Mazumder, P.[Pratik],
Singh, P.[Pravendra],
Namboodiri, V.P.[Vinay P.],
GIFSL: Grafting based improved few-shot learning,
IVC(104), 2020, pp. 104006.
Elsevier DOI
2012
Few-shot learning, Grafting, Self-supervision, Distillation,
Deep learning, Object recognition
BibRef
Yue, J.[Jun],
Fang, L.Y.[Le-Yuan],
Rahmani, H.[Hossein],
Ghamisi, P.[Pedram],
Self-Supervised Learning With Adaptive Distillation for Hyperspectral
Image Classification,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI
2112
Feature extraction, Training, Adaptive systems, Mirrors,
Knowledge engineering, Hyperspectral imaging, Spectral analysis,
spatial-spectral feature extraction
BibRef
Ding, K.[Kexin],
Lu, T.[Ting],
Fu, W.[Wei],
Fang, L.Y.[Le-Yuan],
Cross-Scene Hyperspectral Image Classification With Consistency-Aware
Customized Learning,
CirSysVideo(35), No. 1, January 2025, pp. 418-430.
IEEE DOI
2502
Feature extraction, Training, Prototypes, Representation learning,
Data mining, Laser radar, Hyperspectral imaging,
contrastive learning
BibRef
Wang, S.L.[Shu-Ling],
Hu, M.[Mu],
Li, B.[Bin],
Gong, X.J.[Xiao-Jin],
Self-Paced Knowledge Distillation for Real-Time Image Guided Depth
Completion,
SPLetters(29), No. 2022, pp. 867-871.
IEEE DOI
2204
Knowledge engineering, Predictive models, Training, Task analysis,
Real-time systems, Color, Loss measurement, self-paced learning
BibRef
Zhou, H.[Haonan],
Du, X.P.[Xiao-Ping],
Li, S.[Sen],
Self-Supervision and Self-Distillation with Multilayer Feature
Contrast for Supervision Collapse in Few-Shot Remote Sensing Scene
Classification,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chi, Q.[Qiang],
Lv, G.H.[Guo-Hua],
Zhao, G.X.[Gui-Xin],
Dong, X.J.[Xiang-Jun],
A Novel Knowledge Distillation Method for Self-Supervised
Hyperspectral Image Classification,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhao, Y.[Yibo],
Liu, J.J.[Jian-Jun],
Yang, J.L.[Jin-Long],
Wu, Z.B.[Ze-Bin],
Remote Sensing Image Scene Classification via Self-Supervised
Learning and Knowledge Distillation,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Tang, Y.[Yuan],
Chen, Y.[Ying],
Xie, L.[Linbo],
Self-knowledge distillation based on knowledge transfer from soft to
hard examples,
IVC(135), 2023, pp. 104700.
Elsevier DOI
2306
Model compression, Self-knowledge distillation, Hard examples,
Class probability consistency, Memory bank
BibRef
Lee, H.[Hyoje],
Park, Y.[Yeachan],
Seo, H.[Hyun],
Kang, M.[Myungjoo],
Self-knowledge distillation via dropout,
CVIU(233), 2023, pp. 103720.
Elsevier DOI
2307
Deep learning, Knowledge distillation,
Self-knowledge distillation, Regularization, Dropout
BibRef
Yu, X.T.[Xiao-Tong],
Sun, S.[Shiding],
Tian, Y.J.[Ying-Jie],
Self-distillation and self-supervision for partial label learning,
PR(146), 2024, pp. 110016.
Elsevier DOI
2311
Knowledge distillation, Self-supervised learning,
Partial label learning, Machine learning
BibRef
Wang, J.H.[Jun-Huang],
Zhang, W.W.[Wei-Wei],
Guo, Y.F.[Yu-Feng],
Liang, P.[Peng],
Ji, M.[Ming],
Zhen, C.H.[Cheng-Hui],
Wang, H.[Hanmeng],
Global key knowledge distillation framework,
CVIU(239), 2024, pp. 103902.
Elsevier DOI
2402
Deep learning, Knowledge distillation, Self-distillation,
Convolutional neural network
BibRef
Yu, H.[Hao],
Feng, X.[Xin],
Wang, Y.L.[Yun-Long],
Enhancing deep feature representation in self-knowledge distillation
via pyramid feature refinement,
PRL(178), 2024, pp. 35-42.
Elsevier DOI Code:
WWW Link.
2402
Self-knowledge distillation, Feature representation,
Pyramid structure, Deep neural networks
BibRef
Li, S.Y.[Shu-Yi],
Hu, H.C.[Hong-Chao],
Huo, S.[Shumin],
Liang, H.[Hao],
Clean, performance-robust, and performance-sensitive historical
information based adversarial self-distillation,
IET-CV(18), No. 5, 2024, pp. 591-612.
DOI Link
2408
architecture, convolutional neural nets,
image classification, image sampling, image sequences
BibRef
Sun, N.[Ning],
Xu, W.[Wei],
Liu, J.X.[Ji-Xin],
Chai, L.[Lei],
Sun, H.[Haian],
The Multimodal Scene Recognition Method Based on Self-Attention and
Distillation,
MultMedMag(31), No. 4, October 2024, pp. 25-36.
IEEE DOI
2501
Feature extraction, Training, Image recognition, Transformers,
Layout, Convolutional neural networks, Sun
BibRef
Lai, Y.T.[Yu-Tong],
Ning, D.J.[De-Jun],
Liu, S.P.[Shi-Peng],
KED: A Deep-Supervised Knowledge Enhancement Self-Distillation
Framework for Model Compression,
SPLetters(32), 2025, pp. 831-835.
IEEE DOI
2503
Training, Computational modeling, Knowledge engineering,
Feature extraction, Accuracy, Focusing, Data models, Data mining,
model compression
BibRef
Li, C.L.[Chang-Lin],
Lin, S.[Sihao],
Tang, T.[Tao],
Wang, G.[Guangrun],
Li, M.J.[Ming-Jie],
Liang, X.D.[Xiao-Dan],
Chang, X.J.[Xiao-Jun],
BossNAS Family: Block-Wisely Self-Supervised Neural Architecture
Search,
PAMI(47), No. 5, May 2025, pp. 3500-3514.
IEEE DOI
2504
Transformers, Training,
Computational modeling, Accuracy, Visualization, Correlation,
unsupervised NAS
BibRef
Li, C.L.[Chang-Lin],
Peng, J.F.[Jie-Feng],
Yuan, L.C.[Liu-Chun],
Wang, G.R.[Guang-Run],
Liang, X.D.[Xiao-Dan],
Lin, L.[Liang],
Chang, X.J.[Xiao-Jun],
Block-Wisely Supervised Neural Architecture Search With Knowledge
Distillation,
CVPR20(1986-1995)
IEEE DOI
2008
Network architecture,
Knowledge engineering, Training, DNA, Convergence, Feature extraction
BibRef
Li, C.L.[Chang-Lin],
Tang, T.[Tao],
Wang, G.[Guangrun],
Peng, J.F.[Jie-Feng],
Wang, B.[Bing],
Liang, X.D.[Xiao-Dan],
Chang, X.J.[Xiao-Jun],
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search,
ICCV21(12261-12271)
IEEE DOI
2203
Training, Visualization, Correlation, Architecture,
Computational modeling, Sociology,
Representation learning
BibRef
Yang, Y.[Yang],
Wang, C.[Chao],
Gong, L.[Lei],
Wu, M.[Min],
Chen, Z.H.[Zheng-Hua],
Gao, Y.X.[Ying-Xue],
Wang, T.[Teng],
Zhou, X.[Xuehai],
Uncertainty-Aware Self-Knowledge Distillation,
CirSysVideo(35), No. 5, May 2025, pp. 4464-4478.
IEEE DOI
2505
Uncertainty, Calibration, Accuracy, Vectors, Training,
Predictive models, Smoothing methods, Artificial neural networks,
image recognition
BibRef
Zhang, W.W.[Wei-Wei],
Liang, P.[Peng],
Zhu, J.Q.[Jian-Qing],
Wang, J.H.[Jun-Huang],
Contrastive Deep Supervision Meets self-knowledge distillation,
JVCIR(110), 2025, pp. 104470.
Elsevier DOI
2506
Deep supervision, Contrastive learning,
Self-knowledge distillation, Image classification
BibRef
Han, K.[Keonhee],
Muhle, D.[Dominik],
Wimbauer, F.[Felix],
Cremers, D.[Daniel],
Boosting Self-Supervision for Single-View Scene Completion via
Knowledge Distillation,
CVPR24(9837-9847)
IEEE DOI
2410
Geometry, Solid modeling, Fuses, Computational modeling, Estimation,
Single-View-Reconstruction, Depth Estimation
BibRef
Lebailly, T.[Tim],
Stegmüller, T.[Thomas],
Bozorgtabar, B.[Behzad],
Thiran, J.P.[Jean-Philippe],
Tuytelaars, T.[Tinne],
Adaptive Similarity Bootstrapping for Self-Distillation based
Representation Learning,
ICCV23(16459-16468)
IEEE DOI Code:
WWW Link.
2401
BibRef
Yang, Z.D.[Zhen-Dong],
Zeng, A.L.[Ai-Ling],
Li, Z.[Zhe],
Zhang, T.[Tianke],
Yuan, C.[Chun],
Li, Y.[Yu],
From Knowledge Distillation to Self-Knowledge Distillation: A Unified
Approach with Normalized Loss and Customized Soft Labels,
ICCV23(17139-17148)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sasaya, T.[Tenta],
Watanabe, T.[Takashi],
Ida, T.[Takashi],
Ono, T.[Toshiyuki],
Simple Self-Distillation Learning for Noisy Image Classification,
ICIP23(795-799)
IEEE DOI
2312
BibRef
Song, K.[Kaiyou],
Zhang, S.[Shan],
Luo, Z.[Zimeng],
Wang, T.[Tong],
Xie, J.[Jin],
Semantics-Consistent Feature Search for Self-Supervised Visual
Representation Learning,
ICCV23(16053-16062)
IEEE DOI
2401
BibRef
Song, K.[Kaiyou],
Xie, J.[Jin],
Zhang, S.[Shan],
Luo, Z.[Zimeng],
Multi-Mode Online Knowledge Distillation for Self-Supervised Visual
Representation Learning,
CVPR23(11848-11857)
IEEE DOI
2309
BibRef
Lv, Y.[Yuan],
Xu, Y.J.[Ya-Jing],
Wang, S.[Shusen],
Ma, Y.J.[Ying-Jian],
Wang, D.[Dengke],
Continuous Self-Study: Scene Graph Generation with Self-Knowledge
Distillation and Spatial Augmentation,
ACCV22(V:297-315).
Springer DOI
2307
BibRef
Lebailly, T.[Tim],
Tuytelaars, T.[Tinne],
Global-Local Self-Distillation for Visual Representation Learning,
WACV23(1441-1450)
IEEE DOI
2302
Training, Representation learning, Visualization, Codes, Coherence,
Task analysis, Algorithms: Machine learning architectures,
and algorithms (including transfer)
BibRef
Chen, W.C.[Wei-Chi],
Chu, W.T.[Wei-Ta],
SSSD: Self-Supervised Self Distillation,
WACV23(2769-2776)
IEEE DOI
2302
Visualization, Computational modeling, Clustering algorithms,
Self-supervised learning, Feature extraction, Data models,
visual reasoning
BibRef
Mu, M.[Michael],
Bhattacharjee, S.D.[Sreyasee Das],
Yuan, J.S.[Jun-Song],
Self-Supervised Distilled Learning for Multi-modal Misinformation
Identification,
WACV23(2818-2827)
IEEE DOI
2302
Representation learning, Training data, Predictive models,
Streaming media, Semisupervised learning, Multitasking,
Vision + language and/or other modalities
BibRef
Jang, J.[Jiho],
Kim, S.[Seonhoon],
Yoo, K.[Kiyoon],
Kong, C.[Chaerin],
Kim, J.[Jangho],
Kwak, N.[Nojun],
Self-Distilled Self-supervised Representation Learning,
WACV23(2828-2838)
IEEE DOI
2302
Representation learning, Protocols, Codes, Statistical analysis,
Self-supervised learning, Transformers,
and algorithms (including transfer)
BibRef
Tzelepi, M.[Maria],
Symeonidis, C.[Charalampos],
Nikolaidis, N.[Nikos],
Tefas, A.[Anastasios],
Multilayer Online Self-Acquired Knowledge Distillation,
ICPR22(4822-4828)
IEEE DOI
2212
Training, Computational modeling, Pipelines, Estimation,
Nonhomogeneous media, Probability distribution
BibRef
Xu, Y.F.[Yi-Fan],
Shamsolmoali, P.[Pourya],
Granger, E.[Eric],
Nicodeme, C.[Claire],
Gardes, L.[Laurent],
Yang, J.[Jie],
TransVLAD: Multi-Scale Attention-Based Global Descriptors for Visual
Geo-Localization,
WACV23(2839-2848)
IEEE DOI
2302
Visualization, Codes, Computational modeling, Image retrieval,
Self-supervised learning, Transformers,
and un-supervised learning)
BibRef
Xu, Y.F.[Yi-Fan],
Shamsolmoali, P.[Pourya],
Yang, J.[Jie],
Weak-supervised Visual Geo-localization via Attention-based Knowledge
Distillation,
ICPR22(1815-1821)
IEEE DOI
2212
Knowledge engineering, Training, Visualization, Image matching,
Image retrieval, Lighting, Benchmark testing
BibRef
Baek, K.[Kyungjune],
Lee, S.[Seungho],
Shim, H.J.[Hyun-Jung],
Learning from Better Supervision: Self-distillation for Learning with
Noisy Labels,
ICPR22(1829-1835)
IEEE DOI
2212
Training, Deep learning, Filtering, Neural networks,
Predictive models, Data collection, Benchmark testing
BibRef
Yang, Z.[Zhou],
Dong, W.S.[Wei-Sheng],
Li, X.[Xin],
Wu, J.J.[Jin-Jian],
Li, L.[Leida],
Shi, G.M.[Guang-Ming],
Self-Feature Distillation with Uncertainty Modeling for Degraded Image
Recognition,
ECCV22(XXIV:552-569).
Springer DOI
2211
BibRef
Yang, C.G.[Chuan-Guang],
An, Z.[Zhulin],
Zhou, H.[Helong],
Cai, L.H.[Lin-Hang],
Zhi, X.[Xiang],
Wu, J.W.[Ji-Wen],
Xu, Y.J.[Yong-Jun],
Zhang, Q.[Qian],
MixSKD: Self-Knowledge Distillation from Mixup for Image Recognition,
ECCV22(XXIV:534-551).
Springer DOI
2211
BibRef
Gao, Y.T.[Yu-Ting],
Zhuang, J.X.[Jia-Xin],
Lin, S.H.[Shao-Hui],
Cheng, H.[Hao],
Sun, X.[Xing],
Li, K.[Ke],
Shen, C.H.[Chun-Hua],
DisCo: Remedying Self-supervised Learning on Lightweight Models with
Distilled Contrastive Learning,
ECCV22(XXVI:237-253).
Springer DOI
2211
BibRef
Liu, H.[Hao],
Ye, M.[Mang],
Improving Self-supervised Lightweight Model Learning via Hard-Aware
Metric Distillation,
ECCV22(XXXI:295-311).
Springer DOI
2211
BibRef
Liang, J.J.[Jia-Jun],
Li, L.[Linze],
Bing, Z.D.[Zhao-Dong],
Zhao, B.R.[Bo-Rui],
Tang, Y.[Yao],
Lin, B.[Bo],
Fan, H.Q.[Hao-Qiang],
Efficient One Pass Self-distillation with Zipf's Label Smoothing,
ECCV22(XI:104-119).
Springer DOI
2211
BibRef
Shen, Y.Q.[Yi-Qing],
Xu, L.[Liwu],
Yang, Y.Z.[Yu-Zhe],
Li, Y.Q.[Ya-Qian],
Guo, Y.D.[Yan-Dong],
Self-Distillation from the Last Mini-Batch for Consistency
Regularization,
CVPR22(11933-11942)
IEEE DOI
2210
Training, Codes, Computer network reliability, Memory management,
Network architecture, Benchmark testing, Machine learning
BibRef
Ji, M.[Mingi],
Shin, S.J.[Seung-Jae],
Hwang, S.H.[Seung-Hyun],
Park, G.[Gibeom],
Moon, I.C.[Il-Chul],
Refine Myself by Teaching Myself: Feature Refinement via
Self-Knowledge Distillation,
CVPR21(10659-10668)
IEEE DOI
2111
Knowledge engineering, Training, Codes, Semantics,
Neural networks, Object detection
BibRef
Tejankar, A.[Ajinkya],
Koohpayegani, S.A.[Soroush Abbasi],
Pillai, V.[Vipin],
Favaro, P.[Paolo],
Pirsiavash, H.[Hamed],
ISD: Self-Supervised Learning by Iterative Similarity Distillation,
ICCV21(9589-9598)
IEEE DOI
2203
Codes, Transfer learning, Iterative methods, Task analysis,
Standards, Representation learning, Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Zheng, Z.Z.[Zhen-Zhu],
Peng, X.[Xi],
Self-Guidance: Improve Deep Neural Network Generalization via
Knowledge Distillation,
WACV22(3451-3460)
IEEE DOI
2202
Training, Deep learning, Knowledge engineering, Measurement,
Visualization, Image recognition, Neural networks,
Learning and Optimization
BibRef
Bhat, P.[Prashant],
Arani, E.[Elahe],
Zonooz, B.[Bahram],
Distill on the Go: Online knowledge distillation in self-supervised
learning,
LLID21(2672-2681)
IEEE DOI
2109
Annotations, Performance gain, Benchmark testing
BibRef
Xiang, L.Y.[Liu-Yu],
Ding, G.G.[Gui-Guang],
Han, J.G.[Jun-Gong],
Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification,
ECCV20(V:247-263).
Springer DOI
2011
BibRef
Liu, B.L.[Ben-Lin],
Rao, Y.M.[Yong-Ming],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Hsieh, C.J.[Cho-Jui],
Metadistiller:
Network Self-boosting via Meta-learned Top-down Distillation,
ECCV20(XIV:694-709).
Springer DOI
2011
BibRef
Lee, S.H.[Seung Hyun],
Kim, D.H.[Dae Ha],
Song, B.C.[Byung Cheol],
Self-supervised Knowledge Distillation Using Singular Value
Decomposition,
ECCV18(VI: 339-354).
Springer DOI
1810
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Dataset Distillation, Dataset Summary, Dataset Quantization .