Tao, Y.,
Spherical Transform of Fruit Images for Online Defect Extraction
of Mass Objects,
OptEng(35), No. 2, February 1996, pp. 344-350.
BibRef
9602
Grasso, G.M.,
Recce, M.,
Scene Analysis for An Orange Harvesting Robot,
AIApp(11), No. 3, 1997, pp. 9-15.
9802
BibRef
Recce, M.[Michael],
Plebe, A.[Alessio],
Tropiano, G.[Giuseppe],
Taylor, J.[John],
Video Grading of Oranges in Real-Time,
AIR(12), No. 1-3, February 1998, pp. 117-136.
WWW Link.
1208
BibRef
Plebe, A.[Alessio],
Grasso, G.M.[Giorgio M.],
Localization of spherical fruits for robotic harvesting,
MVA(13), No. 2 2001, pp. 70-79.
Springer DOI
0201
BibRef
Harrell, R.C.,
Slaughter, D.C.,
Adsit, P.D.,
A fruit-tracking system for robotic harvesting,
MVA(2), No. 2, 1989, pp. 69-80.
BibRef
8900
Jiménez, A.R.,
Jain, A.K.,
Ceres, R.,
Pons, J.L.,
Automatic fruit recognition:
A survey and new results using Range/Attenuation images,
PR(32), No. 10, October 1999, pp. 1719-1736.
Elsevier DOI
Survey, Inspection.
BibRef
9910
Jiménez, A.R.,
Ceres, R.,
Pons, J.L.,
A vision system based on a laser range-finder applied to robotic fruit
harvesting,
MVA(11), No. 6, 2000, pp. 321-329.
Springer DOI
0005
BibRef
Zou, X.B.[Xiao-Bo],
Zhao, J.W.[Jie-Wen],
Li, Y.X.[Yan-Xiao],
Apple color grading based on organization feature parameters,
PRL(28), No. 15, 1 November 2007, pp. 2046-2053.
Elsevier DOI
0711
Apple; Quality evaluation; Genetic algorithm; Organization feature parameter
BibRef
Anami, B.S.[Basavaraj S.],
Burkpalli, V.C.[Vishwanath C.],
Recognition and classification of images of fruits' juices based on
3-Sigma approach,
IJCVR(1), No. 2, 2010, pp. 206-217.
DOI Link
1011
BibRef
Blasco, J.[José],
Magnetic resonance imaging detects seeds in mandarins,
SPIE(Newsroom), January 16, 2012.
DOI Link
1201
Seeds in mandarins are difficult to detect with x-ray radiography and
computed tomography, but are easily distinguished using magnetic
resonance imaging.
BibRef
Kapach, K.[Keren],
Barnea, E.[Ehud],
Mairon, R.[Rotem],
Edan, Y.[Yael],
Ben-Shahar, O.[Ohad],
Computer vision for fruit harvesting robots:
State of the art and challenges ahead,
IJCVR(3), No. 1-2, 2012, pp. 4-34.
DOI Link
1204
BibRef
Liu, S.G.[Shi-Guang],
Fan, D.F.[Dong-Fang],
Computer Modeling and Simulation of Fruit Sunscald,
IJIG(15), No. 03, 2015, pp. 1550013.
DOI Link
1506
BibRef
Bohl, E.[Evans],
Terraz, O.[Olivier],
Ghazanfarpour, D.[Djamchid],
Modeling fruits and their internal structure using parametric 3Gmap
L-systems,
VC(31), No. 6-8, June 2015, pp. 819-829.
WWW Link.
1506
BibRef
Chaw, J.K.[Jun-Kit],
Mokji, M.[Musa],
Analysis of produce recognition system with taxonomist's knowledge
using computer vision and different classifiers,
IET-IPR(11), No. 3, March 2017, pp. 173-182.
DOI Link
1703
BibRef
Aiadi, O.[Oussama],
Kherfi, M.L.[Mohammed Lamine],
A new method for automatic date fruit classification,
IJCVR(7), No. 6, 2017, pp. 692-711.
DOI Link
1711
BibRef
Hameed, K.[Khurram],
Chai, D.[Douglas],
Rassau, A.[Alexander],
A comprehensive review of fruit and vegetable classification
techniques,
IVC(80), 2018, pp. 24-44.
Elsevier DOI
1812
Recognition, Classification, Fruit, Vegetable,
Produce classification, Machine learning
BibRef
Lobos, G.A.[Gustavo A.],
Escobar-Opazo, A.[Alejandro],
Estrada, F.[Félix],
Romero-Bravo, S.[Sebastián],
Garriga, M.[Miguel],
del Pozo, A.[Alejandro],
Poblete-Echeverría, C.[Carlos],
Gonzalez-Talice, J.[Jaime],
González-Martinez, L.[Luis],
Caligari, P.[Peter],
Spectral Reflectance Modeling by Wavelength Selection: Studying the
Scope for Blueberry Physiological Breeding under Contrasting Water
Supply and Heat Conditions,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Pourdarbani, R.[Razieh],
Sabzi, S.[Sajad],
Hernández-Hernández, M.[Mario],
Hernández-Hernández, J.L.[José Luis],
García-Mateos, G.[Ginés],
Kalantari, D.[Davood],
Molina-Martínez, J.M.[José Miguel],
Comparison of Different Classifiers and the Majority Voting Rule for
the Detection of Plum Fruits in Garden Conditions,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Badeka, E.[Eftichia],
Kalabokas, T.[Theofanis],
Tziridis, K.[Konstantinos],
Nicolaou, A.[Alexander],
Vrochidou, E.[Eleni],
Mavridou, E.[Efthimia],
Papakostas, G.A.[George A.],
Pachidis, T.[Theodore],
Grapes Visual Segmentation for Harvesting Robots Using Local Texture
Descriptors,
CVS19(98-109).
Springer DOI
1912
BibRef
Hamza, R.[Raja],
Chtourou, M.[Mohamed],
Design of fuzzy inference system for apple ripeness estimation using
gradient method,
IET-IPR(14), No. 3, 28 February 2020, pp. 561-569.
DOI Link
2002
BibRef
Savian, F.[Francesco],
Martini, M.[Marta],
Ermacora, P.[Paolo],
Paulus, S.[Stefan],
Mahlein, A.K.[Anne-Katrin],
Prediction of the Kiwifruit Decline Syndrome in Diseased Orchards by
Remote Sensing,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Tsoulias, N.[Nikos],
Paraforos, D.S.[Dimitrios S.],
Xanthopoulos, G.[George],
Zude-Sasse, M.[Manuela],
Apple Shape Detection Based on Geometric and Radiometric Features
Using a LiDAR Laser Scanner,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Abd-Elrahman, A.[Amr],
Guan, Z.[Zhen],
Dalid, C.[Cheryl],
Whitaker, V.[Vance],
Britt, K.[Katherine],
Wilkinson, B.[Benjamin],
Gonzalez, A.[Ali],
Automated Canopy Delineation and Size Metrics Extraction for
Strawberry Dry Weight Modeling Using Raster Analysis of
High-Resolution Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Gill, H.S.[Harmandeep Singh],
Khehra, B.S.[Baljit Singh],
Efficient image classification technique for weather degraded fruit
images,
IET-IPR(14), No. 14, December 2020, pp. 3463-3470.
DOI Link
2012
BibRef
Ni, X.P.[Xue-Ping],
Li, C.Y.[Chang-Ying],
Jiang, H.Y.[Huan-Yu],
Takeda, F.[Fumiomi],
Three-dimensional photogrammetry with deep learning instance
segmentation to extract berry fruit harvestability traits,
PandRS(171), 2021, pp. 297-309.
Elsevier DOI
2012
3D reconstruction, Mask R-CNN, 2D-3D projection, Blueberry traits
BibRef
Biffi, L.J.[Leonardo Josoé],
Mitishita, E.[Edson],
Liesenberg, V.[Veraldo],
dos Santos, A.A.[Anderson Aparecido],
Gonçalves, D.N.[Diogo Nunes],
Estrabis, N.V.[Nayara Vasconcelos],
de Andrade Silva, J.[Jonathan],
Osco, L.P.[Lucas Prado],
Ramos, A.P.M.[Ana Paula Marques],
Centeno, J.A.S.[Jorge Antonio Silva],
Schimalski, M.B.[Marcos Benedito],
Rufato, L.[Leo],
Neto, S.L.R.[Sílvio Luís Rafaeli],
Junior, J.M.[José Marcato],
Gonçalves, W.N.[Wesley Nunes],
ATSS Deep Learning-Based Approach to Detect Apple Fruits,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Hennessy, P.J.[Patrick J.],
Esau, T.J.[Travis J.],
Farooque, A.A.[Aitazaz A.],
Schumann, A.W.[Arnold W.],
Zaman, Q.U.[Qamar U.],
Corscadden, K.W.[Kenny W.],
Hair Fescue and Sheep Sorrel Identification Using Deep Learning in
Wild Blueberry Production,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Henila, M.[Manickam],
Chithra, P.[Palaniappan],
Segmentation using fuzzy cluster-based thresholding method for apple
fruit sorting,
IET-IPR(14), No. 16, 19 December 2020, pp. 4178-4187.
DOI Link
2103
BibRef
Fan, P.[Pan],
Lang, G.D.[Guo-Dong],
Yan, B.[Bin],
Lei, X.Y.[Xiao-Yan],
Guo, P.J.[Peng-Ju],
Liu, Z.J.[Zhi-Jie],
Yang, F.Z.[Fu-Zeng],
A Method of Segmenting Apples Based on Gray-Centered RGB Color Space,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yan, B.[Bin],
Fan, P.[Pan],
Lei, X.Y.[Xiao-Yan],
Liu, Z.J.[Zhi-Jie],
Yang, F.[Fuzeng],
A Real-Time Apple Targets Detection Method for Picking Robot Based on
Improved YOLOv5,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Dewi, T.[Tresna],
Mulya, Z.[Zarqa],
Risma, P.[Pola],
Oktarina, Y.[Yurni],
BLOB analysis of an automatic vision guided system for a fruit picking
and placing robot,
IJCVR(11), No. 3, 2021, pp. 315-327.
DOI Link
2106
BibRef
Chu, P.Y.[Peng-Yu],
Li, Z.J.[Zhao-Jian],
Lammers, K.[Kyle],
Lu, R.[Renfu],
Liu, X.M.[Xiao-Ming],
Deep learning-based apple detection using a suppression mask R-CNN,
PRL(147), 2021, pp. 206-211.
Elsevier DOI
2106
Vision system, Fruit detection, Deep learning,
Robotic harvesting, Image segmentation
BibRef
Tripathi, M.K.[Mukesh Kumar],
Maktedar, D.D.[Dhananjay D.],
Optimized deep learning model for mango grading:
Hybridizing lion plus firefly algorithm,
IET-IPR(15), No. 9, 2021, pp. 1940-1956.
DOI Link
2106
BibRef
Li, G.J.[Guo-Jin],
Huang, X.J.[Xiao-Jie],
Ai, J.[Jiaoyan],
Yi, Z.[Zeren],
Xie, W.[Wei],
Lemon-YOLO: An efficient object detection method for lemons in the
natural environment,
IET-IPR(15), No. 9, 2021, pp. 1998-2009.
DOI Link
2106
BibRef
Huang, Y.[Yirui],
Wang, J.[Juan],
Li, N.[Na],
Yang, J.[Jing],
Ren, Z.H.[Zhen-Hui],
Predicting soluble solids content in 'Fuji' apples of different
ripening stages based on multiple information fusion,
PRL(151), 2021, pp. 76-84.
Elsevier DOI
2110
RGB imaging, Soluble solids content, L*a*b* color space,
Stacked autoencoder, Back propagation neural network
BibRef
Lawal, O.M.[Olarewaju Mubashiru],
Zhao, H.M.[Hua-Min],
YOLOFig detection model development using deep learning,
IET-IPR(15), No. 13, 2021, pp. 3071-3079.
DOI Link
2110
Figs.
BibRef
Grilli, E.[Eleonora],
Battisti, R.[Roberto],
Remondino, F.[Fabio],
An Advanced Photogrammetric Solution to Measure Apples,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Li, T.[Tao],
Feng, Q.C.[Qing-Chun],
Qiu, Q.[Quan],
Xie, F.[Feng],
Zhao, C.J.[Chun-Jiang],
Occluded Apple Fruit Detection and Localization with a Frustum-Based
Point-Cloud-Processing Approach for Robotic Harvesting,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Mao, W.J.[Wen-Ju],
Liu, H.[Heng],
Hao, W.[Wei],
Yang, F.[Fuzeng],
Liu, Z.J.[Zhi-Jie],
Development of a Combined Orchard Harvesting Robot Navigation System,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Qi, X.K.[Xiao-Kang],
Dong, J.[Jingshi],
Lan, Y.[Yubin],
Zhu, H.[Hang],
Method for Identifying Litchi Picking Position Based on YOLOv5 and
PSPNet,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Luo, L.[Lili],
Chang, Q.R.[Qin-Rui],
Gao, Y.F.[Yi-Fan],
Jiang, D.Y.[Dan-Yao],
Li, F.L.[Fen-Ling],
Combining Different Transformations of Ground Hyperspectral Data with
Unmanned Aerial Vehicle (UAV) Images for Anthocyanin Estimation in
Tree Peony Leaves,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
Antioxidants found in red, purple, and blue fruits and vegetables.
BibRef
Singh, R.[Rishipal],
Rani, R.[Rajneesh],
Kamboj, A.[Aman],
An Optimized Approach for Intra-Class Fruit Classification Using Deep
Convolutional Neural Network,
IJIG(22), No. 3 2022, pp. 2140014.
DOI Link
2206
BibRef
Hao, J.L.[Jing-Lei],
Zhao, Y.Q.[Yong-Qiang],
Peng, Q.N.[Qun-Nie],
A Specular Highlight Removal Algorithm for Quality Inspection of
Fresh Fruits,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zheng, C.W.[Cai-Wang],
Abd-Elrahman, A.[Amr],
Whitaker, V.[Vance],
Dalid, C.[Cheryl],
Prediction of Strawberry Dry Biomass from UAV Multispectral Imagery
Using Multiple Machine Learning Methods,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhang, C.X.[Chen-Xi],
Kang, F.[Feng],
Wang, Y.X.[Ya-Xiong],
An Improved Apple Object Detection Method Based on Lightweight YOLOv4
in Complex Backgrounds,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zheng, Z.Z.[Zhou-Zhou],
Hu, Y.[Yaohua],
Qiao, Y.C.[Yi-Chen],
Hu, X.[Xing],
Huang, Y.X.[Yu-Xiang],
Real-Time Detection of Winter Jujubes Based on Improved YOLOX-Nano
Network,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Lu, S.L.[Sheng-Lian],
Liu, X.Y.[Xiao-Yu],
He, Z.X.[Zi-Xuan],
Zhang, X.[Xin],
Liu, W.B.[Wen-Bo],
Karkee, M.[Manoj],
Swin-Transformer-YOLOv5 for Real-Time Wine Grape Bunch Detection,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Shiu, Y.S.[Yi-Shiang],
Lee, R.Y.[Re-Yang],
Chang, Y.C.[Yen-Ching],
Pineapples' Detection and Segmentation Based on Faster and Mask R-CNN
in UAV Imagery,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Sekharamantry, P.K.[Praveen Kumar],
Melgani, F.[Farid],
Malacarne, J.[Jonni],
Deep Learning-Based Apple Detection with Attention Module and
Improved Loss Function in YOLO,
RS(15), No. 6, 2023, pp. 1516.
DOI Link
2304
BibRef
Wang, J.J.[Jin-Jie],
Ding, J.L.[Jian-Li],
Ran, S.[Si],
Qin, S.F.[Shao-Feng],
Liu, B.[Bohua],
Li, X.[Xiang],
Automatic Pear Extraction from High-Resolution Images by a Visual
Attention Mechanism Network,
RS(15), No. 13, 2023, pp. 3283.
DOI Link
2307
BibRef
Liu, C.[Chao],
Cao, Y.F.[Yi-Fei],
Wu, E.[Ejiao],
Yang, R.S.[Ri-Sheng],
Xu, H.[Huanliang],
Qiao, Y.S.[Yu-Shan],
A Discriminative Model for Early Detection of Anthracnose in
Strawberry Plants Based on Hyperspectral Imaging Technology,
RS(15), No. 18, 2023, pp. 4640.
DOI Link
2310
BibRef
Gill, J.[Jasmeen],
Singh, R.P.[Ravinder Pal],
Non-Invasive Grading and Sorting of Mango (Mangifera indica L.) Using
Antlion Optimizer-Based Artificial Neural Networks,
IJIG(23), No. 5 2023, pp. 2350040.
DOI Link
2310
BibRef
Aldandan, A.[Amnah],
Al Ghanim, S.[Sajeda],
Alhashim, H.[Hawraa],
Ali, M.A.S.[Mona A.S.],
Image-based deep learning automated grading of date fruit (Alhasa case
study Saudi Arabia),
IJCVR(14), No. 2, 2024, pp. 213-231.
DOI Link
2403
BibRef
Lyu, H.Y.[Hong-Yi],
Grafton, M.[Miles],
Ramilan, T.[Thiagarajah],
Irwin, M.[Matthew],
Sandoval, E.[Eduardo],
Hyperspectral Imaging Spectroscopy for Non-Destructive Determination
of Grape Berry Total Soluble Solids and Titratable Acidity,
RS(16), No. 10, 2024, pp. 1655.
DOI Link
2405
BibRef
Yang, C.[ChengYu],
Liu, J.[Jun],
He, J.[JianTing],
A lightweight waxberry fruit detection model based on YOLOv5,
IET-IPR(18), No. 7, 2024, pp. 1796-1808.
DOI Link
2405
agricultural engineering, agricultural products,
complex networks, computer vision, feature extraction, image recognition
BibRef
Lawal, O.M.[Olarewaju Mubashiru],
Zhao, H.M.[Hua-Min],
Zhu, S.Y.[Sheng-Yan],
Chuanli, L.[Liu],
Cheng, K.[Kui],
Lightweight fruit detection algorithms for low-power computing
devices,
IET-IPR(18), No. 9, 2024, pp. 2318-2328.
DOI Link
2407
computer vision, image recognition, object detection
BibRef
Li, J.H.[Jie-Hao],
Liu, Y.W.[Yao-Wen],
Li, C.L.[Cheng-Lin],
Luo, Q.[Qunfei],
Lu, J.H.[Jia-Huan],
Pineapple Detection with YOLOv7-Tiny Network Model Improved via
Pruning and a Lightweight Backbone Sub-Network,
RS(16), No. 15, 2024, pp. 2805.
DOI Link
2408
BibRef
Johanson, R.[Robert],
Wilms, C.[Christian],
Johannsen, O.[Ole],
Frintrop, S.[Simone],
S3AD: Semi-supervised Small Apple Detection in Orchard Environments,
WACV24(7061-7070)
IEEE DOI
2404
Training, Runtime, Limiting, Image resolution, Crops, Training data,
Object detection, Applications, Agriculture, Algorithms,
Image recognition and understanding
BibRef
Lu, Y.Z.[Yi-Zhuo],
Research on Small Sample Apple Defect Classification Method Based on
Siamese Network,
CVIDL23(489-493)
IEEE DOI
2403
Training, Measurement, Learning systems, Deep learning, Industries,
Euclidean distance, Feature extraction, Feature vector
BibRef
Mane, S.[Shubham],
Bartakke, P.[Prashant],
Bastewad, T.[Tulshidas],
DetSSeg: A Selective On-Field Pomegranate Segmentation Approach,
ICCVMI23(1-6)
IEEE DOI
2403
YOLO, Training, Image segmentation, Lighting, Environmental factors,
Timing, Quality assessment, Deep learning, Image segmentation, YOLOv5s
BibRef
Tempelaere, A.[Astrid],
van Doorselaer, L.[Leen],
He, J.Q.[Jia-Qi],
Verboven, P.[Pieter],
Tuytelaars, T.[Tinne],
Nicolai, B.[Bart],
Deep Learning for Apple Fruit Quality Inspection using X-Ray Imaging,
CVPPA23(552-560)
IEEE DOI
2401
BibRef
Louëdec, J.L.[Justin Le],
Cielniak, G.[Grzegorz],
Key Point-based Orientation Estimation of Strawberries for Robotic
Fruit Picking,
CVS23(148-158).
Springer DOI
2312
BibRef
Paulo, D.J.[Diogo J.],
Neves, C.M.B.[Cláudia M. B.],
Wessel, D.F.[Dulcineia Ferreira],
Neves, J.C.[João C.],
Wildfruip: Estimating Fruit Physicochemical Parameters from Images
Captured in the Wild,
CIARP23(I:314-326).
Springer DOI
2312
BibRef
Gerstenberger, M.[Michael],
Maaß, S.[Steffen],
Eisert, P.[Peter],
Bosse, S.[Sebastian],
A Differentiable Gaussian Prototype Layer for Explainable Fruit
Segmentation,
ICIP23(2665-2669)
IEEE DOI
2312
BibRef
Xia, G.[Geng],
Dan, J.[Jiang],
Jinyu, H.[Hao],
Jiming, H.[Hu],
Xiaoyong, S.[Sun],
Research on Fruit Counting of Xanthoceras Sorbifolium Bunge Based on
Deep Learning,
ICIVC22(790-798)
IEEE DOI
2301
Deep learning, Industries, Training, Image color analysis, Shape,
Production, Predictive models, Xanthoceras sorbifolium Bunge, mixed data set
BibRef
Rossi, L.[Leonardo],
Valenti, M.[Marco],
Legler, S.E.[Sara Elisabetta],
Prati, A.[Andrea],
LDD: A Grape Diseases Dataset Detection and Instance Segmentation,
CIAP22(II:383-393).
Springer DOI
2205
BibRef
Aguiar, H.T.[Henrique Tavares],
Vasconcelos, R.C.S.[Raimundo C. S.],
Identification of External Defects on Fruits Using Deep Learning,
IbPRIA22(565-575).
Springer DOI
2205
BibRef
Ranjard, L.[Louis],
Bristow, J.[James],
Hossain, Z.[Zulfikar],
Orsi, A.[Alvaro],
Kirkwood, H.J.[Henry J.],
Gilman, A.[Andrew],
Likelihood-free Bayesian inference framework for sizing kiwifruit
from orchard imaging surveys,
IVCNZ21(1-6)
IEEE DOI
2201
Monte Carlo methods, Shape, Imaging, Estimation,
Stochastic processes, Crops, high-throughput phenotyping,
sequential Monte Carlo
BibRef
Halstead, M.[Michael],
Denman, S.[Simon],
Fookes, C.[Clinton],
McCool, C.[Chris],
Fruit Detection in the Wild: the Impact of Varying Conditions and
Cultivar,
DICTA20(1-8)
IEEE DOI
2201
Training, Image segmentation, Computational modeling,
Digital images, Training data, Pressing, Machine learning
BibRef
Couasnet, G.[Geoffroy],
El Abidine, M.Z.[Mouad Zine],
Laurens, F.[François],
Dutagaci, H.[Helin],
Rousseau, D.[David],
Machine learning meets distinctness in variety testing,
CVPPA21(1303-1311)
IEEE DOI
2112
Image color analysis, Machine vision,
Supervised learning, Pipelines, Machine learning, Information retrieval
BibRef
Fei, Z.H.[Zheng-Hao],
Olenskyj, A.[Alex],
Bailey, B.N.[Brian N.],
Earles, M.[Mason],
Enlisting 3D Crop Models and GANs for More Data Efficient and
Generalizable Fruit Detection,
CVPPA21(1269-1277)
IEEE DOI
2112
Training, Solid modeling, Visualization,
Pipelines, Neural networks, Crops
BibRef
Klotz, J.[Jeremy],
Rengarajan, V.[Vijay],
Sankaranarayanan, A.C.[Aswin C.],
Fine-Grain Prediction of Strawberry Freshness using Subsurface
Scattering,
LFFAI21(2328-2336)
IEEE DOI
2112
Scattering, Lighting, Time measurement,
Spatial resolution
BibRef
Kirk, R.[Raymond],
Mangan, M.[Michael],
Cielniak, G.[Grzegorz],
Robust Counting of Soft Fruit Through Occlusions with Re-identification,
CVS21(211-222).
Springer DOI
2109
BibRef
Kirk, R.[Raymond],
Mangan, M.[Michael],
Cielniak, G.[Grzegorz],
Non-destructive Soft Fruit Mass and Volume Estimation for Phenotyping
in Horticulture,
CVS21(223-233).
Springer DOI
2109
BibRef
Zhang, J.[Jihan],
Huang, D.M.[Dong-Mei],
Hu, T.T.[Ting-Ting],
Fuchikami, R.J.[Ryu-Ji],
Ikenaga, T.[Takeshi],
Critically Compressed Quantized Convolution Neural Network based High
Frame Rate and Ultra-Low Delay Fruit External Defects Detection,
MVA21(1-4)
DOI Link
2109
Deep learning, Quantization (signal), Convolution,
Transforms, Production facilities, Delays
BibRef
Akai, R.[Ryota],
Utsumi, Y.[Yuzuko],
Miwa, Y.[Yuka],
Iwamura, M.[Masakazu],
Kise, K.[Koichi],
Distortion-Adaptive Grape Bunch Counting for Omnidirectional Images,
ICPR21(599-606)
IEEE DOI
2105
Training, Image analysis, Pipelines, Distortion,
Density functional theory, Predistortion, Pattern recognition
BibRef
van Sint Annaland, Y.[Yerren],
Szymanski, L.[Lech],
Mills, S.[Steven],
Predicting Cherry Quality Using Siamese Networks,
IVCNZ20(1-6)
IEEE DOI
2012
Industries, Training, Transforms, Predictive models,
Labeling, Standards
BibRef
Akiva, P.,
Dana, K.,
Oudemans, P.,
Mars, M.,
Finding Berries: Segmentation and Counting of Cranberries using Point
Supervision and Shape Priors,
AgriVision20(219-228)
IEEE DOI
2008
Shape, Agriculture, Image segmentation, Image color analysis,
Proposals, Cameras, Thermal sensors
BibRef
Rojas-Aranda, J.L.[Jose Luis],
Nunez-Varela, J.I.[Jose Ignacio],
Cuevas-Tello, J.C.,
Rangel-Ramirez, G.[Gabriela],
Fruit Classification for Retail Stores Using Deep Learning,
MCPR20(3-13).
Springer DOI
2007
BibRef
Marcal, A.R.S.[André R. S.],
Santos, E.M.D.S.[Elisabete M. D. S.],
Tavares, F.[Fernando],
Image Based Estimation of Fruit Phytopathogenic Lesions Area,
IbPRIA19(II:285-295).
Springer DOI
1910
BibRef
Guo, L.T.[Lin-Tao],
Quant, H.[Hunter],
Lamb, N.[Nikolas],
Lowit, B.[Benjamin],
Banerjee, N.K.[Natasha Kholgade],
Banerjee, S.[Sean],
Multi-camera Microenvironment to Capture Multi-view Time-Lapse Videos
for 3D Analysis of Aging Objects,
MMMod18(II:381-385).
Springer DOI
1802
BibRef
Guo, L.[Lintao],
Quant, H.[Hunter],
Lamb, N.[Nikolas],
Lowit, B.[Benjamin],
Banerjee, S.[Sean],
Banerjee, N.K.[Natasha Kholgade],
Spatiotemporal 3D Models of Aging Fruit from Multi-view Time-Lapse
Videos,
MMMod18(I:466-478).
Springer DOI
1802
BibRef
Lv, J.D.[Ji-Dong],
Shen, G.R.[Gen-Rong],
Ma, Z.H.[Zheng-Hua],
Acquisition of fruit region in green apple image based on the
combination of segmented regions,
ICIVC17(332-335)
IEEE DOI
1708
Clustering algorithms, Image color analysis, Image resolution,
apple, harvesting robot, image processing, image, segmentation
BibRef
Cornejo, J.Y.R.[Jadisha Yarif Ramírez],
Pedrini, H.[Helio],
Automatic Fruit and Vegetable Recognition Based on CENTRIST and Color
Representation,
CIARP16(76-83).
Springer DOI
1703
BibRef
Puttemans, S.[Steven],
Vanbrabant, Y.,
Tits, L.,
Goedemé, T.[Toon],
Automated visual fruit detection for harvest estimation and robotic
harvesting,
IPTA16(1-6)
IEEE DOI
1703
control engineering computing
BibRef
Kadmiry, B.,
Wong, C.K.[Chee Kit],
Perception scheme for fruits detection in trees for autonomous
agricultural robot applications,
ICVNZ15(1-6)
IEEE DOI
1701
agriculture
BibRef
Zhang, M.[Meng],
Lee, D.J.[Dah-Jye],
Global Evolution-Constructed Feature for Date Maturity Evaluation,
ISVC16(II: 281-290).
Springer DOI
1701
BibRef
And:
Efficient Training of Evolution-Constructed Features,
ISVC15(II: 646-654).
Springer DOI
1601
BibRef
Janssens, E.[Eline],
de Beenhouwer, J.[Jan],
van Dael, M.[Mattias],
Verboven, P.[Pieter],
Nicolai, B.[Bart],
Sijbers, J.[Jan],
Neural netwok based X-ray tomography for fast inspection of apples on
a conveyor belt system,
ICIP15(917-921)
IEEE DOI
1512
Inline tomography; artificial neural networks; filtered backprojection
BibRef
Kuang, H.L.[Hu-Lin],
Chan, L.L.H.,
Yan, H.[Hong],
Multi-class fruit detection based on multiple color channels,
ICWAPR15(1-7)
IEEE DOI
1511
agricultural products
BibRef
López-García, F.[Fernando],
Andreu-García, G.[Gabriela],
Detection of Visual Defects in Citrus Fruits:
Multivariate Image Analysis vs Graph Image Segmentation,
CAIP13(237-244).
Springer DOI
1308
BibRef
Roy, A.,
Banerjee, S.,
Roy, D.,
Mukhopadhyay, A.,
Statistical Video Tracking of Pomegranate Fruits,
NCVPRIPG11(227-230).
IEEE DOI
1205
BibRef
Iqbal, S.M.,
Gopal, A.,
Sarma, A.S.V.,
Volume estimation of apple fruits using image processing,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Gatica, C.G.[C. Gabriel],
Best, S.S.[S. Stanley],
Ceroni, J.[José],
Lefranc, G.[Gaston],
A New Method for Olive Fruits Recognition,
CIARP11(646-653).
Springer DOI
1111
BibRef
Busch, A.[Andrew],
Palk, P.[Phillip],
An Image Processing Approach to Distance Estimation for Automated
Strawberry Harvesting,
ICIAR11(II: 389-396).
Springer DOI
1106
BibRef
Mao, W.H.[Wen-Hua],
Ji, B.P.[Bao-Ping],
Zhan, J.C.[Ji-Cheng],
Zhang, X.C.[Xiao-Chao],
Hu, X.A.[Xiao-An],
Apple Location Method for the Apple Harvesting Robot,
CISP09(1-5).
IEEE DOI
0910
BibRef
Messner, W.[William],
Kliethermes, B.,
Augmented Fruit Harvesting,
CMU-RI-TR-09-20, June, 2009.
WWW Link.
1102
BibRef
Wijethunga, P.,
Samarasinghe, S.,
Kulasiri, D.,
Woodhead, I.,
Towards a generalized colour image segmentation for kiwifruit detection,
IVCNZ09(62-66).
IEEE DOI
0911
BibRef
Earlier:
Digital image analysis based automated kiwifruit counting technique,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Gómez-Sanchis, J.,
Camps-Valls, G.,
Moltó, E.,
Gómez-Chova, L.,
Aleixos, N.,
Blasco, J.,
Segmentation of Hyperspectral Images for the Detection of Rotten
Mandarins,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Blasco, J.[José],
Cubero, S.[Sergio],
Arias, R.[Raúl],
Gómez, J.[Juan],
Juste, F.[Florentino],
Moltó, E.[Enrique],
Development of a Computer Vision System for the Automatic Quality
Grading of Mandarin Segments,
IbPRIA07(II: 460-466).
Springer DOI
0706
BibRef
Kaewapichai, W.[Watcharin],
KaewTrakulPong, P.[Pakorn],
Prateepasen, A.[Asa],
Khongkraphan, K.[Kittiya],
Fitting a Pineapple Model for Automatic Maturity Grading,
ICIP07(I: 257-260).
IEEE DOI
0709
BibRef
Chalidabhongse, T.H.,
Yimyam, P.,
Sirisomboon, P.,
2D/3D Vision-Based Mango's Feature Extraction and Sorting,
ICARCV06(1-6).
IEEE DOI
0612
Sort mangos using detected features.
BibRef
Ye, L.[Lei],
Cao, L.Z.[Ling-Zhi],
Ogunbona, P.[Philip],
Li, W.Q.[Wan-Qing],
Description of Evolutional Changes in Image Time Sequences Using MPEG-7
Visual Descriptors,
VLBV05(189-197).
Springer DOI
0509
Fruit rotting is the example.
BibRef
Martínez-Usó, A.[Adolfo],
Pla, F.[Filiberto],
García-Sevilla, P.[Pedro],
Multispectral Image Segmentation by Energy Minimization for Fruit
Quality Estimation,
IbPRIA05(II:689).
Springer DOI
0509
BibRef
Laemmer, E.,
Deruyver, A.,
Sowinska, M.,
Watershed and adaptive pyramid for determining the apple's maturity
state,
ICIP02(I: 789-792).
IEEE DOI
0210
BibRef
Aleixos, N.,
Blasco, J.,
Moltó, E.,
Navarrón, F.,
Assessment of Citrus Fruit Quality Using a Real-time Machine Vision
System,
ICPR00(Vol I: 482-485).
IEEE DOI
0009
BibRef
Jiménez, A.R.,
Ceres, R.,
Pons, J.L.,
A Machine Vision System Using a Laser Radar Applied to Robotic Fruit
Harvesting,
CVBVS99(110).
IEEE DOI
BibRef
9900
Fernandez-Maloigne, C., and
Laugier, D.,
Automatic Apples Detection for an Agricultural Robot,
IAS93(xx-yy).
Recognize Apples.
BibRef
9300
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Plants, Flowers, Flower Shape, Flower Color .