15.3.28.2 Road Side Objects, Structures, Analysis, Inspection

Chapter Contents (Back)
Street Furniture. Roadside. 2506

Jeyapalan, K.[Kandiah],
Mobile Digital Cameras for As-Built Surveys of Roadside Features,
PhEngRS(70), No. 3, March 2004, pp. 301-312.
DOI Link A method for determining the three-dimensional locations of roadside features appearing on multiple sequential images captured using a mobile videologging system without any ground control is described. 0403
BibRef

Yamamoto, H.[Hiroshi], Ishii, Y.[Yoshinori], Yamazaki, K.[Katsuyuki],
Development and Evaluation of Roadside/Obstacle Detection Method Using 3D Scanned Data Processing,
IEICE(E95-D), No. 2, February 2012, pp. 540-541.
WWW Link. 1202
BibRef

Harbaš, I.[Iva], Prentašic, P.[Pavle], Subašic, M.[Marko],
Detection of roadside vegetation using Fully Convolutional Networks,
IVC(74), 2018, pp. 1-9.
Elsevier DOI 1806
Image analysis, Vegetation detection, Roadside maintenance, Deep learning, Convolutional neural networks BibRef

Mao, J.[Jia], Hong, D.[Dou], Wang, X.[Xi], Hsu, C.H.[Ching-Hsien], Shanthini, A.,
CVRRSS-CHD: Computer vision-related roadside surveillance system using compound hierarchical-deep models,
IET-ITS(14), No. 11, November 2020, pp. 1353-1362.
DOI Link 2010
BibRef

Chen, C.C.[Chong-Cheng], Zhao, Z.Y.[Zhi-Yuan],
Automatic Extraction of Roadside Traffic Facilities From Mobile Laser Scanning Point Clouds Based on Deep Belief Network,
ITS(22), No. 4, April 2021, pp. 1964-1980.
IEEE DOI 2104
Feature extraction, Machine learning, Semantics, Automobiles, Solid modeling, Biological system modeling, normalized cut
See also Individual Tree Extraction from Urban Mobile Laser Scanning Point Clouds Using Deep Pointwise Direction Embedding. BibRef

Verma, D.[Deepank], Mumm, O.[Olaf], Carlow, V.M.[Vanessa Miriam],
Identifying Streetscape Features Using VHR Imagery and Deep Learning Applications,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Wang, Z.Y.[Zi-Yang], Yang, L.[Lin], Sheng, Y.[Yehua], Shen, M.[Mi],
Pole-Like Objects Segmentation and Multiscale Classification-Based Fusion from Mobile Point Clouds in Road Scenes,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Li, G.N.[Guan-Nan], Lu, X.[Xiu], Lin, B.X.[Bing-Xian], Zhou, L.C.[Liang-Chen], Lv, G.N.[Guo-Nian],
Automatic Positioning of Street Objects Based on Self-Adaptive Constrained Line of Bearing from Street-View Images,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Tang, Q.[Quan], Liu, F.G.[Fa-Gui], Jiang, J.[Jun], Zhang, Y.[Yu],
EPRNet: Efficient Pyramid Representation Network for Real-Time Street Scene Segmentation,
ITS(23), No. 7, July 2022, pp. 7008-7016.
IEEE DOI 2207
Convolutional codes, Real-time systems, Semantics, Kernel, Encoding, Computational modeling, Image segmentation, intelligent vehicles BibRef

Fang, L.[Lina], You, Z.L.[Zhi-Long], Shen, G.X.[Gui-Xi], Chen, Y.P.[Yi-Ping], Li, J.R.[Jiang-Rong],
A joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds,
PandRS(193), 2022, pp. 115-136.
Elsevier DOI 2210
Mobile laser scanning systems, Point cloud classification, Multiview images, Deep learning, Attention mechanism BibRef

Pechinger, M.[Mathias], Schröer, G.[Guido], Bogenberger, K.[Klaus], Markgraf, C.[Carsten],
Roadside Infrastructure Support for Urban Automated Driving,
ITS(24), No. 10, October 2023, pp. 10643-10652.
IEEE DOI 2310
BibRef

Wang, T.H.[Ting-Han], Luo, Y.[Yugong], Liu, J.X.[Jin-Xin], Chen, R.[Rui], Li, K.Q.[Ke-Qiang],
End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder,
ITS(23), No. 1, January 2022, pp. 641-650.
IEEE DOI 2201
Feature extraction, Training, Task analysis, Roads, Decision making, Autonomous vehicles, Neural networks, End-to-end self-driving, irrelevant features BibRef

Zhang, K.[Kunai], Liu, Y.H.[Ya-Hui], Zhang, W.Q.[Wei-Qiang], Liu, S.S.[Shao-Shan],
p-Learner: A Lifelong Roadside Learning Framework for Infrastructure Augmented Autonomous Driving,
Computer(55), No. 6, June 2022, pp. 30-39.
IEEE DOI 2206
Road traffic, Vehicle safety, Autonomous vehicles BibRef

Shi, H.[Hao], Pang, C.[Chengshan], Zhang, J.M.[Jia-Ming], Yang, K.L.[Kai-Lun], Wu, Y.H.[Yu-Hao], Ni, H.J.[Hua-Jian], Lin, Y.[Yining], Stiefelhagen, R.[Rainer], Wang, K.W.[Kai-Wei],
CoBEV: Elevating Roadside 3D Object Detection With Depth and Height Complementarity,
IP(33), 2024, pp. 5424-5439.
IEEE DOI 2410
Cameras, Feature extraction, Object detection, Detectors, Accuracy, Robustness, Roadside 3D object detection, autonomous driving BibRef

Yang, L.[Lei], Zhang, X.Y.[Xin-Yu], Yu, J.X.[Jia-Xin], Li, J.[Jun], Zhao, T.[Tong], Wang, L.[Li], Huang, Y.[Yi], Zhang, C.[Chuang], Wang, H.[Hong], Li, Y.M.[Yi-Ming],
MonoGAE: Roadside Monocular 3D Object Detection With Ground-Aware Embeddings,
ITS(25), No. 11, November 2024, pp. 17587-17601.
IEEE DOI 2411
Object detection, Cameras, Feature extraction, Training, Robustness, Geometry, Monocular 3D object detection, roadside perception, autonomous driving BibRef

Qin, X.C.[Xiao-Chun], Liu, Y.J.[Yang-Jie], Yang, D.X.[Dong-Xiao], Pan, D.[Dangran], Meng, F.[Fantong], Cao, Y.F.[Yu-Fei], Wangari, V.W.[Vicky Wangechi],
Quantitative Characterization of Highway Landscape Space Visual Perception Based on Deep Learning,
ITS(25), No. 12, December 2024, pp. 21157-21171.
IEEE DOI 2412
Road design to consider landscape in addition to safety. Road transportation, Visualization, Deep learning, Vehicles, Analytical models, Indexes, Data models, Roads, Visual perception, deep learning BibRef

Xu, J.Q.[Jian-Qiang], Song, C.Y.[Chun-Ying], Shi, C.[Chao], Liu, H.F.[Hua-Feng], Wang, Q.[Qiong],
UncertainBEV: Uncertainty-aware BEV fusion for roadside 3D object detection,
IVC(159), 2025, pp. 105567.
Elsevier DOI 2505
3D object detection, Multi-modal fusion, Uncertainty, Bird's-Eye-View (BEV) perception BibRef

Misthos, L.M.[Loukas-Moysis], Krassanakis, V.[Vassilios],
RouteLAND: An Integrated Method and a Geoprocessing Tool for Characterizing the Dynamic Visual Landscape Along Highways,
IJGI(14), No. 5, 2025, pp. 187.
DOI Link 2505
BibRef

Singh, P.[Puranjit], Perez, M.A.[Michael A.], Donald, W.N.[Wesley N.], Bao, Y.[Yin],
A Comparative Study of Deep Semantic Segmentation and UAV-Based Multispectral Imaging for Enhanced Roadside Vegetation Composition Assessment,
RS(17), No. 12, 2025, pp. 1991.
DOI Link 2506
BibRef

Zhang, Z.[Zhang], Sun, C.[Chao], Wang, B.[Bo], Guo, B.[Bin], Wen, D.[Da], Zhu, T.Y.[Tian-Yi], Ning, Q.[Qili],
Height3D: A Roadside Visual Framework Based on Height Prediction in Real 3-D Space,
ITS(26), No. 7, July 2025, pp. 10909-10917.
IEEE DOI Code:
WWW Link. 2507
Transforms, Accuracy, Feature extraction, Visual perception, Object detection, Convolution, Visualization, Space vehicles, roadside perception BibRef

Ren, Y.N.[Yi-Ning], Wang, Y.H.[Yin-Hai], Wu, Z.Z.[Zhi-Zhou], Antoniou, C.[Constantinos], Liang, Y.Y.[Yun-Yi],
Road Side Unit Location Optimization Considering Communication Channel Competition and 6G Technology,
ITS(26), No. 7, July 2025, pp. 9867-9881.
IEEE DOI 2507
Delays, Optimization, Communication channels, 6G mobile communication, Roads, Spread spectrum communication, progressive hedging algorithm BibRef

Wang, H.[Huanan], Zhang, X.Y.[Xin-Yu], Chen, Z.X.[Zheng-Xian], Li, J.[Jun], Liu, H.P.[Hua-Ping],
PDDepth: Pose Decoupled Monocular Depth Estimation for Roadside Perception System,
CirSysVideo(35), No. 7, July 2025, pp. 6341-6356.
IEEE DOI Code:
WWW Link. 2507
Roadside sensor. Cameras, Depth measurement, Point cloud compression, Laser radar, Training, Calibration, Accuracy, Solid modeling, Feature extraction, roadside perception dataset BibRef

Yang, L.[Lei], Zhang, X.Y.[Xin-Yu], Li, J.[Jun], Wang, L.[Li], Zhang, C.[Chuang], Ju, L.[Li], Li, Z.W.[Zhi-Wei], Shen, Y.[Yang], Lv, C.[Chen], Wang, H.[Hong],
SGV3D: Toward Scenario Generalization for Vision-Based Roadside 3D Object Detection,
ITS(26), No. 8, August 2025, pp. 11782-11793.
IEEE DOI Code:
WWW Link. 2508
Detectors, Cameras, Object detection, Accuracy, Pipelines, Autonomous vehicles, Training, Overfitting, Safety, autonomous driving BibRef


Wang, W.J.[Wen-Jie], Lu, Y.[Yehao], Zheng, G.[Guangcong], Zhan, S.[Shuigen], Ye, X.Q.[Xiao-Qing], Tan, Z.C.[Zi-Chang], Wang, J.D.[Jing-Dong], Wang, G.A.[Gao-Ang], Li, X.[Xi],
BEVSpread: Spread Voxel Pooling for Bird's-Eye-View Representation in Vision-Based Roadside 3D Object Detection,
CVPR24(14718-14727)
IEEE DOI 2410
Pedestrians, Source coding, Graphics processing units, Object detection, Benchmark testing, Autonomous Driving, BEV BibRef

Hao, R.Y.[Rui-Yang], Fan, S.Q.[Si-Qi], Dai, Y.[Yingru], Zhang, Z.L.[Zhen-Lin], Li, C.X.[Chen-Xi], Wang, Y.T.[Yun-Tian], Yu, H.[Haibao], Yang, W.X.[Wen-Xian], Yuan, J.[Jirui], Nie, Z.[Zaiqing],
RCooper: A Real-world Large-scale Dataset for Roadside Cooperative Perception,
CVPR24(22347-22357)
IEEE DOI Code:
WWW Link. 2410
Point cloud compression, Codes, Benchmark testing, Sensor systems, Sensors, Autonomous vehicles, dataset and benchmark BibRef

Taiana, M.[Matteo], Toso, M.[Matteo], James, S.[Stuart], del Bue, A.[Alessio],
PoserNet: Refining Relative Camera Poses Exploiting Object Detections,
ECCV22(XXXIII:247-263).
Springer DOI 2211
BibRef

Ahmad, J.[Javed], Toso, M.[Matteo], Taiana, M.[Matteo], James, S.[Stuart], del Bue, A.[Alessio],
Multi-view 3D Objects Localization from Street-Level Scenes,
CIAP22(II:89-101).
Springer DOI 2205
BibRef

Waltner, G.[Georg], Jaschik, M.[Malte], Rinnhofer, A.[Alfred], Possegger, H.[Horst], Bischof, H.[Horst],
An Intelligent Scanning Vehicle for Waste Collection Monitoring,
CIAP22(I:38-50).
Springer DOI 2205
BibRef

Zhu, X.S.[Xiao-Su], Sheng, H.[Hualian], Cai, S.[Sijia], Deng, B.[Bing], Yang, S.P.[Shao-Peng], Liang, Q.[Qiao], Chen, K.[Ken], Gao, L.[Lianli], Song, J.K.[Jing-Kuan], Ye, J.P.[Jie-Ping],
Roscenes: A Large-scale Multi-view 3d Dataset for Roadside Perception,
ECCV24(XLI: 331-347).
Springer DOI 2412
BibRef

Yang, L.[Lei], Yu, K.C.[Kai-Cheng], Tang, T.[Tao], Li, J.[Jun], Yuan, K.[Kun], Wang, L.[Li], Zhang, X.Y.[Xin-Yu], Chen, P.[Peng],
BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection,
CVPR23(21611-21620)
IEEE DOI 2309
BibRef

Dhiman, V.[Vikas], Tran, Q.H.[Quoc-Huy], Corso, J.J.[Jason J.], Chandraker, M.[Manmohan],
A Continuous Occlusion Model for Road Scene Understanding,
CVPR16(4331-4339)
IEEE DOI 1612
BibRef

Naharudin, N., Ahamad, M.S.S., Sadullah, A.F.M.,
GIS Data Collection for Pedestrian Facilities and Furniture Using MAPINR for Android,
GGT16(89-95).
DOI Link 1612
BibRef

Moorfield, B.[Bradley], Haeusler, R.[Ralf], Klette, R.[Reinhard],
Bilateral Filtering of 3D Point Clouds for Refined 3D Roadside Reconstructions,
CAIP15(II:394-402).
Springer DOI 1511
BibRef

Foresti, G.L., Pani, B.,
Monitoring motorway infrastructures for detection of dangerous events,
CIAP99(1144-1147).
IEEE DOI 9909

See also On-line trajectory clustering for anomalous events detection. BibRef

Nicholls, D.C., Murray, D.W.,
Applying Visual Processing to GPS Mapping of Trackside Structures,
BMVC98(841-851).
HTML Version. BibRef 9800

Lanser, S.[Stefan], Zierl, C.[Christoph], Munkelt, O.[Olaf], Radig, B.[Bernd],
MORAL: A vision-based object recognition system for autonomous mobile systems,
CAIP97(33-41).
Springer DOI 9709
BibRef

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Railroads, Inspection, Obstacles .


Last update:Sep 10, 2025 at 12:00:25