14.5.10.10.4 Adversarial Patch Attacks

Chapter Contents (Back)
Patch Attack. Adversarial Patch. Adversarial Networks. Adversarial Training.

Yu, Y.J.[Young-Joon], Lee, H.J.[Hong Joo], Lee, H.[Hakmin], Ro, Y.M.[Yong Man],
Defending Person Detection Against Adversarial Patch Attack by Using Universal Defensive Frame,
IP(31), 2022, pp. 6976-6990.
IEEE DOI 2212
Detectors, Task analysis, Optimization, Robustness, Training, Security, Head, Adversarial patch, defensive pattern, person detection BibRef

Zhang, Y.C.[Yi-Chuang], Zhang, Y.[Yu], Qi, J.H.[Jia-Hao], Bin, K.C.[Kang-Cheng], Wen, H.[Hao], Tong, X.Q.[Xun-Qian], Zhong, P.[Ping],
Adversarial Patch Attack on Multi-Scale Object Detection for UAV Remote Sensing Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Shi, M.C.[Meng-Chen], Xie, F.[Fei], Yang, J.Q.[Ji-Quan], Zhao, J.[Jing], Liu, X.X.[Xi-Xiang], Wang, F.[Fan],
Cutout with patch-loss augmentation for improving generative adversarial networks against instability,
CVIU(234), 2023, pp. 103761.
Elsevier DOI 2307
Generative Adversarial Networks, Dataset augmentation, Convolution neural network BibRef

Pintor, M.[Maura], Angioni, D.[Daniele], Sotgiu, A.[Angelo], Demetrio, L.[Luca], Demontis, A.[Ambra], Biggio, B.[Battista], Roli, F.[Fabio],
ImageNet-Patch: A dataset for benchmarking machine learning robustness against adversarial patches,
PR(134), 2023, pp. 109064.
Elsevier DOI 2212
Adversarial machine learning, Adversarial patches, Neural networks, Defense, Detection BibRef

Wang, Z.[Zhen], Wang, B.H.[Bu-Hong], Zhang, C.L.[Chuan-Lei], Liu, Y.H.[Yao-Hui],
Defense against Adversarial Patch Attacks for Aerial Image Semantic Segmentation by Robust Feature Extraction,
RS(15), No. 6, 2023, pp. 1690.
DOI Link 2304
BibRef

Wang, Z.[Zhen], Wang, B.H.[Bu-Hong], Zhang, C.L.[Chuan-Lei], Liu, Y.H.[Yao-Hui], Guo, J.X.[Jian-Xin],
Robust Feature-Guided Generative Adversarial Network for Aerial Image Semantic Segmentation against Backdoor Attacks,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Wang, Z.[Zhen], Wang, B.H.[Bu-Hong], Zhang, C.L.[Chuan-Lei], Liu, Y.H.[Yao-Hui], Guo, J.X.[Jian-Xin],
Defending against Poisoning Attacks in Aerial Image Semantic Segmentation with Robust Invariant Feature Enhancement,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
BibRef

Wei, X.X.[Xing-Xing], Guo, Y.[Ying], Yu, J.[Jie], Zhang, B.[Bo],
Simultaneously Optimizing Perturbations and Positions for Black-Box Adversarial Patch Attacks,
PAMI(45), No. 7, July 2023, pp. 9041-9054.
IEEE DOI 2306
Perturbation methods, Face recognition, Task analysis, Optimization, Closed box, Estimation, Detectors, Adversarial patches, traffic sign recognition BibRef

Ran, Y.[Yu], Wang, W.J.[Wei-Jia], Li, M.J.[Ming-Jie], Li, L.C.[Lin-Cheng], Wang, Y.G.[Yuan-Gen], Li, J.[Jin],
Cross-Shaped Adversarial Patch Attack,
CirSysVideo(34), No. 4, April 2024, pp. 2289-2303.
IEEE DOI 2404
Closed box, Perturbation methods, Glass box, Shape, Image segmentation, Computational modeling, Predictive models, cross-shaped patch BibRef

Yang, J.[Jian], Guan, Z.Y.[Zhi-Yu], Li, J.[Jun], Shi, Z.P.[Zhi-Ping], Liu, X.L.[Xiang-Long],
Diffusion Patch Attack With Spatial-Temporal Cross-Evolution for Video Recognition,
CirSysVideo(34), No. 12, December 2024, pp. 13190-13200.
IEEE DOI 2501
Closed box, Diffusion models, Classification algorithms, Perturbation methods, Optimization, video action recognition BibRef

Qi, L.[Lei], Zhao, D.J.[Dong-Jia], Shi, Y.H.[Ying-Huan], Geng, X.[Xin],
Patch-Aware Batch Normalization for Improving Cross-Domain Robustness,
CirSysVideo(35), No. 1, January 2025, pp. 800-810.
IEEE DOI 2502
Training, Batch normalization, Robustness, Object detection, Adversarial machine learning, Semantics, Standards, MixPatch BibRef

Wei, X.X.[Xing-Xing], Ruan, S.[Shouwei], Dong, Y.P.[Yin-Peng], Su, H.[Hang], Cao, X.C.[Xiao-Chun],
Distributionally Location-Aware Transferable Adversarial Patches for Facial Images,
PAMI(47), No. 4, April 2025, pp. 2849-2864.
IEEE DOI 2503
Face recognition, Optimization, Closed box, Robustness, Visualization, Perturbation methods, Computational modeling, transfer-based attack BibRef

Yang, J.[Jian], Li, J.[Jun], Cai, Y.[Yunong], Wu, G.M.[Guo-Ming], Shi, Z.P.[Zhi-Ping], Tan, C.[Chaodong], Liu, X.L.[Xiang-Long],
Hard-Sample Style Guided Patch Attack With RL-Enhanced Motion Pattern for Video Recognition,
MultMed(27), 2025, pp. 1205-1215.
IEEE DOI 2503
Closed box, Perturbation methods, Search problems, Image recognition, Generators, Target recognition, Noise, Glass box, video action recognition BibRef


Long, J.H.[Jia-Huan], Jiang, T.[Tingsong], Yao, W.[Wen], Jia, S.[Shuai], Zhang, W.J.[Wei-Jia], Zhou, W.[Weien], Ma, C.[Chao], Chen, X.Q.[Xiao-Qian],
Papmot: Exploring Adversarial Patch Attack Against Multiple Object Tracking,
ECCV24(LI: 128-144).
Springer DOI 2412
BibRef

Kang, C.X.[Cai-Xin], Dong, Y.P.[Yin-Peng], Wang, Z.Y.[Zheng-Yi], Ruan, S.[Shouwei], Chen, Y.[Yubo], Su, H.[Hang], Wei, X.X.[Xing-Xing],
Diffender: Diffusion-based Adversarial Defense Against Patch Attacks,
ECCV24(LII: 130-147).
Springer DOI 2412
BibRef

Yang, M.Y.[Ming-Yu], Liu, D.[Daizong], Tang, K.[Keke], Zhou, P.[Pan], Chen, L.X.[Li-Xing], Chen, J.Y.[Jun-Yang],
Hiding Imperceptible Noise in Curvature-aware Patches for 3d Point Cloud Attack,
ECCV24(XXX: 431-448).
Springer DOI 2412
BibRef

Wu, S.Y.[Si-Yang], Wang, J.[Jiakai], Zhao, J.[Jiejie], Wang, Y.[Yazhe], Liu, X.L.[Xiang-Long],
NAPGuard: Towards Detecting Naturalistic Adversarial Patches,
CVPR24(24367-24376)
IEEE DOI Code:
WWW Link. 2410
Training, Accuracy, Codes, Modulation, Benchmark testing, Feature extraction, adversarial patch, adversarial defense, object detection BibRef

Jing, L.H.[Li-Hua], Wang, R.[Rui], Ren, W.Q.[Wen-Qi], Dong, X.[Xin], Zou, C.[Cong],
PAD: Patch-Agnostic Defense against Adversarial Patch Attacks,
CVPR24(24472-24481)
IEEE DOI Code:
WWW Link. 2410
Training, Location awareness, Image quality, Shape, Semantics, Noise BibRef

Gittings, T.[Thomas], Schneider, S.[Steve], Collomosse, J.[John],
SegGuard: Defending Scene Segmentation Against Adversarial Patch Attack,
ICIP24(794-800)
IEEE DOI 2411
Training, Semantic segmentation, Semantics, Production, Network architecture, Generative adversarial networks, Adversarial Attack BibRef

Zhao, Q.[Qun], Wang, Y.G.[Yuan-Gen],
Universal Black-Box Adversarial Patch Attack with Optimized Genetic Algorithm,
ICIP24(780-786)
IEEE DOI 2411
Diversity reception, Closed box, Estimation, Space exploration, Optimization, Genetic algorithms, Adversarial example, hard-label black-box attackgenetic algorithm BibRef

Chattopadhyay, N.[Nandish], Guesmi, A.[Amira], Shafique, M.[Muhammad],
Anomaly Unveiled: Securing Image Classification against Adversarial Patch Attacks,
ICIP24(929-935)
IEEE DOI 2411
Deep learning, Image segmentation, Accuracy, Pipelines, Noise, Neural networks, Task analysis, Adversarial patch, clustering BibRef

Jiang, K.X.[Kai-Xun], Chen, Z.Y.[Zhao-Yu], Huang, H.[Hao], Wang, J.F.[Jia-Feng], Yang, D.K.[Ding-Kang], Li, B.[Bo], Wang, Y.[Yan], Zhang, W.Q.[Wen-Qiang],
Efficient Decision-based Black-box Patch Attacks on Video Recognition,
ICCV23(4356-4366)
IEEE DOI 2401
BibRef

Hingun, N.[Nabeel], Sitawarin, C.[Chawin], Li, J.[Jerry], Wagner, D.[David],
REAP: A Large-Scale Realistic Adversarial Patch Benchmark,
ICCV23(4617-4628)
IEEE DOI Code:
WWW Link. 2401
BibRef

Tarchoun, B.[Bilel], Ben Khalifa, A.[Anouar], Mahjoub, M.A.[Mohamed Ali], Abu-Ghazaleh, N.[Nael], Alouani, I.[Ihsen],
Jedi: Entropy-Based Localization and Removal of Adversarial Patches,
CVPR23(4087-4095)
IEEE DOI 2309
BibRef

Xu, K.[Ke], Xiao, Y.[Yao], Zheng, Z.H.[Zhao-Heng], Cai, K.[Kaijie], Nevatia, R.[Ram],
PatchZero: Defending against Adversarial Patch Attacks by Detecting and Zeroing the Patch,
WACV23(4621-4630)
IEEE DOI 2302
Training, Degradation, Shape, Pipelines, Neural networks, Object detection, Robustness, Algorithms: Adversarial learning, visual reasoning BibRef

Li, J.[Junbo], Zhang, H.[Huan], Xie, C.[Cihang],
ViP: Unified Certified Detection and Recovery for Patch Attack with Vision Transformers,
ECCV22(XXV:573-587).
Springer DOI 2211
BibRef

Lovisotto, G.[Giulio], Finnie, N.[Nicole], Munoz, M.[Mauricio], Murnmadi, C.K.[Chaithanya Kumar], Metzen, J.H.[Jan Hendrik],
Give Me Your Attention: Dot-Product Attention Considered Harmful for Adversarial Patch Robustness,
CVPR22(15213-15222)
IEEE DOI 2210
Image recognition, Object detection, Transformer cores, Transformers, Robustness, Cognition, Machine learning BibRef

Liu, J.[Jiang], Levine, A.[Alexander], Lau, C.P.[Chun Pong], Chellappa, R.[Rama], Feizi, S.[Soheil],
Segment and Complete: Defending Object Detectors against Adversarial Patch Attacks with Robust Patch Detection,
CVPR22(14953-14962)
IEEE DOI 2210
Training, Location awareness, Image segmentation, Shape, Detectors, Object detection, Adversarial attack and defense BibRef

Yu, C.[Cheng], Chen, J.S.[Jian-Sheng], Xue, Y.[Youze], Liu, Y.Y.[Yu-Yang], Wan, W.T.[Wei-Tao], Bao, J.Y.[Jia-Yu], Ma, H.M.[Hui-Min],
Defending against Universal Adversarial Patches by Clipping Feature Norms,
ICCV21(16414-16422)
IEEE DOI 2203
Training, Visualization, Computational modeling, Robustness, Convolutional neural networks, Recognition and classification BibRef

Nesti, F.[Federico], Rossolini, G.[Giulio], Nair, S.[Saasha], Biondi, A.[Alessandro], Buttazzo, G.[Giorgio],
Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Adversarial Patch Attacks,
WACV22(2826-2835)
IEEE DOI 2202
Computational modeling, Perturbation methods, Semantics, Pipelines, Grouping and Shape BibRef

Lennon, M.[Max], Drenkow, N.[Nathan], Burlina, P.[Phil],
Patch Attack Invariance: How Sensitive are Patch Attacks to 3D Pose?,
AROW21(112-121)
IEEE DOI 2112
Measurement, Training, Heating systems, Sensitivity analysis, Conferences BibRef

Gittings, T., Schneider, S., Collomosse, J.,
Vax-a-net: Training-time Defence Against Adversarial Patch Attacks,
ACCV20(IV:235-251).
Springer DOI 2103
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Trainning for Defense .


Last update:Mar 17, 2025 at 20:02:03