20.7.3.7.8 Tomato Detection, Tomato Plants

Chapter Contents (Back)
Vegetables. Tomatoes. Application, Tomatoes.

Polder, G., van der Heijden, G.W.A.M., Young, I.T.,
Tomato sorting using independent component analysis on spectral images,
RealTimeImg(9), No. 4, August 2003, pp. 253-259.
Elsevier DOI 0311
BibRef

Chen, X.M.[Xu-Ming], Yang, S.X.[Simon X.],
A practical solution for ripe tomato recognition and localisation,
RealTimeIP(8), No. 1, March 2013, pp. 35-51.
WWW Link. 1303
BibRef

Iwasaki, F.[Fumiya], Imamura, H.[Hiroki],
A Robust Recognition Method for Occlusion of Mini Tomatoes Based on Hue Information and the Curvature,
IJIG(15), No. 02, 2015, pp. 1540004.
DOI Link 1505
BibRef

Verma, U.[Ujjwal], Rossant, F.[Florence], Bloch, I.[Isabelle],
Segmentation and size estimation of tomatoes from sequences of paired images,
JIVP(2015), No. 1, 2015, pp. 33.
DOI Link 1512
BibRef

Sun, J.[Jun], He, X.F.[Xiao-Fei], Wu, M.M.[Min-Min], Wu, X.O.[Xia-Ohong], Shen, J.F.[Ji-Feng], Lu, B.[Bing],
Detection of tomato organs based on convolutional neural network under the overlap and occlusion backgrounds,
MVA(31), No. 5, July 2020, pp. Article31.
Springer DOI 2006
BibRef

Morellos, A.[Antonios], Tziotzios, G.[Georgios], Orfanidou, C.[Chrysoula], Pantazi, X.E.[Xanthoula Eirini], Sarantaris, C.[Christos], Maliogka, V.[Varvara], Alexandridis, T.K.[Thomas K.], Moshou, D.[Dimitrios],
Non-Destructive Early Detection and Quantitative Severity Stage Classification of Tomato Chlorosis Virus (ToCV) Infection in Young Tomato Plants Using Vis-NIR Spectroscopy,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Abdulridha, J.[Jaafar], Ampatzidis, Y.[Yiannis], Qureshi, J.[Jawwad], Roberts, P.[Pamela],
Laboratory and UAV-Based Identification and Classification of Tomato Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato Utilizing Hyperspectral Imaging and Machine Learning,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Siddiquee, K.N.[Kazy Noor_e_Alam], Islam, M.S.[Md. Shabiul], Ud Dowla, M.Y.[Mohammad Yasin], Rezaul, K.M.[Karim Mohammed], Grout, V.[Vic],
Detection, quantification and classification of ripened tomatoes: a comparative analysis of image processing and machine learning,
IET-IPR(14), No. 11, September 2020, pp. 2442-2456.
DOI Link 2009
BibRef

Zhao, J.S.[Jiang-San], Kechasov, D.[Dmitry], Rewald, B.[Boris], Bodner, G.[Gernot], Verheul, M.[Michel], Clarke, N.[Nicholas], Clarke, J.H.L.[Ji-Hong Liu],
Deep Learning in Hyperspectral Image Reconstruction from Single RGB images: A Case Study on Tomato Quality Parameters,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Al-gaashani, M.S.A.M.[Mehdhar S. A. M.], Shang, F.J.[Feng-Jun], Muthanna, M.S.A.[Mohammed S. A.], Khayyat, M.[Mashael], El-Latif, A.A.A.[Ahmed A. Abd],
Tomato leaf disease classification by exploiting transfer learning and feature concatenation,
IET-IPR(16), No. 3, 2022, pp. 913-925.
DOI Link 2202
BibRef

Cen, Y.[Yi], Huang, Y.[Ying], Hu, S.S.[Shun-Shi], Zhang, L.[Lifu], Zhang, J.[Jian],
Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Croci, M.[Michele], Impollonia, G.[Giorgio], Blandinières, H.[Henri], Colauzzi, M.[Michele], Amaducci, S.[Stefano],
Impact of Training Set Size and Lead Time on Early Tomato Crop Mapping Accuracy,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Benmouna, B.[Brahim], Pourdarbani, R.[Raziyeh], Sabzi, S.[Sajad], Fernandez-Beltran, R.[Ruben], García-Mateos, G.[Ginés], Molina-Martínez, J.M.[José Miguel],
Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Psiroukis, V.[Vasilis], Darra, N.[Nicoleta], Kasimati, A.[Aikaterini], Trojacek, P.[Pavel], Hasanli, G.[Gunay], Fountas, S.[Spyros],
Development of a Multi-Scale Tomato Yield Prediction Model in Azerbaijan Using Spectral Indices from Sentinel-2 Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Cheng, Y.W.[Ya-Wen], Ren, N.[Ni], Hu, A.[Anqi], Zhou, L.L.[Ling-Li], Qi, C.[Chao], Zhang, S.[Shuo], Wu, Q.[Qian],
An Improved 2D Pose Estimation Algorithm for Extracting Phenotypic Parameters of Tomato Plants in Complex Backgrounds,
RS(16), No. 23, 2024, pp. 4385.
DOI Link 2501
BibRef

Li, Y.[Yuan], Hu, T.T.[Ting-Ting], Fuchikami, R.[Ryuji], Ikenaga, T.[Takeshi],
Global to multi-scale local architecture with hardwired CNN for 1-ms tomato defect detection,
IET-IPR(18), No. 8, 2024, pp. 2078-2092.
DOI Link 2406
field programmable gate arrays, object detection, parallel processing, real-time systems BibRef

Linfeng, W.[Wang], Jia-Yao, L.[Liu], Yong, L.[Liu], Yunsheng, W.[Wang], Shipu, X.[Xu],
A lightweight tomato leaf disease identification method based on shared-twin neural networks,
IET-IPR(18), No. 9, 2024, pp. 2291-2303.
DOI Link 2407
botany, convolutional neural nets, data visualisation BibRef

Ye, Y.B.[Yuan-Bo], Zhou, H.[Houkui], Yu, H.M.[Hui-Min], Hu, H.J.[Hao-Ji], Zhang, G.Q.[Guang-Qun], Hu, J.[Junguo], He, T.[Tao],
Application of Tswin-F network based on multi-scale feature fusion in tomato leaf lesion recognition,
PR(156), 2024, pp. 110775.
Elsevier DOI Code:
WWW Link. 2408
Plant leaf disease identification, Bilateral attention mechanism, Belf-supervised learning, Feature fuse local attention BibRef


Ivanovska, M.[Marija], Štruc, V.[Vitomir], Perš, J.[Janez],
TomatoDIFF: On-plant Tomato Segmentation with Denoising Diffusion Models *,
MVA23(1-6)
DOI Link Code:
WWW Link. 2403
Costs, Semantic segmentation, Computational modeling, Source coding, Green products, Noise reduction, Crops BibRef

Masuda, T.[Takeshi],
Leaf Area Estimation by Semantic Segmentation of Point Cloud of Tomato Plants,
CVPPA21(1381-1389)
IEEE DOI 2112
Training, Image resolution, Annotations, Semantics, Estimation, Production facilities BibRef

Tsironis, V., Bourou, S., Stentoumis, C.,
Tomatod: Evaluation of Object Detection Algorithms on A New Real-world Tomato Dataset,
ISPRS20(B3:1077-1084).
DOI Link 2012
BibRef

Ouhami, M.[Maryam], Es-Saady, Y.[Youssef], El Hajji, M.[Mohamed], Hafiane, A.[Adel], Canals, R.[Raphael], El Yassa, M.[Mostafa],
Deep Transfer Learning Models for Tomato Disease Detection,
ICISP20(65-73).
Springer DOI 2009
BibRef

Sibanda, M., Mutanga, O., Magwaza, L.S., Dube, T., Magwaza, S.T., Odindo, A.O., Mditshwa, A., Mafongoya, P.L.,
Discrimination of Tomato Plants (solanum Lycopersicum) Grown Under Anaerobic Baffled Reactor Effluent, Nitrified Urine Concentrate And Commercial Hydroponic Fertilizer Regimes Using Multi-source Satellite,
SMPR19(1023-1029).
DOI Link 1912
BibRef

Johansen, K., Morton, M.J.L., Malbeteau, Y., Aragon, B., Al-Mashharawi, S., Ziliani, M., Angel, Y., Fiene, G., Negrao, S., Mousa, M.A.A., Tester, M.A., McCabe, M.F.,
Predicting Biomass and Yield At Harvest of Salt-stressed Tomato Plants Using UAV Imagery,
UAV-g19(407-411).
DOI Link 1912
BibRef

Ding, Y.J.[Yong-Jun], Li, J.Y.[Ji-Ying],
The application of Quantum-inspired ant colony algorithm in automatic segmentation of tomato image,
ICIVC17(341-345)
IEEE DOI 1708
Chaos, Convergence, Image segmentation, Logic gates, Optimization, Sociology, Statistics, image segmentation, quantum ant colony algorithm, quantum individual, tomato, image BibRef

Aguilar, M.A., Pozo, J.L., Aguilar, F.J., Sanchez-Hermosilla, J., Pàez, F.C., Negreiros, J.,
3D Surface Modeling of Tomato Plants Using Close-Range Photogrammetry,
ISPRS08(B5: 139 ff).
PDF File. 0807
BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Fruit Detection, Fruit Inspection, Apples, Oranges .


Last update:Oct 6, 2025 at 14:07:43