Suetens, P.,
Fua, P.V., and
Hanson, A.J.,
Some Computational Strategies for Object Recognition,
Surveys(24), No. 1, March 1992, pp. 5-62.
Survey, Matching.
Matching, Survey. Covers a number of different recognition techniques both from SRI
and many other locations. The survey is dated to about 1989.
BibRef
9203
Lindenbaum, M.,
Bounds on Shape-Recognition Performance,
PAMI(17), No. 7, July 1995, pp. 666-680.
IEEE DOI
Evaluation, Matching. Analysis of the shape matching task, no matter what the method, to determin
how good it can be.
BibRef
9507
Lindenbaum, M.[Michael],
Ben-David, S.[Shai],
VC-Dimension Analysis of Object Recognition Tasks,
JMIV(10), No. 1, January 1999, pp. 27-49.
DOI Link Model-based recognition and learning.
BibRef
9901
Earlier:
Applying VC-Dimension Analysis to Object Recognition,
ECCV94(A:237-250).
Springer DOI
BibRef
And:
Applying VC-Dimension Analysis to 3D Object Recognition from
Perspective Projections,
AAAI-94(985-991).
BibRef
Shum, H.Y.,
Ikeuchi, K.,
Reddy, R.,
Principal Component Analysis with Missing Data and Its
Application to Polyhedral Object Modeling,
PAMI(17), No. 9, September 1995, pp. 854-867.
IEEE DOI
BibRef
9509
And:
MfR01(Chapter I-1).
BibRef
Earlier:
Principal Component Analysis with Missing Data and Its
Application to Object Modeling,
CVPR94(560-565).
IEEE DOI
BibRef
And:
Virtual Reality Modeling from a Sequence of Range Images,
ARPA94(II:1189-1198).
BibRef
Liu, G.[Gang],
Haralick, R.M.[Robert M.],
Optimal matching problem in detection and recognition:
Performance Evaluation,
PR(35), No. 10, October 2002, pp. 2125-2139.
Elsevier DOI
0206
BibRef
Kay, S.M.,
Gabriel, J.R.,
An invariance property of the generalized likelihood ratio test,
SPLetters(10), No. 12, December 2003, pp. 352-355.
IEEE Abstract.
0401
Generalized likelihood ratio test (GLRT) is invariant with respect to
transformations for which the hypothesis testing problem itself is
invariant.
BibRef
Kuhnert, M.[Matthias],
Voinov, A.[Alexey],
Seppelt, R.[Ralf],
Comparing Raster Map Comparison Algorithms for Spatial Modeling and
Analysis,
PhEngRS(71), No. 8, August 2005, pp. 975-984.
WWW Link.
0602
A review of existing algorithms to compare spatial patterns and
development of a new approach based on the expanding window approach.
BibRef
Toldo, R.[Roberto],
Castellani, U.[Umberto],
Fusiello, A.[Andrea],
The bag of words approach for retrieval and categorization of 3D
objects,
VC(26), No. 10, October 2010, pp. 1257-1268.
WWW Link.
1101
BibRef
Earlier:
A Bag of Words Approach for 3D Object Categorization,
MIRAGE09(116-127).
Springer DOI
0905
BibRef
And:
Visual Vocabulary Signature For 3d Object Retrieval
and Partial Matching,
3DOR09(21-28)
PDF File.
DOI Link
1301
BibRef
Taylor, S.[Simon],
Drummond, T.W.[Tom W.],
Binary Histogrammed Intensity Patches for Efficient and Robust Matching,
IJCV(94), No. 2, September 2011, pp. 241-265.
WWW Link.
1101
BibRef
Earlier:
Multiple Target Localisation at over 100 Fps,
BMVC09(xx-yy).
PDF File.
0909
Real-Time Systems.
BibRef
Taylor, S.[Simon],
Rosten, E.[Edward],
Drummond, T.W.[Tom W.],
Robust feature matching in 2.3µs,
CVPRWS09(15-22).
IEEE DOI
0906
Real-Time Systems.
BibRef
McIlroy, P.[Paul],
Rosten, E.[Edward],
Taylor, S.[Simon],
Drummond, T.W.[Tom W.],
Deterministic Sample Consensus with Multiple Match Hypotheses,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Harrenstein, P.,
Manlove, D.,
Wooldridge, M.,
The Joy of Matching,
IEEE_Int_Sys(28), No. 2, 2013, pp. 81-85.
IEEE DOI
1307
Gale-Shapley algorithm for matching.
BibRef
Tran, Q.H.[Quoc Huy],
Chin, T.J.[Tat-Jun],
Chojnacki, W.[Wojciech],
Suter, D.[David],
Sampling Minimal Subsets with Large Spans for Robust Estimation,
IJCV(106), No. 1, January 2014, pp. 93-112.
Springer DOI
1402
robust parameter estimation,.
BibRef
Ni, K.[Kai],
Jin, H.L.[Hai-Lin],
Dellaert, F.[Frank],
GroupSAC: Efficient consensus in the presence of groupings,
ICCV09(2193-2200).
IEEE DOI
0909
BibRef
Enqvist, O.[Olof],
Josephson, K.[Klas],
Kahl, F.[Fredrik],
Optimal correspondences from pairwise constraints,
ICCV09(1295-1302).
IEEE DOI
0909
Removing errors using geometric constraints.
BibRef
Fan, L.X.[Li-Xin],
A Feature-Based Object Tracking Method Using Online Template Switching
and Feature Adaptation,
ICIG11(707-713).
IEEE DOI
1109
BibRef
Fan, L.X.[Li-Xin],
Pylvänäinen, T.[Timo],
Adaptive Sample Consensus for Efficient Random Optimization,
ISVC09(II: 252-263).
Springer DOI
0911
BibRef
And:
Efficient Random Sampling for Nonrigid Feature Matching,
ISVC09(I: 457-467).
Springer DOI
0911
BibRef
Earlier:
Robust Scale Estimation from Ensemble Inlier Sets for Random Sample
Consensus Methods,
ECCV08(III: 182-195).
Springer DOI
0810
BibRef
Earlier: A2, A1:
Hill Climbing Algorithm for Random Sample Consensus Methods,
ISVC07(I: 672-681).
Springer DOI
0711
BibRef
Yao, B.[Benjamin],
Yang, X.[Xiong],
Zhu, S.C.[Song-Chun],
Introduction to a Large-Scale General Purpose Ground Truth Database:
Methodology, Annotation Tool and Benchmarks,
EMMCVPR07(169-183).
Springer DOI
0708
BibRef
Leung, A.P.[Alex Po],
Gong, S.G.[Shao-Gang],
Optimizing Distribution-based Matching by Random Subsampling,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Basri, R.,
On the Uniqueness of Correspondence under Orthographic
and Perspective Projections,
DARPA92(875-884).
BibRef
9200
And:
MIT AI Memo-1330, December 1991.
WWW Link. Epi-polar lines define the affine transformation.
BibRef
Weinshall, D., and
Basri, R.,
Distance Metric between 3D Models and 2D Images for
Recognition and Classification,
PAMI(18), No. 4, April 1996, pp. 465-479.
IEEE DOI
BibRef
9604
Earlier:
CVPR93(220-225).
IEEE DOI
BibRef
Earlier: A2, A1:
MIT AI Memo-1373, July 1992.
WWW Link. Compute transformation based metrics that penalize the amount of
tranformation needed for the match. Optimal for affine
deformations.
BibRef
Ponce, J.,
Bajcsy, R.,
Metaxas, D.N.,
Binford, T.O.,
Forsyth, D.A.,
Hebert, M.,
Ikeuchi, K.,
Kak, A.C.,
Shapiro, L.G.,
Slaroff, S.,
Pentland, A.P., and
Stockman, G.C.,
Object Representation for Object Recognition,
CVPR94(147-152).
IEEE DOI
BibRef
9400
Panel DiscussionReport on the workshop panel.
BibRef
Yacoob, Y., and
Gold, Y.I.,
3D Object Recognition Via Simulated Particles Diffusion,
CVPR89(442-449).
IEEE DOI
Recognize Three-Dimensional Objects. Characterize shapes as a diffusion-like
process. Find the rotation and translation for the 3-D object.
BibRef
8900
Stockman, G.C.,
Object Recognition,
AIRI90(225-253).
BibRef
9000
Gilmore, J.F.,
Pemberton, W.B.,
A Survey of Aircraft Classification Algorithms,
ICPR84(559-561).
BibRef
8400
Kanazawa, Y.S.[Yasu-Shi],
Kanatani, K.[Kenichi],
Do We Really Have to Consider Covariance Matrices for Image Features?,
ICCV01(II: 301-306).
IEEE DOI
0106
Issues in matching and use of the match results.
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
RANSAC Matching Issues, Design, Evaluation, Related Sample Matching .