Chalmond, B.,
Individual Hip Prosthesis Design from CT Images,
PRL(8), 1988, pp. 203-208.
BibRef
8800
Rezazadeh, I.M.[Iman Mohammad],
Firoozabadi, M.[Mohammad],
Hu, H.S.[Huo-Sheng],
Golpayegani, S.M.R.H.[S. Mohammad Reza Hashemi],
Co-Adaptive and Affective Human-Machine Interface for Improving
Training Performances of Virtual Myoelectric Forearm Prosthesis,
AffCom(3), No. 3, 2012, pp. 285-297.
IEEE DOI
1210
BibRef
Al-Jumaily, A.[Adel],
Olivares, R.A.[Ricardo A.],
Bio-driven system-based virtual reality for prosthetic and
rehabilitation systems,
SIViP(6), No. 1, March 2012, pp. 71-84.
WWW Link.
1203
BibRef
Ugurlu, B.,
Nishimura, M.,
Hyodo, K.,
Kawanishi, M.,
Narikiyo, T.,
Proof of Concept for Robot-Aided Upper Limb Rehabilitation Using
Disturbance Observers,
HMS(45), No. 1, February 2015, pp. 110-118.
IEEE DOI
1502
biomechanics
BibRef
Rupp, R.,
Rohm, M.,
Schneiders, M.,
Kreilinger, A.,
Muller-Putz, G.R.,
Functional Rehabilitation of the Paralyzed Upper Extremity After
Spinal Cord Injury by Noninvasive Hybrid Neuroprostheses,
PIEEE(103), No. 6, June 2015, pp. 954-968.
IEEE DOI
1506
brain-computer interfaces
BibRef
Ma, J.X.[Jia-Xin],
Thakor, N.V.,
Matsuno, F.,
Hand and Wrist Movement Control of Myoelectric Prosthesis Based on
Synergy,
HMS(45), No. 1, February 2015, pp. 74-83.
IEEE DOI
1502
electromyography
BibRef
Ogata, K.[Kunihiro],
Mita, T.[Tomoki],
Shimizu, T.[Takeshi],
Yamasaki, N.[Nobuya],
Training Assist System of a Lower Limb Prosthetic Visualizing
Floor-Reaction Forces Using a Color-Depth Sensing Camera,
IEICE(E98-D), No. 11, November 2015, pp. 1916-1922.
WWW Link.
1512
BibRef
Ang, K.K.[Kai Keng],
Guan, C.T.[Cun-Tai],
Brain-Computer Interface for Neurorehabilitation of Upper Limb After
Stroke,
PIEEE(103), No. 6, June 2015, pp. 944-953.
IEEE DOI
1506
brain-computer interfaces
BibRef
Warren, D.J.,
Kellis, S.,
Nieveen, J.G.,
Wendelken, S.M.,
Dantas, H.,
Davis, T.S.,
Hutchinson, D.T.,
Normann, R.A.,
Clark, G.A.,
Mathews, V.J.,
Recording and Decoding for Neural Prostheses,
PIEEE(104), No. 2, February 2016, pp. 374-391.
IEEE DOI
1601
Biomedical signal processing
BibRef
White, M.M.[Melissa Mae],
Zhang, W.J.[Wen-Juan],
Winslow, A.T.[Anna T.],
Zahabi, M.[Maryam],
Zhang, F.[Fan],
Huang, H.[He],
Kaber, D.B.[David B.],
Usability Comparison of Conventional Direct Control Versus Pattern
Recognition Control of Transradial Prostheses,
HMS(47), No. 6, December 2017, pp. 1146-1157.
IEEE DOI
1712
Electroencephalography,
Particle measurements, Pollution measurement, Prosthetics,
prosthetics
BibRef
Raspopovic, S.,
Petrini, F.M.,
Zelechowski, M.,
Valle, G.,
Framework for the Development of Neuroprostheses: From Basic
Understanding by Sciatic and Median Nerves Models to Bionic Legs and
Hands,
PIEEE(105), No. 1, January 2017, pp. 34-49.
IEEE DOI
1612
Biological system modeling
BibRef
Guo, W.,
Sheng, X.,
Liu, H.,
Zhu, X.,
Toward an Enhanced Human-Machine Interface for Upper-Limb Prosthesis
Control With Combined EMG and NIRS Signals,
HMS(47), No. 4, August 2017, pp. 564-575.
IEEE DOI
1708
Electromyography, Feature extraction, Muscles, Prosthetic hand,
Real-time systems, Sensors, Near-infrared spectroscopy (NIRS),
pattern recognition, prosthesis control, sensor fusion, surface,
electromyography, (EMG)
BibRef
Godiyal, A.K.,
Mondal, M.,
Joshi, S.D.,
Joshi, D.,
Force Myography Based Novel Strategy for Locomotion Classification,
HMS(48), No. 6, December 2018, pp. 648-657.
IEEE DOI
1812
Sensors, Prosthetics, Muscles, Linear discriminant analysis,
Legged locomotion, Electromyography, Force myography (FMG),
locomotion classification
BibRef
de San Roman, P.P.[Philippe Pérez],
Benois-Pineau, J.[Jenny],
Domenger, J.P.[Jean-Philippe],
Paclet, F.[Florent],
Cataert, D.[Daniel],
de Rugy, A.[Aymar],
Saliency Driven Object recognition in egocentric videos with deep CNN:
Toward application in assistance to Neuroprostheses,
CVIU(164), No. 1, 2017, pp. 82-91.
Elsevier DOI
1801
Psycho-visual attention
BibRef
Wen, Y.,
Si, J.,
Brandt, A.,
Gao, X.,
Huang, H.H.,
Online Reinforcement Learning Control for the Personalization of a
Robotic Knee Prosthesis,
Cyber(50), No. 6, June 2020, pp. 2346-2356.
IEEE DOI
2005
Knee, Prosthetics, Impedance, Robots, Tuning, Kinematics,
Dynamic programming, Approximate dynamic programming (ADP),
robotic knee prosthesis
BibRef
Azimi, V.,
Shu, T.,
Zhao, H.,
Gehlhar, R.,
Simon, D.,
Ames, A.D.,
Model-Based Adaptive Control of Transfemoral Prostheses: Theory,
Simulation, and Experiments,
SMCS(51), No. 2, February 2021, pp. 1174-1191.
IEEE DOI
2101
Legged locomotion, Prosthetics, Adaptation models,
Stability analysis, Robustness, Impedance,
walking biped
BibRef
Edwards, J.[John],
With Signal Processing Support, Prosthetics Are Becoming Safer, More
Natural, and Increasingly Sensitive: Ongoing Prosthetics Research Is
Leading to Systems That Adapt to Users Rather Than Forcing Users to
Accommodate the Prosthesis [Special Reports],
SPMag(38), No. 4, July 2021, pp. 8-11.
IEEE DOI
2107
BibRef
Ahmadizadeh, C.[Chakaveh],
Khoshnam, M.[Mahta],
Menon, C.[Carlo],
Human Machine Interfaces in Upper-Limb Prosthesis Control: A Survey
of Techniques for Preprocessing and Processing of Biosignals,
SPMag(38), No. 4, July 2021, pp. 12-22.
IEEE DOI
2107
Data acquisition, Process control, Prosthetics,
Man-machine systems, Control systems
BibRef
Dantas, H.[Henrique],
Hansen, T.C.[Taylor C.],
Warren, D.J.[David J.],
Mathews, V.J.[V. John],
Interpreting Volitional Movement Intent From Biological Signals:
A Review,
SPMag(38), No. 4, July 2021, pp. 23-33.
IEEE DOI
2107
Biomedical signal processing, Machine learning algorithms,
Training data, Signal processing algorithms, Machine learning,
Decoding
BibRef
Wang, Y.W.[Yi-Wen],
Principe, J.C.[Jose C.],
Reinforcement Learning in Reproducing Kernel Hilbert Spaces: Enabling
Continuous Brain-Machine Interface Adaptation,
SPMag(38), No. 4, July 2021, pp. 34-45.
IEEE DOI
2107
Reinforcement learning, Tutorials, Aerospace electronics,
Hilbert space, Decoding, Task analysis, Man-machine systems
BibRef
Shehata, A.W.[Ahmed W.],
Williams, H.E.[Heather E.],
Hebert, J.S.[Jacqueline S.],
Pillarski, P.M.[Patrick M.],
Machine Learning for the Control of Prosthetic Arms: Using
Electromyographic Signals for Improved Performance,
SPMag(38), No. 4, July 2021, pp. 46-53.
IEEE DOI
2107
Machine learning, Prosthetics, Man-machine systems,
Electromyography, Biomedical signal processing
BibRef
Park, J.[Junho],
Zahabi, M.[Maryam],
Cognitive Workload Assessment of Prosthetic Devices:
A Review of Literature and Meta-Analysis,
HMS(52), No. 2, April 2022, pp. 181-195.
IEEE DOI
2203
Prosthetics, Physiology, Task analysis, Usability, Training,
Pollution measurement, Performance evaluation,
prosthesis
BibRef
Zhong, B.[Boxuan],
Huang, H.[He],
Lobaton, E.[Edgar],
Reliable Vision-Based Grasping Target Recognition for Upper Limb
Prostheses,
Cyber(52), No. 3, March 2022, pp. 1750-1762.
IEEE DOI
2203
Grasping, Uncertainty, Prosthetics, Task analysis,
Target recognition, Bayes methods, Prediction algorithms,
upper limb prosthesis
BibRef
Jyothish, K.J.,
Mishra, S.[Subhankar],
A Survey on Robotic Prosthetics: Neuroprosthetics, Soft Actuators,
and Control Strategies,
Surveys(56), No. 8, April 2024, pp. 195.
DOI Link
2405
Survey, Prosthetic Devices. Robotic prosthetics, neuroprosthetics, soft robotics,
electroactive polymer, EMG, HMI
BibRef
Li, J.[Jie],
Gu, X.[Xiao],
Qiu, S.[Sen],
Zhou, X.[Xu],
Cangelosi, A.[Angelo],
Loo, C.K.[Chu Kiong],
Liu, X.F.[Xiao-Feng],
A Survey of Wearable Lower Extremity Neurorehabilitation Exoskeleton:
Sensing, Gait Dynamics, and Human-Robot Collaboration,
SMCS(54), No. 6, June 2024, pp. 3675-3693.
IEEE DOI
2405
Exoskeletons, Robot sensing systems, Robots, Sensors, Industries,
Biomedical monitoring, Legged locomotion, sensor network,
wearable exoskeleton
BibRef
Liu, Y.M.[Yun-Mei],
Berman, J.[Joseph],
Dodson, A.[Albert],
Park, J.[Junho],
Zahabi, M.[Maryam],
Huang, H.[He],
Ruiz, J.[Jaime],
Kaber, D.B.[David B.],
Human-Centered Evaluation of EMG-Based Upper-Limb Prosthetic Control
Modes,
HMS(54), No. 3, June 2024, pp. 271-281.
IEEE DOI
2405
Task analysis, Electromyography, Prosthetics, Muscles, Wrist,
Cognitive load, Usability, Electromyography (EMG), prosthetics
BibRef
Xia, H.S.[Hai-Sheng],
Pi, M.[Ming],
Jin, L.J.[Ling-Jing],
Song, R.[Rong],
Li, Z.J.[Zhi-Jun],
Human Collaborative Control of Lower-Limb Prosthesis Based on Game
Theory and Fuzzy Approximation,
Cyber(55), No. 1, January 2025, pp. 247-258.
IEEE DOI
2501
Prosthetics, Legged locomotion, Force, Game theory, Robot kinematics,
Robot sensing systems, Trajectory, Sensors, Fuzzy logic, robotic prosthesis
BibRef
Kourbane, I.[Ikram],
Papadakis, P.[Panagiotis],
Andries, M.[Mihai],
SSL-Rehab: Assessment of physical rehabilitation exercises through
self-supervised learning of 3D skeleton representations,
CVIU(251), 2025, pp. 104275.
Elsevier DOI
2501
Rehabilitation, Quality score assessment, Self-supervised learning,
Transfer learning, Transformer
BibRef
Nath, D.[Debasish],
Singh, N.[Neha],
Banduni, O.[Onika],
Parial, A.[Aprajita],
Srivastava, M.V.P.[M. V. Padma],
Vishnu, V.Y.[Venugopalan Y.],
Mehndiratta, A.[Amit],
Variable Handle-Resistance Based Joystick for Post-stroke
Neurorehabilitation Training of Hand and Wrist in Upper Extremities,
HMS(55), No. 1, February 2025, pp. 93-101.
IEEE DOI
2502
Springs, Force, Resistance, Protocols, Wrist, Calibration, Visualization,
Training, Stroke (medical condition), Standards, Distal upper limb,
task-performance metric
BibRef
Pulido, S.D.[Sergio David],
Bocanegra, Á.J.[Álvaro José],
Cancino, S.L.[Sandra Liliana],
López, J.M.[Juan Manuel],
Serious Game Controlled by a Human-Computer Interface for Upper Limb
Motor Rehabilitation: A Feasibility Study,
IbPRIA19(II:359-370).
Springer DOI
1910
BibRef
Manero, A.[Albert],
Sparkman, J.[John],
Dombrowski, M.[Matt],
Buyssens, R.[Ryan],
Smith, P.A.[Peter A.],
Developing and Training Multi-gestural Prosthetic Arms,
VAMR18(I: 427-437).
Springer DOI
1807
BibRef
Patricia, N.[Novi],
Tommasit, T.[Tatiana],
Caputo, B.[Barbara],
Multi-source Adaptive Learning for Fast Control of Prosthetics Hand,
ICPR14(2769-2774)
IEEE DOI
1412
Adaptation models
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Wearable Exoskeleton .