Niyetkaliyev, A.S.,
Hussain, S.,
Ghayesh, M.H.,
Alici, G.,
Review on Design and Control Aspects of Robotic Shoulder
Rehabilitation Orthoses,
HMS(47), No. 6, December 2017, pp. 1134-1145.
IEEE DOI
1712
DC motors, Exoskeletons, Manipulators, Medical treatment,
Orthopedic procedures, Patient rehabilitation, Shoulder, Actuation,
stroke
BibRef
Hamaya, M.[Masashi],
Matsubara, T.[Takamitsu],
Noda, T.[Tomoyuki],
Teramae, T.[Tatsuya],
Morimoto, J.[Jun],
Learning assistive strategies for exoskeleton robots from user-robot
physical interaction,
PRL(99), No. 1, 2017, pp. 67-76.
Elsevier DOI
1710
Exoskeleton robot
BibRef
Wu, Q.,
Wang, X.,
Chen, B.,
Wu, H.,
Development of a Minimal-Intervention-Based Admittance Control
Strategy for Upper Extremity Rehabilitation Exoskeleton,
SMCS(48), No. 6, 2018, pp. 1005-1016.
IEEE DOI
1805
Exoskeletons, Extremities, Medical treatment, Real-time systems,
Robots, Training, Trajectory, Admittance control strategy,
upper extremity exoskeleton
BibRef
Brahmi, B.,
Saad, M.,
Rahman, M.H.,
Ochoa-Luna, C.,
Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on
Human Inverse Kinematics,
SMCS(49), No. 3, March 2019, pp. 600-611.
IEEE DOI
1902
Robots, Exoskeletons, Kinematics, Elbow, Shoulder, Medical treatment,
Wrist, Backstepping controller, exoskeleton robots,
robotic rehabilitation
BibRef
Ugurlu, B.,
Oshima, H.,
Sariyildiz, E.,
Narikiyo, T.,
Babic, J.,
Active Compliance Control Reduces Upper Body Effort in
Exoskeleton-Supported Walking,
HMS(50), No. 2, April 2020, pp. 144-153.
IEEE DOI
2004
Compliance control, locomotion control, lower body exoskeleton
BibRef
Hussain, S.,
Jamwal, P.K.,
van Vliet, P.,
Ghayesh, M.H.,
State-of-the-Art Robotic Devices for Wrist Rehabilitation: Design and
Control Aspects,
HMS(50), No. 5, October 2020, pp. 361-372.
IEEE DOI
2009
Wrist, Rehabilitation robotics, Exoskeletons, Medical treatment,
Brushless DC motors, Actuation, control paradigm, wrist orthosis
BibRef
Jamwal, P.K.,
Hussain, S.,
Tsoi, Y.H.,
Xie, S.Q.,
Musculoskeletal Model for Path Generation and Modification of an
Ankle Rehabilitation Robot,
HMS(50), No. 5, October 2020, pp. 373-383.
IEEE DOI
2009
Rehabilitation robotics, Ligaments, Joints, Bones, Springs,
Ankle joint musculoskeletal modeling,
robot path generation and modification
BibRef
Liu, D.X.[Du-Xin],
Xu, J.[Jing],
Chen, C.J.[Chun-Jie],
Long, X.G.[Xing-Guo],
Tao, D.C.[Da-Cheng],
Wu, X.Y.[Xin-Yu],
Vision-Assisted Autonomous Lower-Limb Exoskeleton Robot,
SMCS(51), No. 6, June 2021, pp. 3759-3770.
IEEE DOI
2106
Legged locomotion, Exoskeletons, Planning, Cameras, Visualization,
Decision making, Autonomous decision-making,
lower-limb exoskeleton robot
BibRef
Sanz-Pena, I.[Inigo],
Blanco, J.[Julio],
Kim, J.H.[Joo H.],
Computer Interface for Real-Time Gait Biofeedback Using a Wearable
Integrated Sensor System for Data Acquisition,
HMS(51), No. 5, October 2021, pp. 484-493.
IEEE DOI
2109
Exoskeletons, Robots, Training, Knee, Kinematics, Computer interfaces,
Real-time systems, Biofeedback (BF) computer interface,
wearable sensors
BibRef
Wang, X.Y.[Xiang-Yang],
Guo, S.[Sheng],
Qu, B.J.[Bo-Jian],
Bai, S.P.[Shao-Ping],
Design and Experimental Verification of a Hip Exoskeleton Based on
Human-Machine Dynamics for Walking Assistance,
HMS(53), No. 1, February 2023, pp. 85-97.
IEEE DOI
2301
Exoskeleton, Wearable robots, Legged locomotion, Hip, Dynamics,
hip exoskeleton, parallel mechanism, walking assistance, wearable robot
BibRef
Verdel, D.[Dorian],
Sahm, G.[Guillaume],
Bastide, S.[Simon],
Bruneau, O.[Olivier],
Berret, B.[Bastien],
Vignais, N.[Nicolas],
Influence of the Physical Interface on the Quality of
Human-Exoskeleton Interaction,
HMS(53), No. 1, February 2023, pp. 44-53.
IEEE DOI
2301
Exoskeletons, Elbow, Robot sensing systems, Particle measurements,
Atmospheric measurements, Force measurement,
self-aligning mechanism
BibRef
Wijegunawardana, I.[Isira],
Ranaweera, R.K.P.S.,
Gopura, R.A.R.C.,
Lower Extremity Posture Assistive Wearable Devices: A Review,
HMS(53), No. 1, February 2023, pp. 98-112.
IEEE DOI
2301
Assistive devices, Wearable computers, Databases, Patents, Pain,
Exoskeletons, Stress, Bodyweight support,
work-related musculoskeletal disorders (WMSDs)
BibRef
Samper-Escudero, J.L.[José Luis],
Coloma, S.[Sofía],
Olivares-Mendez, M.A.[Miguel Angel],
González, M.Á.S.U.[Miguel Ángel Sanchez-Urán],
Ferre, M.[Manuel],
A Compact and Portable Exoskeleton for Shoulder and Elbow Assistance
for Workers and Prospective Use in Space,
HMS(53), No. 4, August 2023, pp. 668-677.
IEEE DOI
2308
Exoskeletons, Shoulder, Elbow, Muscles, Clamps, Mechanical cables,
Fabrics, Assistive robot, compliant mechanism, compliant robot, upper limbs
BibRef
Li, G.X.[Guo-Xin],
Li, Z.J.[Zhi-Jun],
Su, C.Y.[Chun-Yi],
Xu, T.[Tian],
Active Human-Following Control of an Exoskeleton Robot With Body
Weight Support,
Cyber(53), No. 11, November 2023, pp. 7367-7379.
IEEE DOI
2310
BibRef
de Oliveira, A.C.[Ana C.],
Deshpande, A.D.[Ashish D.],
Assessment of Upper-Body Movement Quality in the Cartesian-Space is
Feasible in the Harmony Exoskeleton,
HMS(53), No. 6, December 2023, pp. 985-995.
IEEE DOI
2312
BibRef
Wu, X.Y.[Xin-Yu],
Li, J.[Jinke],
Liu, L.[Liu],
Tao, D.C.[Da-Cheng],
The Visual Footsteps Planning System for Exoskeleton Robots Under
Complex Terrain,
SMCS(53), No. 8, August 2023, pp. 5149-5160.
IEEE DOI
2307
Robots, Exoskeletons, Planning, Legged locomotion, Visualization,
Trajectory, Virtual reality, Bezier curve, exoskeleton robot, stereo vision
BibRef
Huang, P.B.[Peng-Bo],
Li, Z.J.[Zhi-Jun],
Zhou, M.C.[Meng-Chu],
Kan, Z.[Zhen],
Divergent Component of Motion Planning and Adaptive Repetitive
Control for Wearable Walking Exoskeletons,
Cyber(54), No. 4, April 2024, pp. 2244-2256.
IEEE DOI
2403
Legged locomotion, Trajectory, Exoskeletons, Tracking, Robots,
Planning, Dynamics, Adaptive repetitive control, walking exoskeleton
BibRef
Li, Z.J.[Zhi-Jun],
Zhang, T.[Tao],
Huang, P.[Pengbo],
Li, G.X.[Guo-Xin],
Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for
Following Time-Variable Human Intention,
Cyber(54), No. 4, April 2024, pp. 2142-2154.
IEEE DOI
2403
Exoskeletons, Legged locomotion, Robots, Impedance,
Human in the loop, Trajectory, Hip, Barrier Lyapunov function,
walking exoskeleton
BibRef
Bergmann, L.[Lukas],
Hansmann, L.[Lea],
von Platen, P.[Philip],
Leonhardt, S.[Steffen],
Ngo, C.[Chuong],
Fatigue Assessment and Control With Lower Limb Exoskeletons,
HMS(55), No. 1, February 2025, pp. 10-22.
IEEE DOI
2502
Fatigue, Muscles, Force, Torque, Exoskeletons, Legged locomotion,
Load modeling, Iron, Motors, Physiology, Control, exoskeletons, fatigue,
parameter identification
BibRef
Escarabajal, R.J.[Rafael J.],
Zamora-Ortiz, P.[Pau],
Pulloquinga, J.L.[José L.],
Vallés, M.[Marina],
Valera, Á.[Ángel],
Muscle-Targeted Robotic Assistive Control Using Musculoskeletal Model
of the Lower Limb,
SMCS(55), No. 2, February 2025, pp. 1537-1548.
IEEE DOI
2501
Robots, Muscles, Real-time systems, Aerospace electronics, Kinematics,
Force, End effectors, Tracking loops, Parallel robots, robotic assistance
BibRef
López-Delis, A.[Alberto],
Ruiz-Olaya, A.F.[Andrés Felipe],
Freire-Bastos, T.[Teodiano],
A Comparison of Myoelectric Pattern Recognition Methods to Control an
Upper Limb Active Exoskeleton,
CIARP13(II:100-107).
Springer DOI
1311
Surface Electromyography.
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Ergonomic Studies, Ergonomic Analysis .