Kun],
Zheng, D.Z.[De-Zhi],
Cao, L.C.[Liang-Cai],
Zeng, B.Z.[Bang-Ze],
Cai, Y.[Yi],
UniRTL: A universal RGBT and low-light benchmark for object tracking,
PR(158), 2025, pp. 110984.
Elsevier DOI
2411
RGBT and low-light benchmark, Multitask benchmark,
Unified object tracking, RGBT and low-light image
BibRef
Wang, P.F.[Peng-Fei],
Hui, X.F.[Xiao-Fei],
Wu, J.[Jing],
Yang, Z.[Zile],
Ong, K.E.[Kian Eng],
Zhao, X.G.[Xin-Ge],
Lu, B.[Beijia],
Huang, D.[Dezhao],
Ling, E.[Evan],
Chen, W.L.[Wei-Ling],
Ma, K.T.[Keng Teck],
Hur, M.[Minhoe],
Liu, J.[Jun],
Semtrack: A Large-scale Dataset for Semantic Tracking in the Wild,
ECCV24(XXIV: 486-504).
Springer DOI
2412
BibRef
Woo, S.[Sanghyun],
Park, K.Y.[Kwan-Yong],
Shin, I.[Inkyu],
Kim, M.[Myungchul],
Kweon, I.S.[In So],
MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark,
CVPR24(22335-22346)
IEEE DOI
2410
Visualization, Technological innovation, Surveillance,
Video sequences, Benchmark testing, Streaming media, Cameras, MTMC,
Tracking
BibRef
Gloudemans, D.[Derek],
Zachár, G.[Gergely],
Wang, Y.B.[Yan-Bing],
Ji, J.[Junyi],
Nice, M.[Matt],
Bunting, M.[Matt],
Barbour, W.W.[William W.],
Sprinkle, J.[Jonathan],
Piccoli, B.[Benedetto],
Monache, M.L.D.[Maria Laura Delle],
Bayen, A.[Alexandre],
Seibold, B.[Benjamin],
Work, D.B.[Daniel B.],
So you think you can track?,
WACV24(4516-4526)
IEEE DOI
2404
Road transportation, Measurement, Transportation, Object detection,
Benchmark testing, Cameras, Trajectory, Algorithms,
Video recognition and understanding
BibRef
Feng, W.Y.[Wei-Yu],
Zhao, S.Z.[Seth Z.],
Pan, C.[Chuanyu],
Chang, A.[Adam],
Chen, Y.C.[Yi-Chen],
Wang, Z.K.[Ze-Kun],
Yang, A.Y.[Allen Y.],
Digital Twin Tracking Dataset (DTTD): A New RGB+Depth 3D Dataset for
Longer-Range Object Tracking Applications,
VDU23(3289-3298)
IEEE DOI
2309
BibRef
Zhang, Z.W.[Zhe-Wen],
Wu, F.L.[Fu-Liang],
Qiu, Y.M.[Yu-Ming],
Liang, J.D.[Jing-Dong],
Li, S.W.[Shui-Wang],
Tracking Small and Fast Moving Objects: A Benchmark,
ACCV22(VII:552-569).
Springer DOI
2307
BibRef
Sahin, G.[Gozde],
Itti, L.[Laurent],
HOOT: Heavy Occlusions in Object Tracking Benchmark,
WACV23(4819-4828)
IEEE DOI
2302
Training, Visualization, Target tracking, Protocols, Taxonomy,
Focusing, Benchmark testing
BibRef
Li, J.C.[Jia-Chen],
Wang, B.[Bin],
Zhu, S.Q.[Shi-Qiang],
Cao, X.[Xin],
Zhong, F.[Fan],
Chen, W.X.[Wen-Xuan],
Li, T.[Te],
Gu, J.[Jason],
Qin, X.Y.[Xue-Ying],
BCOT: A Markerless High-Precision 3D Object Tracking Benchmark,
CVPR22(6687-6696)
IEEE DOI
2210
Deep learning, Training, Uncertainty, Annotations, Shape,
Video sequences, Pose estimation and tracking, Datasets and evaluation
BibRef
Fan, H.[Heng],
Yang, F.[Fan],
Chu, P.[Peng],
Lin, Y.W.[Yue-Wei],
Yuan, L.[Lin],
Ling, H.B.[Hai-Bin],
TracKlinic: Diagnosis of Challenge Factors in Visual Tracking,
WACV21(969-978)
IEEE DOI
2106
Measurement, Visualization, Shape, Focusing, Tools, Stability analysis
BibRef
Bondi, E.,
Jain, R.,
Aggrawal, P.,
Anand, S.,
Hannaford, R.,
Kapoor, A.,
Piavis, J.,
Shah, S.,
Joppa, L.,
Dilkina, B.,
Tambe, M.,
BIRDSAI: A Dataset for Detection and Tracking in Aerial Thermal
Infrared Videos,
WACV20(1736-1745)
IEEE DOI
2006
Dataset, Tracking.
WWW Link. Videos, Cameras, Surveillance, Animals, Task analysis, Benchmark testing
BibRef
Liu, C.[Chang],
Liu, C.L.[Chun-Lei],
Yang, L.L.[Lin-Lin],
Zhang, B.C.[Bao-Chang],
Tracker Evaluation for Small Object Tracking,
DLPR20(622-629).
Springer DOI
2103
BibRef
Khurana, T.[Tarasha],
Dave, A.[Achal],
Ramanan, D.[Deva],
Detecting Invisible People,
ICCV21(3154-3164)
IEEE DOI
2203
Measurement, Technological innovation, Solid modeling,
Robot vision systems, Object detection, Task analysis, Motion and tracking
BibRef
Dave, A.[Achal],
Khurana, T.[Tarasha],
Tokmakov, P.[Pavel],
Schmid, C.[Cordelia],
Ramanan, D.[Deva],
TAO: A Large-scale Benchmark for Tracking Any Object,
ECCV20(V:436-454).
Springer DOI
2011
Dataset, Tracking.
BibRef
Lukezic, A.,
Kart, U.,
Käpylä, J.,
Durmush, A.,
Kamarainen, J.,
Matas, J.G.,
Kristan, M.,
CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark,
ICCV19(10012-10021)
IEEE DOI
2004
Dataset, Tracking. image colour analysis, image sequences, object detection,
object tracking, pose estimation, most diverse dataset,
Robot sensing systems
BibRef
Zheng, H.,
Yang, J.,
Chen, J.,
A performance evaluation method for infrared tracker,
IVCNZ17(1-6)
IEEE DOI
1902
image sequences, infrared imaging, performance evaluation,
target tracking, video signal processing, image sequence metric,
performance evaluation method
BibRef
Garon, M.[Mathieu],
Laurendeau, D.[Denis],
Lalonde, J.F.[Jean-François],
A Framework for Evaluating 6-DOF Object Trackers,
ECCV18(XI: 608-623).
Springer DOI
1810
BibRef
Müller, M.[Matthias],
Bibi, A.[Adel],
Giancola, S.[Silvio],
Alsubaihi, S.[Salman],
Ghanem, B.[Bernard],
TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in
the Wild,
ECCV18(I: 310-327).
Springer DOI
1810
Dataset, Tracking.
BibRef
Valmadre, J.[Jack],
Bertinetto, L.[Luca],
Henriques, J.F.[João F.],
Tao, R.[Ran],
Vedaldi, A.[Andrea],
Smeulders, A.W.M.[Arnold W. M.],
Torr, P.H.S.[Philip H. S.],
Gavves, E.[Efstratios],
Long-Term Tracking in the Wild: A Benchmark,
ECCV18(III: 692-707).
Springer DOI
1810
Dataset, Tracking.
BibRef
Sanchez-Matilla, R.,
Cavallaro, A.,
Confidence Intervals for Tracking Performance Scores,
ICIP18(246-250)
IEEE DOI
1809
Interpolation, Cameras, Tools, Uncertainty, Tracking, Manuals,
Object recognition, Tracking performance scores, ground truth,
annotation quality
BibRef
Karakostas, I.[Iason],
Mademlis, I.[Ioannis],
Nikolaidis, N.[Nikos],
Pitas, I.[Ioannis],
UAV Cinematography Constraints Imposed by Visual Target Tracking,
ICIP18(76-80)
IEEE DOI
1809
Cameras, Target tracking, Visualization, Cinematography, Drones,
UAV cinematography, shot type, target tracking
BibRef
Ratnayake, K.[Kumara],
Amer, M.A.[Maria A.],
Motion-Augmented Inference and Joint Kernels in Structured Learning for
Object Tracking,
ICIAR19(I:45-54).
Springer DOI
1909
BibRef
And:
Drift Detection Using SVM in Structured Object Tracking,
ICIAR19(I:67-76).
Springer DOI
1909
BibRef
Ghoniemy, T.,
Amer, M.A.,
Optimization Using Artificial Immune Systems Applied To Object
Tracking And Segmentation,
ICIP20(2955-2959)
IEEE DOI
2011
Artificial intelligence, Support vector machines, Optimization,
Feature extraction, Kernel, Image edge detection, Sociology,
object segmentation
BibRef
Ghoniemy, T.,
Valognes, J.,
Amer, M.A.,
Robust Scoring and Ranking of Object Tracking Techniques,
ICIP18(236-240)
IEEE DOI
1809
Robustness, Dispersion, Video sequences, Object tracking,
Object tracking, evaluation, scoring, ranking, robust statistics, outliers
BibRef
Khalid, O.[Obaidullah],
Cavallaro, A.[Andrea],
Rinner, B.[Bernhard],
Detecting tracking errors via forecasting,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Böttger, T.,
Follmann, P.,
The Benefits of Evaluating Tracker Performance Using Pixel-Wise
Segmentations,
VOT17(1983-1991)
IEEE DOI
1802
Benchmark testing, Current measurement, Image segmentation,
Optimized production technology, Reliability, Upper bound, Visualization
BibRef
Zajc, L.C.,
Lukežic, A.,
Leonardis, A.,
Kristan, M.,
Beyond Standard Benchmarks: Parameterizing Performance Evaluation in
Visual Object Tracking,
ICCV17(3343-3351)
IEEE DOI
1802
image motion analysis, object tracking, video signal processing,
apparent motion patterns, attribute annotations,
Visualization
BibRef
Galoogahi, H.K.,
Fagg, A.,
Huang, C.,
Ramanan, D.,
Lucey, S.,
Need for Speed: A Benchmark for Higher Frame Rate Object Tracking,
ICCV17(1134-1143)
IEEE DOI
1802
filtering theory, image sequences,
object detection, object tracking, video signal processing,
Visualization
BibRef
Böttger, T.[Tobias],
Follmann, P.[Patrick],
Fauser, M.[Michael],
Measuring the Accuracy of Object Detectors and Trackers,
GCPR17(415-426).
Springer DOI
1711
More than just the axis aligned box.
BibRef
Lehtola, V.[Ville],
Huttunen, H.[Heikki],
Christophe, F.[Francois],
Mikkonen, T.[Tommi],
Evaluation of Visual Tracking Algorithms for Embedded Devices,
SCIA17(I: 88-97).
Springer DOI
1706
BibRef
Walsh, R.[Ryan],
Medeiros, H.[Henry],
Detecting Tracking Failures from Correlation Response Maps,
ISVC16(I: 125-135).
Springer DOI
1701
BibRef
Carr, P.[Peter],
Collins, R.T.[Robert T.],
Assessing tracking performance in complex scenarios using mean time
between failures,
WACV16(1-10)
IEEE DOI
1606
Aggregates
BibRef
Maxudov, N.[Nekruzjon],
Ercan, A.O.[Ali Ozer],
Erdem, A.T.[A. Tanju],
Effect of camera-IMU displacement calibration error on tracking
performance,
ICIP15(4476-4480)
IEEE DOI
1512
Camera-IMU displacement calibration
BibRef
Nawaz, T.,
Boyle, J.,
Li, L.Z.[Long-Zhen],
Ferryman, J.M.,
Tracking performance evaluation on PETS 2015 Challenge datasets,
AVSS15(1-6)
IEEE DOI
1511
infrared imaging
BibRef
Zhang, G.C.[Guang-Cong],
Vela, P.A.[Patricio A.],
Good features to track for visual SLAM,
CVPR15(1373-1382)
IEEE DOI
1510
BibRef
Li, M.Z.[Ming-Zhong],
Yin, Z.Z.[Zhao-Zheng],
Debugging Object Tracking Results by a Recommender System with
Correction Propagation,
UCCV14(214-228).
Springer DOI
1504
BibRef
Han, B.H.[Bo-Hyung],
Hamm, J.[Jihun],
Qualitative Tracking Performance Evaluation without Ground-Truth,
WACV15(55-62)
IEEE DOI
1503
Accuracy
BibRef
Zhang, S.[Shu],
Staudt, E.[Elliot],
Faltemier, T.[Tim],
Roy-Chowdhury, A.K.[Amit K.],
A Camera Network Tracking (CamNeT) Dataset and Performance Baseline,
WACV15(365-372)
IEEE DOI
1503
Dataset, Camera Tracking.
WWW Link. Cameras; Legged locomotion; Lighting; Target tracking; Trajectory; Videos
BibRef
Comaschi, F.[Francesco],
Stuijk, S.[Sander],
Basten, T.[Twan],
Corporaal, H.[Henk],
A tool for fast ground truth generation for object detection and
tracking from video,
ICIP14(368-372)
IEEE DOI
1502
Benchmark testing
See also Online multi-face detection and tracking using detector confidence and structured SVMs.
BibRef
Gao, X.,
Ram, S.,
Rodriguez, J.J.,
A performance comparison of automatic detection schemes in wide-area
aerial imagery,
Southwest16(125-128)
IEEE DOI
1605
Algorithm design and analysis
BibRef
Philip, R.C.,
Ram, S.,
Gao, X.[Xin],
Rodriguez, J.J.,
A comparison of tracking algorithm performance for objects in wide
area imagery,
Southwest14(109-112)
IEEE DOI
1406
computer vision
BibRef
Pang, Y.[Yu],
Ling, H.B.[Hai-Bin],
Finding the Best from the Second Bests:
Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms,
ICCV13(2784-2791)
IEEE DOI
1403
BibRef
Song, S.[Shuran],
Xiao, J.X.[Jian-Xiong],
Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines,
ICCV13(233-240)
IEEE DOI
1403
RGBD; benchmark; tracking
BibRef
Abeles, P.[Peter],
Examination of Hybrid Image Feature Trackers,
ISVC13(II:552-561).
Springer DOI
1311
BibRef
Milan, A.[Anton],
Schindler, K.[Konrad],
Roth, S.[Stefan],
Challenges of Ground Truth Evaluation of Multi-target Tracking,
GT13(735-742)
IEEE DOI
1309
Evaluation;Ground Truth; Multi-object tracking
BibRef
Acton, S.T.[Scott T.],
Trackability,
ICIP12(425-428).
IEEE DOI
1302
BibRef
Spampinato, C.[Concetto],
Palazzo, S.[Simone],
Giordano, D.[Daniela],
Evaluation of tracking algorithm performance without ground-truth data,
ICIP12(1345-1348).
IEEE DOI
1302
BibRef
Matas, J.G.[Jirí G.],
Visual Tracking in the 21st Century,
BMVC12(75).
DOI Link
1301
BibRef
Marcenaro, L.[Lucio],
Morerio, P.[Pietro],
Regazzoni, C.S.[Carlo S.],
Performance Evaluation of Multi-camera Visual Tracking,
AVSS12(464-469).
IEEE DOI
1211
BibRef
Sankaranarayanan, S.[Swaminathan],
Bremond, F.[Francois],
Tax, D.M.J.[David M.J.],
Qualitative Evaluation of Detection and Tracking Performance,
AVSS12(362-367).
IEEE DOI
1211
BibRef
Cai, R.T.[Rong-Tai],
Wu, Q.X.[Qing-Xiang],
Wang, P.[Ping],
Zhang, X.G.[Xu-Guang],
Hu, S.[Shuo],
Performance analysis of object tracking algorithm,
IASP11(463-467).
IEEE DOI
1112
BibRef
Salvagnini, P.[Pietro],
Cristani, M.[Marco],
del Bue, A.[Alessio],
Murino, V.[Vittorio],
An Experimental Framework for Evaluating PTZ Tracking Algorithms,
CVS11(81-90).
Springer DOI
1109
BibRef
Fang, Y.Q.[Yi-Qiang],
Fan, X.[Xiang],
Performance Evaluation for IR Small Target Tracking Algorithm,
ICIG11(749-753).
IEEE DOI
1109
BibRef
Kao, E.K.[Edward K.],
Daggett, M.P.[Matthew P.],
Hurley, M.B.[Michael B.],
An information theoretic approach for tracker performance evaluation,
ICCV09(1523-1529).
IEEE DOI
0909
BibRef
Stalder, S.[Severin],
Grabner, H.[Helmut],
Van Gool, L.J.[Luc J.],
Dynamic Objectness for Adaptive Tracking,
ACCV12(III:43-56).
Springer DOI
1304
BibRef
Earlier:
Cascaded Confidence Filtering for Improved Tracking-by-Detection,
ECCV10(I: 369-382).
Springer DOI
1009
BibRef
Earlier:
Beyond semi-supervised tracking: Tracking should be as simple as
detection, but not simpler than recognition,
Learning09(1409-1416).
IEEE DOI
0910
BibRef
John, G.,
Lazarescu, M.,
West, G.A.W.,
Multi Cue Performance Evaluation Metrics for Tracking in Video
Sequences,
DICTA08(257-264).
IEEE DOI
0812
BibRef
Perera, A.G.A.,
Hoogs, A.J.,
Srinivas, C.,
Brooksby, G.,
Hu, W.[Wensheng],
Evaluation of Algorithms for Tracking Multiple Objects in Video,
AIPR06(35-35).
IEEE DOI
0610
BibRef
Denman, S.[Simon],
Fookes, C.[Clinton],
Sridharan, S.[Sridha],
Group Segmentation During Object Tracking Using Optical Flow
Discontinuities,
PSIVT10(270-275).
IEEE DOI
1011
See also Improved Simultaneous Computation of Motion Detection and Optical Flow for Object Tracking.
BibRef
Denman, S.[Simon],
Fookes, C.[Clinton],
Sridharan, S.[Sridha],
Ryan, D.,
Multi-Modal Object Tracking using Dynamic Performance Metrics,
AVSS10(286-293).
IEEE DOI
1009
See also Improved Simultaneous Computation of Motion Detection and Optical Flow for Object Tracking.
BibRef
Fernando, T.[Tharindu],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
GD-GAN: Generative Adversarial Networks for Trajectory Prediction and
Group Detection in Crowds,
ACCV18(I:314-330).
Springer DOI
1906
BibRef
Earlier:
Tracking by Prediction: A Deep Generative Model for Mutli-person
Localisation and Tracking,
WACV18(1122-1132)
IEEE DOI
1806
feature extraction, learning (artificial intelligence),
neural nets, sensor fusion, target tracking, appearance models,
Trajectory
BibRef
Moudgil, A.[Abhinav],
Gandhi, V.[Vineet],
Long-Term Visual Object Tracking Benchmark,
ACCV18(II:629-645).
Springer DOI
1906
BibRef
Denman, S.[Simon],
Fookes, C.[Clinton],
Sridharan, S.[Sridha],
Lakemond, R.[Ruan],
Dynamic Performance Measures for Object Tracking Systems,
AVSBS09(541-546).
IEEE DOI
0909
BibRef
Tron, R.[Roberto],
Vidal, R.[Rene],
A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms,
CVPR07(1-8).
IEEE DOI
PDF File.
0706
See also Hopkins 155.
BibRef
Mikram, M.[Mounia],
Mégret, R.[Rémi],
Berthoumieu, Y.[Yannick],
Evaluating Descriptors Performances for Object Tracking on Natural
Video Data,
ACIVS07(352-363).
Springer DOI
0708
BibRef
Skoglund, J.[Johan],
Felsberg, M.[Michael],
Evaluation of Subpixel Tracking Algorithms,
ISVC06(II: 374-382).
Springer DOI
0611
BibRef
Jaynes, C.,
Kale, A.,
Sanders, N.,
Grossmann, E.,
The Terrascope Dataset:
Scripted Multi-Camera Indoor Video Surveillance with Ground-truth,
PETS05(309-316).
IEEE DOI
WWW Link.
0602
Dataset, Surveillance.
BibRef
Needham, C.J.[Chris J.],
Boyle, R.D.[Roger D.],
Performance Evaluation Metrics and Statistics for Positional Tracker
Evaluation,
CVS03(278 ff).
Springer DOI
0306
BibRef
Robles, V.[Vanessa],
Alegre, E.[Enrique],
Sebastian, J.M.[Jose M.],
Tracking Algorithms Evaluation in Feature Points Image Sequences,
ICIAR04(II: 589-596).
Springer DOI
0409
BibRef
Tomasi, C.,
Shi, J.,
Good Features to Track,
CVPR94(593-600).
IEEE DOI
Features, Evaluation. Select features based on how the tracker works.
See also Shape and Motion from Image Streams: A Factorization Method Part 3 - Detection and Tracking of Point Features.
BibRef
9400
Marshall, W.C.[William C.],
Evaluation of Image Tracker Algorithms,
SPIE(1483), 1991, pp. 207-218.
BibRef
9100
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Target Tracking Challenges, Result Summaries .