Hsieh, J.[Jiang],
Three-dimensional artifact induced by projection weighting and
misalignment,
MedImg(18), No. 4, April 1999, pp. 364-368.
IEEE Top Reference.
0110
BibRef
And:
Investigation of a 3D Image Artifact Caused by Projection Weighting
and Misalignment,
ICIP99(II:681-685).
IEEE DOI
BibRef
Earlier:
Impact of helical reconstruction algorithm on 3D image artifacts,
ICIP98(II: 690-694).
IEEE DOI
9810
BibRef
Earlier:
Partial volume artifact reduction in computed tomography,
ICIP96(III: 567-570).
IEEE DOI
9610
BibRef
Hsieh, J.[Jiang],
Reconstruction Optimization for Temporal Response Improvement in CT
Fluoroscopy,
ICIP99(II:672-676).
IEEE DOI
BibRef
9900
Earlier:
Improving the Temporal Response of Computed Tomography Fluoroscopy
with Optimized Halfscan,
ICIP97(I: 484-487).
IEEE DOI
BibRef
Schulz, R.B.,
Ripoll, J.,
Ntziachristos, V.,
Experimental fluorescence tomography of tissues with noncontact
measurements,
MedImg(23), No. 4, April 2004, pp. 492-500.
IEEE Abstract.
0406
BibRef
Soubret, A.,
Ripoll, J.,
Ntziachristos, V.,
Accuracy of Fluorescent Tomography in the Presence of Heterogeneities:
Study of the Normalized Born Ratio,
MedImg(24), No. 10, October 2005, pp. 1377-1386.
IEEE DOI
0510
BibRef
La Riviere, P.J.,
Vargas, P.A.,
Monotonic penalized-likelihood image reconstruction for X-ray
fluorescence computed tomography,
MedImg(25), No. 9, September 2006, pp. 1117-1129.
IEEE DOI
0609
BibRef
La Riviere, P.J.,
Vargas, P.A.,
Correction for Resolution Nonuniformities Caused by Anode Angulation in
Computed Tomography,
MedImg(27), No. 9, September 2008, pp. 1333-1341.
IEEE DOI
0809
BibRef
Hyde, D.,
Miller, E.L.,
Brooks, D.H.,
Ntziachristos, V.,
Data Specific Spatially Varying Regularization for Multimodal
Fluorescence Molecular Tomography,
MedImg(29), No. 2, February 2010, pp. 365-374.
IEEE DOI
1002
BibRef
Schulz, R.B.,
Ale, A.,
Sarantopoulos, A.,
Freyer, M.,
Soehngen, E.,
Zientkowska, M.,
Ntziachristos, V.,
Hybrid System for Simultaneous Fluorescence and X-Ray Computed
Tomography,
MedImg(29), No. 2, February 2010, pp. 465-473.
IEEE DOI
1002
BibRef
Sperl, J.,
Beque, D.,
Claus, B.,
de Man, B.,
Senzig, B.,
Brokate, M.,
Computer-Assisted Scan Protocol and Reconstruction (CASPAR):
Reduction of Image Noise and Patient Dose,
MedImg(29), No. 3, March 2010, pp. 724-732.
IEEE DOI
1003
Tomography. health issues from too much. Adaptive level, lower where
noise is not an issue.
BibRef
Baritaux, J.C.,
Hassler, K.,
Unser, M.,
An Efficient Numerical Method for General L_{p} Regularization in
Fluorescence Molecular Tomography,
MedImg(29), No. 4, April 2010, pp. 1075-1087.
IEEE DOI
1003
BibRef
Baritaux, J.C.,
Hassler, K.,
Bucher, M.,
Sanyal, S.,
Unser, M.,
Sparsity-Driven Reconstruction for FDOT With Anatomical Priors,
MedImg(30), No. 5, May 2011, pp. 1143-1153.
IEEE DOI
1105
Isolates few anatomical regions where the fluorescent probe has accumulated.
BibRef
Miqueles, E.X.,
de Pierro, A.R.,
Iterative Reconstruction in X-ray Fluorescence Tomography Based on
Radon Inversion,
MedImg(30), No. 2, February 2011, pp. 438-450.
IEEE DOI
1102
BibRef
Bazalova, M.,
Kuang, Y.,
Pratx, G.,
Xing, L.,
Investigation of X-ray Fluorescence Computed Tomography (XFCT) and
K-Edge Imaging,
MedImg(31), No. 8, August 2012, pp. 1620-1627.
IEEE DOI
1208
BibRef
Ahmad, M.,
Bazalova, M.,
Xiang, L.,
Xing, L.,
Order of Magnitude Sensitivity Increase in X-ray Fluorescence
Computed Tomography (XFCT) Imaging With an Optimized Spectro-Spatial
Detector Configuration: Theory and Simulation,
MedImg(33), No. 5, May 2014, pp. 1119-1128.
IEEE DOI
1405
Computed tomography
BibRef
Kuang, Y.,
Pratx, G.,
Bazalova, M.,
Meng, B.,
Qian, J.,
Xing, L.,
First Demonstration of Multiplexed X-Ray Fluorescence Computed
Tomography (XFCT) Imaging,
MedImg(32), No. 2, February 2013, pp. 262-267.
IEEE DOI
1301
BibRef
Jin, A.,
Yazici, B.,
Ntziachristos, V.,
Light Illumination and Detection Patterns for Fluorescence Diffuse
Optical Tomography Based on Compressive Sensing,
IP(23), No. 6, June 2014, pp. 2609-2624.
IEEE DOI
1406
Coherence
BibRef
Mohajerani, P.,
Hipp, A.,
Willner, M.,
Marschner, M.,
Trajkovic-Arsic, M.,
Ma, X.,
Burton, N.C.,
Klemm, U.,
Radrich, K.,
Ermolayev, V.,
Tzoumas, S.,
Siveke, J.T.,
Bech, M.,
Pfeiffer, F.,
Ntziachristos, V.,
FMT-PCCT: Hybrid Fluorescence Molecular Tomography: X-Ray
Phase-Contrast CT Imaging of Mouse Models,
MedImg(33), No. 7, July 2014, pp. 1434-1446.
IEEE DOI
1407
Animals
BibRef
Zhang, J.L.[Jiu-Lou],
Shi, J.W.[Jun-Wei],
Cao, X.[Xu],
Liu, F.[Fei],
Bai, J.[Jing],
Luo, J.W.[Jian-Wen],
Fast reconstruction of fluorescence molecular tomography via a
permissible region extraction strategy,
JOSA-A(31), No. 8, August 2014, pp. 1886-1894.
DOI Link
1408
Image reconstruction techniques
BibRef
Amiot, C.,
Girard, C.,
Chanussot, J.,
Pescatore, J.,
Desvignes, M.,
Curvelet Based Contrast Enhancement in Fluoroscopic Sequences,
MedImg(34), No. 1, January 2015, pp. 137-147.
IEEE DOI
1502
computerised tomography
BibRef
Lu, Y.J.[Yu-Jie],
Darne, C.D.,
Tan, I.C.[I-Chih],
Zhu, B.[Banghe],
Rightmer, R.,
Rasmussen, J.C.,
Sevick-Muraca, E.M.,
Experimental Comparison of Continuous-Wave and Frequency-Domain
Fluorescence Tomography in a Commercial Multi-Modal Scanner,
MedImg(34), No. 6, June 2015, pp. 1197-1211.
IEEE DOI
1506
CCD image sensors
BibRef
He, X.W.[Xiao-Wei],
Dong, F.[Fang],
Yu, J.J.[Jing-Jing],
Guo, H.B.[Hong-Bo],
Hou, Y.Q.[Yu-Qing],
Reconstruction algorithm for fluorescence molecular tomography using
sorted L-one penalized estimation,
JOSA-A(32), No. 11, November 2015, pp. 1928-1935.
DOI Link
1512
Inverse problems
BibRef
Ahmad, M.,
Bazalova-Carter, M.,
Fahrig, R.,
Xing, L.,
Optimized Detector Angular Configuration Increases the Sensitivity of
X-ray Fluorescence Computed Tomography (XFCT),
MedImg(34), No. 5, May 2015, pp. 1140-1147.
IEEE DOI
1505
Detectors
BibRef
Dunning, C.A.S.,
Bazalova-Carter, M.,
X-Ray Fluorescence Computed Tomography Induced by Photon, Electron,
and Proton Beams,
MedImg(38), No. 12, December 2019, pp. 2735-2743.
IEEE DOI
1912
X-ray imaging, Phantoms, Particle beams, Photonics, Protons, Detectors,
Molecular imaging, protons, electrons, fluorescence,
Monte Carlo (MC) methods
BibRef
Di, Z.C.W.[Zi-Chao Wendy],
Leyffer, S.[Sven],
Wild, S.M.[Stefan M.],
Optimization-Based Approach for Joint X-Ray Fluorescence and
Transmission Tomographic Inversion,
SIIMS(9), No. 1, 2016, pp. 1-23.
DOI Link
1604
BibRef
Mohajerani, P.,
Ntziachristos, V.,
An Inversion Scheme for Hybrid Fluorescence Molecular Tomography
Using a Fuzzy Inference System,
MedImg(35), No. 2, February 2016, pp. 381-390.
IEEE DOI
1602
Accuracy
BibRef
Ancora, D.,
Zacharopoulos, A.,
Ripoll, J.,
Zacharakis, G.,
Fluorescence Diffusion in the Presence of Optically Clear Tissues in
a Mouse Head Model,
MedImg(36), No. 5, May 2017, pp. 1086-1093.
IEEE DOI
1705
Biomedical optical imaging, Brain modeling,
Computational modeling, Fluorescence, Mathematical model,
Optical imaging, Optical scattering, Biomedical imaging,
Cerebral spinal fluid, Clear tissues, Diffuse optics tomography,
Diffusion equation, Fluorescence, Forward modelling,
Monte Carlo methods, Neuroimaging
BibRef
Naik, N.,
Patil, N.,
Yadav, Y.,
Eriksson, J.,
Pradhan, A.,
Fully Nonlinear SP_3 Approximation Based Fluorescence Optical
Tomography,
MedImg(36), No. 11, November 2017, pp. 2308-2318.
IEEE DOI
1711
Absorption.
Nonlinear optics, Optical imaging, Optical scattering, Tomography,
Fluorescence tomography,
image reconstruction-iterative methods, optical, imaging/OCT/DOT
BibRef
Rajbhandary, P.L.,
Hsieh, S.S.,
Pelc, N.J.,
Effect of Spectral Degradation and Spatio-Energy Correlation in X-Ray
PCD for Imaging,
MedImg(37), No. 8, August 2018, pp. 1910-1919.
IEEE DOI
1808
Correlation, Photonics, Detectors, Fluorescence, Computed tomography,
X-ray imaging, Charge sharing, K-fluorescence escape,
spectral CT
BibRef
Divel, S.E.,
Pelc, N.J.,
Accurate Image Domain Noise Insertion in CT Images,
MedImg(39), No. 6, June 2020, pp. 1906-1916.
IEEE DOI
2006
Computed tomography, nonstationary noise, simulation,
dose reduction, image domain
BibRef
Zhang, S.,
Ma, X.,
Wang, Y.,
Wu, M.,
Meng, H.,
Chai, W.,
Wang, X.,
Wei, S.,
Tian, J.,
Robust Reconstruction of Fluorescence Molecular Tomography Based on
Sparsity Adaptive Correntropy Matching Pursuit Method for Stem Cell
Distribution,
MedImg(37), No. 10, October 2018, pp. 2176-2184.
IEEE DOI
1810
Image reconstruction, Stem cells, Fluorescence, Robustness,
Matching pursuit algorithms, Mice, Inverse problems,
robust reconstruction
BibRef
Cai, M.,
Zhang, Z.,
Shi, X.,
Hu, Z.,
Tian, J.,
NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice
Based on Gaussian Weighted Neighborhood Fused Lasso Method,
MedImg(39), No. 6, June 2020, pp. 2213-2222.
IEEE DOI
2006
Fluorescence molecular tomography, NIR-II, NIR-I, GWNFL method
BibRef
Shaker, K.,
Vogt, C.,
Katsu-Jiménez, Y.,
Kuiper, R.V.,
Andersson, K.,
Li, Y.,
Larsson, J.C.,
Rodriguez-Garcia, A.,
Toprak, M.S.,
Arsenian-Henriksson, M.,
Hertz, H.M.,
Longitudinal In-Vivo X-Ray Fluorescence Computed Tomography With
Molybdenum Nanoparticles,
MedImg(39), No. 12, December 2020, pp. 3910-3919.
IEEE DOI
2012
X-ray imaging, Computed tomography, In vivo, Mice,
Spatial resolution, Detectors, Biomedical imaging,
X-ray fluorescence computed tomography (XFCT)
BibRef
Wang, H.F.[Han-Fan],
Bian, C.[Chang],
Kong, L.X.[Ling-Xin],
An, Y.[Yu],
Du, Y.[Yang],
Tian, J.[Jie],
A Novel Adaptive Parameter Search Elastic Net Method for Fluorescent
Molecular Tomography,
MedImg(40), No. 5, May 2021, pp. 1484-1498.
IEEE DOI
2105
Image reconstruction, Fluorescence, Probes, Mathematical model,
Photonics, Molecular imaging, Biological tissues,
elastic net
BibRef
Zhang, P.[Peng],
Fan, G.D.[Guang-Da],
Xing, T.[Tongtong],
Song, F.[Fan],
Zhang, G.L.[Guang-Lei],
UHR-DeepFMT: Ultra-High Spatial Resolution Reconstruction of
Fluorescence Molecular Tomography Based on 3-D Fusion Dual-Sampling
Deep Neural Network,
MedImg(40), No. 11, November 2021, pp. 3217-3228.
IEEE DOI
2111
Image reconstruction, Spatial resolution, Fluorescence,
Mathematical model, Inverse problems, spatial resolution
BibRef
Zhu, B.[Banghe],
Hendricks, J.[Jonathan],
Morton, J.E.[Janelle E.],
Rasmussen, J.C.[John C.],
Janssen, C.[Christopher],
Shah, M.N.[Manish N.],
Sevick-Muraca, E.M.[Eva Marie],
Near-Infrared Fluorescence Tomography and Imaging of Ventricular
Cerebrospinal Fluid Flow and Extracranial Outflow in Non-Human
Primates,
MedImg(42), No. 12, December 2023, pp. 3555-3565.
IEEE DOI
2312
BibRef
Mandot, S.[Shubham],
Zannoni, E.M.[Elena M.],
Cai, L.[Ling],
Nie, X.C.[Xing-Chen],
Rivière, P.J.L.[Patrick J. La],
Wilson, M.D.[Matthew D.],
Meng, L.J.[Ling Jian],
A High-Sensitivity Benchtop X-Ray Fluorescence Emission Tomography
(XFET) System With a Full-Ring of X-Ray Imaging-Spectrometers and a
Compound-Eye Collimation Aperture,
MedImg(43), No. 5, May 2024, pp. 1782-1791.
IEEE DOI
2405
X-ray imaging, Detectors, Imaging, Phantoms, Metals, Collimators,
Sensitivity, X-ray fluorescence emission tomography,
emission tomography
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Tomographic Object Construction, Object Extraction, Analysis, Organs .