Polder, G.,
van der Heijden, G.W.A.M.,
Young, I.T.,
Tomato sorting using independent component analysis on spectral images,
RealTimeImg(9), No. 4, August 2003, pp. 253-259.
Elsevier DOI
0311
BibRef
Chen, X.M.[Xu-Ming],
Yang, S.X.[Simon X.],
A practical solution for ripe tomato recognition and localisation,
RealTimeIP(8), No. 1, March 2013, pp. 35-51.
WWW Link.
1303
BibRef
Iwasaki, F.[Fumiya],
Imamura, H.[Hiroki],
A Robust Recognition Method for Occlusion of Mini Tomatoes Based on
Hue Information and the Curvature,
IJIG(15), No. 02, 2015, pp. 1540004.
DOI Link
1505
BibRef
Verma, U.[Ujjwal],
Rossant, F.[Florence],
Bloch, I.[Isabelle],
Segmentation and size estimation of tomatoes from sequences of paired
images,
JIVP(2015), No. 1, 2015, pp. 33.
DOI Link
1512
BibRef
Sun, J.[Jun],
He, X.F.[Xiao-Fei],
Wu, M.M.[Min-Min],
Wu, X.O.[Xia-Ohong],
Shen, J.F.[Ji-Feng],
Lu, B.[Bing],
Detection of tomato organs based on convolutional neural network under
the overlap and occlusion backgrounds,
MVA(31), No. 5, July 2020, pp. Article31.
Springer DOI
2006
BibRef
Morellos, A.[Antonios],
Tziotzios, G.[Georgios],
Orfanidou, C.[Chrysoula],
Pantazi, X.E.[Xanthoula Eirini],
Sarantaris, C.[Christos],
Maliogka, V.[Varvara],
Alexandridis, T.K.[Thomas K.],
Moshou, D.[Dimitrios],
Non-Destructive Early Detection and Quantitative Severity Stage
Classification of Tomato Chlorosis Virus (ToCV) Infection in Young
Tomato Plants Using Vis-NIR Spectroscopy,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Abdulridha, J.[Jaafar],
Ampatzidis, Y.[Yiannis],
Qureshi, J.[Jawwad],
Roberts, P.[Pamela],
Laboratory and UAV-Based Identification and Classification of Tomato
Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato
Utilizing Hyperspectral Imaging and Machine Learning,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Siddiquee, K.N.[Kazy Noor_e_Alam],
Islam, M.S.[Md. Shabiul],
Ud Dowla, M.Y.[Mohammad Yasin],
Rezaul, K.M.[Karim Mohammed],
Grout, V.[Vic],
Detection, quantification and classification of ripened tomatoes: a
comparative analysis of image processing and machine learning,
IET-IPR(14), No. 11, September 2020, pp. 2442-2456.
DOI Link
2009
BibRef
Zhao, J.S.[Jiang-San],
Kechasov, D.[Dmitry],
Rewald, B.[Boris],
Bodner, G.[Gernot],
Verheul, M.[Michel],
Clarke, N.[Nicholas],
Clarke, J.H.L.[Ji-Hong Liu],
Deep Learning in Hyperspectral Image Reconstruction from Single RGB
images: A Case Study on Tomato Quality Parameters,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Al-gaashani, M.S.A.M.[Mehdhar S. A. M.],
Shang, F.J.[Feng-Jun],
Muthanna, M.S.A.[Mohammed S. A.],
Khayyat, M.[Mashael],
El-Latif, A.A.A.[Ahmed A. Abd],
Tomato leaf disease classification by exploiting transfer learning
and feature concatenation,
IET-IPR(16), No. 3, 2022, pp. 913-925.
DOI Link
2202
BibRef
Cen, Y.[Yi],
Huang, Y.[Ying],
Hu, S.S.[Shun-Shi],
Zhang, L.[Lifu],
Zhang, J.[Jian],
Early Detection of Bacterial Wilt in Tomato with Portable
Hyperspectral Spectrometer,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Croci, M.[Michele],
Impollonia, G.[Giorgio],
Blandinières, H.[Henri],
Colauzzi, M.[Michele],
Amaducci, S.[Stefano],
Impact of Training Set Size and Lead Time on Early Tomato Crop
Mapping Accuracy,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Benmouna, B.[Brahim],
Pourdarbani, R.[Raziyeh],
Sabzi, S.[Sajad],
Fernandez-Beltran, R.[Ruben],
García-Mateos, G.[Ginés],
Molina-Martínez, J.M.[José Miguel],
Comparison of Classic Classifiers, Metaheuristic Algorithms and
Convolutional Neural Networks in Hyperspectral Classification of
Nitrogen Treatment in Tomato Leaves,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Psiroukis, V.[Vasilis],
Darra, N.[Nicoleta],
Kasimati, A.[Aikaterini],
Trojacek, P.[Pavel],
Hasanli, G.[Gunay],
Fountas, S.[Spyros],
Development of a Multi-Scale Tomato Yield Prediction Model in
Azerbaijan Using Spectral Indices from Sentinel-2 Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Cheng, Y.W.[Ya-Wen],
Ren, N.[Ni],
Hu, A.[Anqi],
Zhou, L.L.[Ling-Li],
Qi, C.[Chao],
Zhang, S.[Shuo],
Wu, Q.[Qian],
An Improved 2D Pose Estimation Algorithm for Extracting Phenotypic
Parameters of Tomato Plants in Complex Backgrounds,
RS(16), No. 23, 2024, pp. 4385.
DOI Link
2501
BibRef
Li, Y.[Yuan],
Hu, T.T.[Ting-Ting],
Fuchikami, R.[Ryuji],
Ikenaga, T.[Takeshi],
Global to multi-scale local architecture with hardwired CNN for 1-ms
tomato defect detection,
IET-IPR(18), No. 8, 2024, pp. 2078-2092.
DOI Link
2406
field programmable gate arrays, object detection,
parallel processing, real-time systems
BibRef
Linfeng, W.[Wang],
Jia-Yao, L.[Liu],
Yong, L.[Liu],
Yunsheng, W.[Wang],
Shipu, X.[Xu],
A lightweight tomato leaf disease identification method based on
shared-twin neural networks,
IET-IPR(18), No. 9, 2024, pp. 2291-2303.
DOI Link
2407
botany, convolutional neural nets, data visualisation
BibRef
Ye, Y.B.[Yuan-Bo],
Zhou, H.[Houkui],
Yu, H.M.[Hui-Min],
Hu, H.J.[Hao-Ji],
Zhang, G.Q.[Guang-Qun],
Hu, J.[Junguo],
He, T.[Tao],
Application of Tswin-F network based on multi-scale feature fusion in
tomato leaf lesion recognition,
PR(156), 2024, pp. 110775.
Elsevier DOI Code:
WWW Link.
2408
Plant leaf disease identification, Bilateral attention mechanism,
Belf-supervised learning, Feature fuse local attention
BibRef
Masuda, T.[Takeshi],
Leaf Area Estimation by Semantic Segmentation of Point Cloud of
Tomato Plants,
CVPPA21(1381-1389)
IEEE DOI
2112
Training, Image resolution,
Annotations, Semantics, Estimation, Production facilities
BibRef
Tsironis, V.,
Bourou, S.,
Stentoumis, C.,
Tomatod: Evaluation of Object Detection Algorithms on A New Real-world
Tomato Dataset,
ISPRS20(B3:1077-1084).
DOI Link
2012
BibRef
Ouhami, M.[Maryam],
Es-Saady, Y.[Youssef],
El Hajji, M.[Mohamed],
Hafiane, A.[Adel],
Canals, R.[Raphael],
El Yassa, M.[Mostafa],
Deep Transfer Learning Models for Tomato Disease Detection,
ICISP20(65-73).
Springer DOI
2009
BibRef
Sibanda, M.,
Mutanga, O.,
Magwaza, L.S.,
Dube, T.,
Magwaza, S.T.,
Odindo, A.O.,
Mditshwa, A.,
Mafongoya, P.L.,
Discrimination of Tomato Plants (solanum Lycopersicum) Grown Under
Anaerobic Baffled Reactor Effluent, Nitrified Urine Concentrate And
Commercial Hydroponic Fertilizer Regimes Using Multi-source Satellite,
SMPR19(1023-1029).
DOI Link
1912
BibRef
Johansen, K.,
Morton, M.J.L.,
Malbeteau, Y.,
Aragon, B.,
Al-Mashharawi, S.,
Ziliani, M.,
Angel, Y.,
Fiene, G.,
Negrao, S.,
Mousa, M.A.A.,
Tester, M.A.,
McCabe, M.F.,
Predicting Biomass and Yield At Harvest of Salt-stressed Tomato Plants
Using UAV Imagery,
UAV-g19(407-411).
DOI Link
1912
BibRef
Ding, Y.J.[Yong-Jun],
Li, J.Y.[Ji-Ying],
The application of Quantum-inspired ant colony algorithm in automatic
segmentation of tomato image,
ICIVC17(341-345)
IEEE DOI
1708
Chaos, Convergence, Image segmentation, Logic gates, Optimization,
Sociology, Statistics, image segmentation,
quantum ant colony algorithm, quantum individual, tomato, image
BibRef
Aguilar, M.A.,
Pozo, J.L.,
Aguilar, F.J.,
Sanchez-Hermosilla, J.,
Pàez, F.C.,
Negreiros, J.,
3D Surface Modeling of Tomato Plants Using Close-Range Photogrammetry,
ISPRS08(B5: 139 ff).
PDF File.
0807
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Fruit Detection, Fruit Inspection, Apples, Oranges .