CitDet: Comprehensive Citrus Fruit Detection and Classification Dataset,
2024
Dataset, Citrus Fruit.
WWW Link. CitDet consists of over 32,000 bounding box annotations for fruit
instances contained in 579 high-resolution images. Especially related
to Huanglongbing (HLB) disease in trees.
Tao, Y.,
Spherical Transform of Fruit Images for Online Defect Extraction
of Mass Objects,
OptEng(35), No. 2, February 1996, pp. 344-350.
BibRef
9602
Grasso, G.M.,
Recce, M.,
Scene Analysis for An Orange Harvesting Robot,
AIApp(11), No. 3, 1997, pp. 9-15.
9802
BibRef
Recce, M.[Michael],
Plebe, A.[Alessio],
Tropiano, G.[Giuseppe],
Taylor, J.[John],
Video Grading of Oranges in Real-Time,
AIR(12), No. 1-3, February 1998, pp. 117-136.
WWW Link.
1208
BibRef
Plebe, A.[Alessio],
Grasso, G.M.[Giorgio M.],
Localization of spherical fruits for robotic harvesting,
MVA(13), No. 2 2001, pp. 70-79.
Springer DOI
0201
BibRef
Harrell, R.C.,
Slaughter, D.C.,
Adsit, P.D.,
A fruit-tracking system for robotic harvesting,
MVA(2), No. 2, 1989, pp. 69-80.
BibRef
8900
Jiménez, A.R.,
Jain, A.K.,
Ceres, R.,
Pons, J.L.,
Automatic fruit recognition:
A survey and new results using Range/Attenuation images,
PR(32), No. 10, October 1999, pp. 1719-1736.
Elsevier DOI
Survey, Inspection.
BibRef
9910
Jiménez, A.R.,
Ceres, R.,
Pons, J.L.,
A vision system based on a laser range-finder applied to robotic fruit
harvesting,
MVA(11), No. 6, 2000, pp. 321-329.
Springer DOI
0005
BibRef
Zou, X.B.[Xiao-Bo],
Zhao, J.W.[Jie-Wen],
Li, Y.X.[Yan-Xiao],
Apple color grading based on organization feature parameters,
PRL(28), No. 15, 1 November 2007, pp. 2046-2053.
Elsevier DOI
0711
Apple; Quality evaluation; Genetic algorithm; Organization feature parameter
BibRef
Anami, B.S.[Basavaraj S.],
Burkpalli, V.C.[Vishwanath C.],
Recognition and classification of images of fruits' juices based on
3-Sigma approach,
IJCVR(1), No. 2, 2010, pp. 206-217.
DOI Link
1011
BibRef
Blasco, J.[José],
Magnetic resonance imaging detects seeds in mandarins,
SPIE(Newsroom), January 16, 2012.
DOI Link
1201
Seeds in mandarins are difficult to detect with x-ray radiography and
computed tomography, but are easily distinguished using magnetic
resonance imaging.
BibRef
Kapach, K.[Keren],
Barnea, E.[Ehud],
Mairon, R.[Rotem],
Edan, Y.[Yael],
Ben-Shahar, O.[Ohad],
Computer vision for fruit harvesting robots:
State of the art and challenges ahead,
IJCVR(3), No. 1-2, 2012, pp. 4-34.
DOI Link
1204
BibRef
Liu, S.G.[Shi-Guang],
Fan, D.F.[Dong-Fang],
Computer Modeling and Simulation of Fruit Sunscald,
IJIG(15), No. 03, 2015, pp. 1550013.
DOI Link
1506
BibRef
Bohl, E.[Evans],
Terraz, O.[Olivier],
Ghazanfarpour, D.[Djamchid],
Modeling fruits and their internal structure using parametric 3Gmap
L-systems,
VC(31), No. 6-8, June 2015, pp. 819-829.
WWW Link.
1506
BibRef
Chaw, J.K.[Jun-Kit],
Mokji, M.[Musa],
Analysis of produce recognition system with taxonomist's knowledge
using computer vision and different classifiers,
IET-IPR(11), No. 3, March 2017, pp. 173-182.
DOI Link
1703
BibRef
Aiadi, O.[Oussama],
Kherfi, M.L.[Mohammed Lamine],
A new method for automatic date fruit classification,
IJCVR(7), No. 6, 2017, pp. 692-711.
DOI Link
1711
BibRef
Hameed, K.[Khurram],
Chai, D.[Douglas],
Rassau, A.[Alexander],
A comprehensive review of fruit and vegetable classification
techniques,
IVC(80), 2018, pp. 24-44.
Elsevier DOI
1812
Recognition, Classification, Fruit, Vegetable,
Produce classification, Machine learning
BibRef
Lobos, G.A.[Gustavo A.],
Escobar-Opazo, A.[Alejandro],
Estrada, F.[Félix],
Romero-Bravo, S.[Sebastián],
Garriga, M.[Miguel],
del Pozo, A.[Alejandro],
Poblete-Echeverría, C.[Carlos],
Gonzalez-Talice, J.[Jaime],
González-Martinez, L.[Luis],
Caligari, P.[Peter],
Spectral Reflectance Modeling by Wavelength Selection: Studying the
Scope for Blueberry Physiological Breeding under Contrasting Water
Supply and Heat Conditions,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Pourdarbani, R.[Razieh],
Sabzi, S.[Sajad],
Hernández-Hernández, M.[Mario],
Hernández-Hernández, J.L.[José Luis],
García-Mateos, G.[Ginés],
Kalantari, D.[Davood],
Molina-Martínez, J.M.[José Miguel],
Comparison of Different Classifiers and the Majority Voting Rule for
the Detection of Plum Fruits in Garden Conditions,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Badeka, E.[Eftichia],
Kalabokas, T.[Theofanis],
Tziridis, K.[Konstantinos],
Nicolaou, A.[Alexander],
Vrochidou, E.[Eleni],
Mavridou, E.[Efthimia],
Papakostas, G.A.[George A.],
Pachidis, T.[Theodore],
Grapes Visual Segmentation for Harvesting Robots Using Local Texture
Descriptors,
CVS19(98-109).
Springer DOI
1912
BibRef
Hamza, R.[Raja],
Chtourou, M.[Mohamed],
Design of fuzzy inference system for apple ripeness estimation using
gradient method,
IET-IPR(14), No. 3, 28 February 2020, pp. 561-569.
DOI Link
2002
BibRef
Savian, F.[Francesco],
Martini, M.[Marta],
Ermacora, P.[Paolo],
Paulus, S.[Stefan],
Mahlein, A.K.[Anne-Katrin],
Prediction of the Kiwifruit Decline Syndrome in Diseased Orchards by
Remote Sensing,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Tsoulias, N.[Nikos],
Paraforos, D.S.[Dimitrios S.],
Xanthopoulos, G.[George],
Zude-Sasse, M.[Manuela],
Apple Shape Detection Based on Geometric and Radiometric Features
Using a LiDAR Laser Scanner,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Abd-Elrahman, A.[Amr],
Guan, Z.[Zhen],
Dalid, C.[Cheryl],
Whitaker, V.[Vance],
Britt, K.[Katherine],
Wilkinson, B.[Benjamin],
Gonzalez, A.[Ali],
Automated Canopy Delineation and Size Metrics Extraction for
Strawberry Dry Weight Modeling Using Raster Analysis of
High-Resolution Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Gill, H.S.[Harmandeep Singh],
Khehra, B.S.[Baljit Singh],
Efficient image classification technique for weather degraded fruit
images,
IET-IPR(14), No. 14, December 2020, pp. 3463-3470.
DOI Link
2012
BibRef
Ni, X.P.[Xue-Ping],
Li, C.Y.[Chang-Ying],
Jiang, H.Y.[Huan-Yu],
Takeda, F.[Fumiomi],
Three-dimensional photogrammetry with deep learning instance
segmentation to extract berry fruit harvestability traits,
PandRS(171), 2021, pp. 297-309.
Elsevier DOI
2012
3D reconstruction, Mask R-CNN, 2D-3D projection, Blueberry traits
BibRef
Biffi, L.J.[Leonardo Josoé],
Mitishita, E.[Edson],
Liesenberg, V.[Veraldo],
dos Santos, A.A.[Anderson Aparecido],
Gonçalves, D.N.[Diogo Nunes],
Estrabis, N.V.[Nayara Vasconcelos],
de Andrade Silva, J.[Jonathan],
Osco, L.P.[Lucas Prado],
Ramos, A.P.M.[Ana Paula Marques],
Centeno, J.A.S.[Jorge Antonio Silva],
Schimalski, M.B.[Marcos Benedito],
Rufato, L.[Leo],
Neto, S.L.R.[Sílvio Luís Rafaeli],
Junior, J.M.[José Marcato],
Gonçalves, W.N.[Wesley Nunes],
ATSS Deep Learning-Based Approach to Detect Apple Fruits,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Hennessy, P.J.[Patrick J.],
Esau, T.J.[Travis J.],
Farooque, A.A.[Aitazaz A.],
Schumann, A.W.[Arnold W.],
Zaman, Q.U.[Qamar U.],
Corscadden, K.W.[Kenny W.],
Hair Fescue and Sheep Sorrel Identification Using Deep Learning in
Wild Blueberry Production,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Henila, M.[Manickam],
Chithra, P.[Palaniappan],
Segmentation using fuzzy cluster-based thresholding method for apple
fruit sorting,
IET-IPR(14), No. 16, 19 December 2020, pp. 4178-4187.
DOI Link
2103
BibRef
Fan, P.[Pan],
Lang, G.D.[Guo-Dong],
Yan, B.[Bin],
Lei, X.Y.[Xiao-Yan],
Guo, P.J.[Peng-Ju],
Liu, Z.J.[Zhi-Jie],
Yang, F.Z.[Fu-Zeng],
A Method of Segmenting Apples Based on Gray-Centered RGB Color Space,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yan, B.[Bin],
Fan, P.[Pan],
Lei, X.Y.[Xiao-Yan],
Liu, Z.J.[Zhi-Jie],
Yang, F.[Fuzeng],
A Real-Time Apple Targets Detection Method for Picking Robot Based on
Improved YOLOv5,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Dewi, T.[Tresna],
Mulya, Z.[Zarqa],
Risma, P.[Pola],
Oktarina, Y.[Yurni],
BLOB analysis of an automatic vision guided system for a fruit picking
and placing robot,
IJCVR(11), No. 3, 2021, pp. 315-327.
DOI Link
2106
BibRef
Chu, P.Y.[Peng-Yu],
Li, Z.J.[Zhao-Jian],
Lammers, K.[Kyle],
Lu, R.[Renfu],
Liu, X.M.[Xiao-Ming],
Deep learning-based apple detection using a suppression mask R-CNN,
PRL(147), 2021, pp. 206-211.
Elsevier DOI
2106
Vision system, Fruit detection, Deep learning,
Robotic harvesting, Image segmentation
BibRef
Tripathi, M.K.[Mukesh Kumar],
Maktedar, D.D.[Dhananjay D.],
Optimized deep learning model for mango grading:
Hybridizing lion plus firefly algorithm,
IET-IPR(15), No. 9, 2021, pp. 1940-1956.
DOI Link
2106
BibRef
Li, G.J.[Guo-Jin],
Huang, X.J.[Xiao-Jie],
Ai, J.[Jiaoyan],
Yi, Z.[Zeren],
Xie, W.[Wei],
Lemon-YOLO: An efficient object detection method for lemons in the
natural environment,
IET-IPR(15), No. 9, 2021, pp. 1998-2009.
DOI Link
2106
BibRef
Huang, Y.[Yirui],
Wang, J.[Juan],
Li, N.[Na],
Yang, J.[Jing],
Ren, Z.H.[Zhen-Hui],
Predicting soluble solids content in 'Fuji' apples of different
ripening stages based on multiple information fusion,
PRL(151), 2021, pp. 76-84.
Elsevier DOI
2110
RGB imaging, Soluble solids content, L*a*b* color space,
Stacked autoencoder, Back propagation neural network
BibRef
Lawal, O.M.[Olarewaju Mubashiru],
Zhao, H.M.[Hua-Min],
YOLOFig detection model development using deep learning,
IET-IPR(15), No. 13, 2021, pp. 3071-3079.
DOI Link
2110
Figs.
BibRef
Grilli, E.[Eleonora],
Battisti, R.[Roberto],
Remondino, F.[Fabio],
An Advanced Photogrammetric Solution to Measure Apples,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Li, T.[Tao],
Feng, Q.C.[Qing-Chun],
Qiu, Q.[Quan],
Xie, F.[Feng],
Zhao, C.J.[Chun-Jiang],
Occluded Apple Fruit Detection and Localization with a Frustum-Based
Point-Cloud-Processing Approach for Robotic Harvesting,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Mao, W.J.[Wen-Ju],
Liu, H.[Heng],
Hao, W.[Wei],
Yang, F.[Fuzeng],
Liu, Z.J.[Zhi-Jie],
Development of a Combined Orchard Harvesting Robot Navigation System,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Qi, X.K.[Xiao-Kang],
Dong, J.[Jingshi],
Lan, Y.[Yubin],
Zhu, H.[Hang],
Method for Identifying Litchi Picking Position Based on YOLOv5 and
PSPNet,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Luo, L.[Lili],
Chang, Q.R.[Qin-Rui],
Gao, Y.F.[Yi-Fan],
Jiang, D.Y.[Dan-Yao],
Li, F.L.[Fen-Ling],
Combining Different Transformations of Ground Hyperspectral Data with
Unmanned Aerial Vehicle (UAV) Images for Anthocyanin Estimation in
Tree Peony Leaves,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
Antioxidants found in red, purple, and blue fruits and vegetables.
BibRef
Singh, R.[Rishipal],
Rani, R.[Rajneesh],
Kamboj, A.[Aman],
An Optimized Approach for Intra-Class Fruit Classification Using Deep
Convolutional Neural Network,
IJIG(22), No. 3 2022, pp. 2140014.
DOI Link
2206
BibRef
Hao, J.L.[Jing-Lei],
Zhao, Y.Q.[Yong-Qiang],
Peng, Q.N.[Qun-Nie],
A Specular Highlight Removal Algorithm for Quality Inspection of
Fresh Fruits,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zheng, C.W.[Cai-Wang],
Abd-Elrahman, A.[Amr],
Whitaker, V.[Vance],
Dalid, C.[Cheryl],
Prediction of Strawberry Dry Biomass from UAV Multispectral Imagery
Using Multiple Machine Learning Methods,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhang, C.X.[Chen-Xi],
Kang, F.[Feng],
Wang, Y.X.[Ya-Xiong],
An Improved Apple Object Detection Method Based on Lightweight YOLOv4
in Complex Backgrounds,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zheng, Z.Z.[Zhou-Zhou],
Hu, Y.H.[Yao-Hua],
Qiao, Y.C.[Yi-Chen],
Hu, X.[Xing],
Huang, Y.X.[Yu-Xiang],
Real-Time Detection of Winter Jujubes Based on Improved YOLOX-Nano
Network,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Lu, S.L.[Sheng-Lian],
Liu, X.Y.[Xiao-Yu],
He, Z.X.[Zi-Xuan],
Zhang, X.[Xin],
Liu, W.B.[Wen-Bo],
Karkee, M.[Manoj],
Swin-Transformer-YOLOv5 for Real-Time Wine Grape Bunch Detection,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Shiu, Y.S.[Yi-Shiang],
Lee, R.Y.[Re-Yang],
Chang, Y.C.[Yen-Ching],
Pineapples' Detection and Segmentation Based on Faster and Mask R-CNN
in UAV Imagery,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Sekharamantry, P.K.[Praveen Kumar],
Melgani, F.[Farid],
Malacarne, J.[Jonni],
Deep Learning-Based Apple Detection with Attention Module and
Improved Loss Function in YOLO,
RS(15), No. 6, 2023, pp. 1516.
DOI Link
2304
BibRef
Wang, J.J.[Jin-Jie],
Ding, J.L.[Jian-Li],
Ran, S.[Si],
Qin, S.F.[Shao-Feng],
Liu, B.[Bohua],
Li, X.[Xiang],
Automatic Pear Extraction from High-Resolution Images by a Visual
Attention Mechanism Network,
RS(15), No. 13, 2023, pp. 3283.
DOI Link
2307
BibRef
Liu, C.[Chao],
Cao, Y.F.[Yi-Fei],
Wu, E.[Ejiao],
Yang, R.S.[Ri-Sheng],
Xu, H.[Huanliang],
Qiao, Y.S.[Yu-Shan],
A Discriminative Model for Early Detection of Anthracnose in
Strawberry Plants Based on Hyperspectral Imaging Technology,
RS(15), No. 18, 2023, pp. 4640.
DOI Link
2310
BibRef
Gill, J.[Jasmeen],
Singh, R.P.[Ravinder Pal],
Non-Invasive Grading and Sorting of Mango (Mangifera indica L.) Using
Antlion Optimizer-Based Artificial Neural Networks,
IJIG(23), No. 5 2023, pp. 2350040.
DOI Link
2310
BibRef
Aldandan, A.[Amnah],
Al Ghanim, S.[Sajeda],
Alhashim, H.[Hawraa],
Ali, M.A.S.[Mona A.S.],
Image-based deep learning automated grading of date fruit (Alhasa case
study Saudi Arabia),
IJCVR(14), No. 2, 2024, pp. 213-231.
DOI Link
2403
BibRef
Lyu, H.Y.[Hong-Yi],
Grafton, M.[Miles],
Ramilan, T.[Thiagarajah],
Irwin, M.[Matthew],
Sandoval, E.[Eduardo],
Hyperspectral Imaging Spectroscopy for Non-Destructive Determination
of Grape Berry Total Soluble Solids and Titratable Acidity,
RS(16), No. 10, 2024, pp. 1655.
DOI Link
2405
BibRef
Yang, C.Y.[Cheng-Yu],
Liu, J.[Jun],
He, J.T.[Jian-Ting],
A lightweight waxberry fruit detection model based on YOLOv5,
IET-IPR(18), No. 7, 2024, pp. 1796-1808.
DOI Link
2405
agricultural engineering, agricultural products,
complex networks, feature extraction, image recognition
BibRef
Lawal, O.M.[Olarewaju Mubashiru],
Zhao, H.M.[Hua-Min],
Zhu, S.Y.[Sheng-Yan],
Chuanli, L.[Liu],
Cheng, K.[Kui],
Lightweight fruit detection algorithms for low-power computing
devices,
IET-IPR(18), No. 9, 2024, pp. 2318-2328.
DOI Link
2407
image recognition, object detection
BibRef
Li, J.H.[Jie-Hao],
Liu, Y.W.[Yao-Wen],
Li, C.L.[Cheng-Lin],
Luo, Q.F.[Qun-Fei],
Lu, J.H.[Jia-Huan],
Pineapple Detection with YOLOv7-Tiny Network Model Improved via
Pruning and a Lightweight Backbone Sub-Network,
RS(16), No. 15, 2024, pp. 2805.
DOI Link
2408
BibRef
Xu, Y.[Yao],
Zuodong, L.[Liu],
Fruit fast tracking and recognition of apple picking robot based on
improved YOLOv5,
IET-IPR(18), No. 12, 2024, pp. 3179-3191.
DOI Link
2411
adaptive codes, adaptive signal processing,
agricultural engineering, CCD image sensors, face recognition,
image reconstruction
BibRef
Torgbor, B.A.[Benjamin Adjah],
Sinha, P.[Priyakant],
Rahman, M.M.[Muhammad Moshiur],
Robson, A.[Andrew],
Brinkhoff, J.[James],
Suarez, L.A.[Luz Angelica],
Exploring the Relationship Between Very-High-Resolution Satellite
Imagery Data and Fruit Count for Predicting Mango Yield at Multiple
Scales,
RS(16), No. 22, 2024, pp. 4170.
DOI Link
2412
BibRef
Huo, S.X.[Shi-Xin],
Duan, N.[Na],
Xu, Z.Z.[Zhi-Zheng],
An improved multi-scale YOLOv8 for apple leaf dense lesion detection
and recognition,
IET-IPR(18), No. 14, 2024, pp. 4913-4927.
DOI Link
2501
agricultural engineering, pattern recognition
BibRef
Ling, C.[Chen],
Zhang, Q.[Qunying],
Zhang, M.[Mei],
Gao, C.[Chihan],
Research on adaptive object detection via improved HSA-YOLOv5 for
raspberry maturity detection,
IET-IPR(18), No. 14, 2024, pp. 4898-4912.
DOI Link
2501
agricultural engineering, image processing
BibRef
Garcia-Furuya, D.E.[Danielle Elis],
Bolfe, É.L.[Édson Luis],
Parreiras, T.C.[Taya Cristo],
Arnal-Barbedo, J.G.[Jayme Garcia],
Santos, T.T.[Thiago Teixeira],
Gebler, L.[Luciano],
Combination of Remote Sensing and Artificial Intelligence in Fruit
Growing: Progress, Challenges, and Potential Applications,
RS(16), No. 24, 2024, pp. 4805.
DOI Link
2501
BibRef
Wen, J.[Junhan],
Verschoor, C.R.[Camiel R.],
Feng, C.M.[Cheng-Ming],
Epure, I.M.[Irina-Mona],
Abeel, T.[Thomas],
de Weerdt, M.[Mathijs],
The Growing Strawberries Dataset: Tracking Multiple Objects with
Biological Development over an Extended Period,
WACV24(7089-7099)
IEEE DOI Code:
DOI Link
2404
Measurement, Visualization, Target tracking, Greenhouses, Switches,
Biology, Trajectory, Applications, Agriculture, Algorithms,
Datasets and evaluations
BibRef
Johanson, R.[Robert],
Wilms, C.[Christian],
Johannsen, O.[Ole],
Frintrop, S.[Simone],
S3AD: Semi-supervised Small Apple Detection in Orchard Environments,
WACV24(7061-7070)
IEEE DOI
2404
Training, Runtime, Limiting, Image resolution, Crops, Training data,
Object detection, Applications, Agriculture, Algorithms,
Image recognition and understanding
BibRef
Lu, Y.Z.[Yi-Zhuo],
Research on Small Sample Apple Defect Classification Method Based on
Siamese Network,
CVIDL23(489-493)
IEEE DOI
2403
Training, Measurement, Learning systems, Deep learning, Industries,
Euclidean distance, Feature extraction, Feature vector
BibRef
Mane, S.[Shubham],
Bartakke, P.[Prashant],
Bastewad, T.[Tulshidas],
DetSSeg: A Selective On-Field Pomegranate Segmentation Approach,
ICCVMI23(1-6)
IEEE DOI
2403
YOLO, Training, Image segmentation, Lighting, Environmental factors,
Timing, Quality assessment, Deep learning, Image segmentation, YOLOv5s
BibRef
Tempelaere, A.[Astrid],
van Doorselaer, L.[Leen],
He, J.Q.[Jia-Qi],
Verboven, P.[Pieter],
Tuytelaars, T.[Tinne],
Nicolai, B.[Bart],
Deep Learning for Apple Fruit Quality Inspection using X-Ray Imaging,
CVPPA23(552-560)
IEEE DOI
2401
BibRef
Louëdec, J.L.[Justin Le],
Cielniak, G.[Grzegorz],
Key Point-based Orientation Estimation of Strawberries for Robotic
Fruit Picking,
CVS23(148-158).
Springer DOI
2312
BibRef
Paulo, D.J.[Diogo J.],
Neves, C.M.B.[Cláudia M. B.],
Wessel, D.F.[Dulcineia Ferreira],
Neves, J.C.[João C.],
Wildfruip: Estimating Fruit Physicochemical Parameters from Images
Captured in the Wild,
CIARP23(I:314-326).
Springer DOI
2312
BibRef
Gerstenberger, M.[Michael],
Maaß, S.[Steffen],
Eisert, P.[Peter],
Bosse, S.[Sebastian],
A Differentiable Gaussian Prototype Layer for Explainable Fruit
Segmentation,
ICIP23(2665-2669)
IEEE DOI
2312
BibRef
Xia, G.[Geng],
Dan, J.[Jiang],
Jinyu, H.[Hao],
Jiming, H.[Hu],
Xiaoyong, S.[Sun],
Research on Fruit Counting of Xanthoceras Sorbifolium Bunge Based on
Deep Learning,
ICIVC22(790-798)
IEEE DOI
2301
Deep learning, Industries, Training, Image color analysis, Shape,
Production, Predictive models, Xanthoceras sorbifolium Bunge, mixed data set
BibRef
Rossi, L.[Leonardo],
Valenti, M.[Marco],
Legler, S.E.[Sara Elisabetta],
Prati, A.[Andrea],
LDD: A Grape Diseases Dataset Detection and Instance Segmentation,
CIAP22(II:383-393).
Springer DOI
2205
BibRef
Aguiar, H.T.[Henrique Tavares],
Vasconcelos, R.C.S.[Raimundo C. S.],
Identification of External Defects on Fruits Using Deep Learning,
IbPRIA22(565-575).
Springer DOI
2205
BibRef
Ranjard, L.[Louis],
Bristow, J.[James],
Hossain, Z.[Zulfikar],
Orsi, A.[Alvaro],
Kirkwood, H.J.[Henry J.],
Gilman, A.[Andrew],
Likelihood-free Bayesian inference framework for sizing kiwifruit
from orchard imaging surveys,
IVCNZ21(1-6)
IEEE DOI
2201
Monte Carlo methods, Shape, Imaging, Estimation,
Stochastic processes, Crops, high-throughput phenotyping,
sequential Monte Carlo
BibRef
Halstead, M.[Michael],
Denman, S.[Simon],
Fookes, C.[Clinton],
McCool, C.[Chris],
Fruit Detection in the Wild: the Impact of Varying Conditions and
Cultivar,
DICTA20(1-8)
IEEE DOI
2201
Training, Image segmentation, Computational modeling,
Digital images, Training data, Pressing, Machine learning
BibRef
Couasnet, G.[Geoffroy],
El Abidine, M.Z.[Mouad Zine],
Laurens, F.[François],
Dutagaci, H.[Helin],
Rousseau, D.[David],
Machine learning meets distinctness in variety testing,
CVPPA21(1303-1311)
IEEE DOI
2112
Image color analysis, Machine vision,
Supervised learning, Pipelines, Machine learning, Information retrieval
BibRef
Fei, Z.H.[Zheng-Hao],
Olenskyj, A.[Alex],
Bailey, B.N.[Brian N.],
Earles, M.[Mason],
Enlisting 3D Crop Models and GANs for More Data Efficient and
Generalizable Fruit Detection,
CVPPA21(1269-1277)
IEEE DOI
2112
Training, Solid modeling, Visualization,
Pipelines, Neural networks, Crops
BibRef
Klotz, J.[Jeremy],
Rengarajan, V.[Vijay],
Sankaranarayanan, A.C.[Aswin C.],
Fine-Grain Prediction of Strawberry Freshness using Subsurface
Scattering,
LFFAI21(2328-2336)
IEEE DOI
2112
Scattering, Lighting, Time measurement,
Spatial resolution
BibRef
Kirk, R.[Raymond],
Mangan, M.[Michael],
Cielniak, G.[Grzegorz],
Robust Counting of Soft Fruit Through Occlusions with Re-identification,
CVS21(211-222).
Springer DOI
2109
BibRef
Kirk, R.[Raymond],
Mangan, M.[Michael],
Cielniak, G.[Grzegorz],
Non-destructive Soft Fruit Mass and Volume Estimation for Phenotyping
in Horticulture,
CVS21(223-233).
Springer DOI
2109
BibRef
Zhang, J.[Jihan],
Huang, D.M.[Dong-Mei],
Hu, T.T.[Ting-Ting],
Fuchikami, R.J.[Ryu-Ji],
Ikenaga, T.[Takeshi],
Critically Compressed Quantized Convolution Neural Network based High
Frame Rate and Ultra-Low Delay Fruit External Defects Detection,
MVA21(1-4)
DOI Link
2109
Deep learning, Quantization (signal), Convolution,
Transforms, Production facilities, Delays
BibRef
Akai, R.[Ryota],
Utsumi, Y.[Yuzuko],
Miwa, Y.[Yuka],
Iwamura, M.[Masakazu],
Kise, K.[Koichi],
Distortion-Adaptive Grape Bunch Counting for Omnidirectional Images,
ICPR21(599-606)
IEEE DOI
2105
Training, Image analysis, Pipelines, Distortion,
Density functional theory, Predistortion
BibRef
van Sint Annaland, Y.[Yerren],
Szymanski, L.[Lech],
Mills, S.[Steven],
Predicting Cherry Quality Using Siamese Networks,
IVCNZ20(1-6)
IEEE DOI
2012
Industries, Training, Transforms, Predictive models,
Labeling, Standards
BibRef
Akiva, P.,
Dana, K.,
Oudemans, P.,
Mars, M.,
Finding Berries: Segmentation and Counting of Cranberries using Point
Supervision and Shape Priors,
AgriVision20(219-228)
IEEE DOI
2008
Shape, Agriculture, Image segmentation, Image color analysis,
Proposals, Cameras, Thermal sensors
BibRef
Rojas-Aranda, J.L.[Jose Luis],
Nunez-Varela, J.I.[Jose Ignacio],
Cuevas-Tello, J.C.,
Rangel-Ramirez, G.[Gabriela],
Fruit Classification for Retail Stores Using Deep Learning,
MCPR20(3-13).
Springer DOI
2007
BibRef
Marcal, A.R.S.[André R. S.],
Santos, E.M.D.S.[Elisabete M. D. S.],
Tavares, F.[Fernando],
Image Based Estimation of Fruit Phytopathogenic Lesions Area,
IbPRIA19(II:285-295).
Springer DOI
1910
BibRef
Guo, L.T.[Lin-Tao],
Quant, H.[Hunter],
Lamb, N.[Nikolas],
Lowit, B.[Benjamin],
Banerjee, N.K.[Natasha Kholgade],
Banerjee, S.[Sean],
Multi-camera Microenvironment to Capture Multi-view Time-Lapse Videos
for 3D Analysis of Aging Objects,
MMMod18(II:381-385).
Springer DOI
1802
BibRef
Guo, L.T.[Lin-Tao],
Quant, H.[Hunter],
Lamb, N.[Nikolas],
Lowit, B.[Benjamin],
Banerjee, S.[Sean],
Banerjee, N.K.[Natasha Kholgade],
Spatiotemporal 3D Models of Aging Fruit from Multi-view Time-Lapse
Videos,
MMMod18(I:466-478).
Springer DOI
1802
BibRef
Lv, J.D.[Ji-Dong],
Shen, G.R.[Gen-Rong],
Ma, Z.H.[Zheng-Hua],
Acquisition of fruit region in green apple image based on the
combination of segmented regions,
ICIVC17(332-335)
IEEE DOI
1708
Clustering algorithms, Image color analysis, Image resolution,
apple, harvesting robot, image processing, image, segmentation
BibRef
Cornejo, J.Y.R.[Jadisha Yarif Ramírez],
Pedrini, H.[Helio],
Automatic Fruit and Vegetable Recognition Based on CENTRIST and Color
Representation,
CIARP16(76-83).
Springer DOI
1703
BibRef
Puttemans, S.[Steven],
Vanbrabant, Y.,
Tits, L.,
Goedemé, T.[Toon],
Automated visual fruit detection for harvest estimation and robotic
harvesting,
IPTA16(1-6)
IEEE DOI
1703
control engineering computing
BibRef
Kadmiry, B.,
Wong, C.K.[Chee Kit],
Perception scheme for fruits detection in trees for autonomous
agricultural robot applications,
ICVNZ15(1-6)
IEEE DOI
1701
agriculture
BibRef
Zhang, M.[Meng],
Lee, D.J.[Dah-Jye],
Global Evolution-Constructed Feature for Date Maturity Evaluation,
ISVC16(II: 281-290).
Springer DOI
1701
BibRef
And:
Efficient Training of Evolution-Constructed Features,
ISVC15(II: 646-654).
Springer DOI
1601
BibRef
Janssens, E.[Eline],
de Beenhouwer, J.[Jan],
van Dael, M.[Mattias],
Verboven, P.[Pieter],
Nicolai, B.[Bart],
Sijbers, J.[Jan],
Neural netwok based X-ray tomography for fast inspection of apples on
a conveyor belt system,
ICIP15(917-921)
IEEE DOI
1512
Inline tomography; artificial neural networks; filtered backprojection
BibRef
Kuang, H.L.[Hu-Lin],
Chan, L.L.H.,
Yan, H.[Hong],
Multi-class fruit detection based on multiple color channels,
ICWAPR15(1-7)
IEEE DOI
1511
agricultural products
BibRef
López-García, F.[Fernando],
Andreu-García, G.[Gabriela],
Detection of Visual Defects in Citrus Fruits:
Multivariate Image Analysis vs Graph Image Segmentation,
CAIP13(237-244).
Springer DOI
1308
BibRef
Roy, A.,
Banerjee, S.,
Roy, D.,
Mukhopadhyay, A.,
Statistical Video Tracking of Pomegranate Fruits,
NCVPRIPG11(227-230).
IEEE DOI
1205
BibRef
Iqbal, S.M.,
Gopal, A.,
Sarma, A.S.V.,
Volume estimation of apple fruits using image processing,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Gatica, C.G.[C. Gabriel],
Best, S.S.[S. Stanley],
Ceroni, J.[José],
Lefranc, G.[Gaston],
A New Method for Olive Fruits Recognition,
CIARP11(646-653).
Springer DOI
1111
BibRef
Busch, A.[Andrew],
Palk, P.[Phillip],
An Image Processing Approach to Distance Estimation for Automated
Strawberry Harvesting,
ICIAR11(II: 389-396).
Springer DOI
1106
BibRef
Mao, W.H.[Wen-Hua],
Ji, B.P.[Bao-Ping],
Zhan, J.C.[Ji-Cheng],
Zhang, X.C.[Xiao-Chao],
Hu, X.A.[Xiao-An],
Apple Location Method for the Apple Harvesting Robot,
CISP09(1-5).
IEEE DOI
0910
BibRef
Messner, W.[William],
Kliethermes, B.,
Augmented Fruit Harvesting,
CMU-RI-TR-09-20, June, 2009.
WWW Link.
1102
BibRef
Wijethunga, P.,
Samarasinghe, S.,
Kulasiri, D.,
Woodhead, I.,
Towards a generalized colour image segmentation for kiwifruit detection,
IVCNZ09(62-66).
IEEE DOI
0911
BibRef
Earlier:
Digital image analysis based automated kiwifruit counting technique,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Gómez-Sanchis, J.,
Camps-Valls, G.,
Moltó, E.,
Gómez-Chova, L.,
Aleixos, N.,
Blasco, J.,
Segmentation of Hyperspectral Images for the Detection of Rotten
Mandarins,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Blasco, J.[José],
Cubero, S.[Sergio],
Arias, R.[Raúl],
Gómez, J.[Juan],
Juste, F.[Florentino],
Moltó, E.[Enrique],
Development of a Computer Vision System for the Automatic Quality
Grading of Mandarin Segments,
IbPRIA07(II: 460-466).
Springer DOI
0706
BibRef
Kaewapichai, W.[Watcharin],
KaewTrakulPong, P.[Pakorn],
Prateepasen, A.[Asa],
Khongkraphan, K.[Kittiya],
Fitting a Pineapple Model for Automatic Maturity Grading,
ICIP07(I: 257-260).
IEEE DOI
0709
BibRef
Chalidabhongse, T.H.,
Yimyam, P.,
Sirisomboon, P.,
2D/3D Vision-Based Mango's Feature Extraction and Sorting,
ICARCV06(1-6).
IEEE DOI
0612
Sort mangos using detected features.
BibRef
Ye, L.[Lei],
Cao, L.Z.[Ling-Zhi],
Ogunbona, P.[Philip],
Li, W.Q.[Wan-Qing],
Description of Evolutional Changes in Image Time Sequences Using MPEG-7
Visual Descriptors,
VLBV05(189-197).
Springer DOI
0509
Fruit rotting is the example.
BibRef
Martínez-Usó, A.[Adolfo],
Pla, F.[Filiberto],
García-Sevilla, P.[Pedro],
Multispectral Image Segmentation by Energy Minimization for Fruit
Quality Estimation,
IbPRIA05(II:689).
Springer DOI
0509
BibRef
Laemmer, E.,
Deruyver, A.,
Sowinska, M.,
Watershed and adaptive pyramid for determining the apple's maturity
state,
ICIP02(I: 789-792).
IEEE DOI
0210
BibRef
Aleixos, N.,
Blasco, J.,
Moltó, E.,
Navarrón, F.,
Assessment of Citrus Fruit Quality Using a Real-time Machine Vision
System,
ICPR00(Vol I: 482-485).
IEEE DOI
0009
BibRef
Jiménez, A.R.,
Ceres, R.,
Pons, J.L.,
A Machine Vision System Using a Laser Radar Applied to Robotic Fruit
Harvesting,
CVBVS99(110).
IEEE DOI
BibRef
9900
Fernandez-Maloigne, C., and
Laugier, D.,
Automatic Apples Detection for an Agricultural Robot,
IAS93(xx-yy).
Recognize Apples.
BibRef
9300
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Plants, Flowers, Flower Shape, Flower Color .