24.8.6.9.2 Wind Farms, Wind Power Generation, Impacts, Analysis

Chapter Contents (Back)
Wind. Wind Farm. Wind Poser.

Wu, S.H.[Song-Hua], Yin, J.P.[Jia-Ping], Liu, B.Y.[Bing-Yi], Liu, J.T.[Jin-Tao], Li, R.Z.[Rong-Zhong], Wang, X.T.[Xi-Tao], Feng, C.Z.[Chang-Zhong], Zhang, K.L.[Kai-Lin],
Coherent Doppler lidar to investigate wind turbulence,
SPIE(Newsroom), December 24, 2014
DOI Link 1501
Characterizing the turbulent wake of wind turbines enables their optimal arrangement in a wind farm, potentially increasing power output. BibRef

Miller, A.[Adam], Li, R.[Ruopu],
A Geospatial Approach for Prioritizing Wind Farm Development in Northeast Nebraska, USA,
IJGI(3), No. 3, 2014, pp. 968-979.
DOI Link 1407
BibRef

Harris, R.A.[Ronald A.], Zhou, L.M.[Li-Ming], Xia, G.[Geng],
Satellite Observations of Wind Farm Impacts on Nocturnal Land Surface Temperature in Iowa,
RS(6), No. 12, 2014, pp. 12234-12246.
DOI Link 1412
BibRef

Manyoky, M.[Madeleine], Hayek, U.W.[Ulrike Wissen], Heutschi, K.[Kurt], Pieren, R.[Reto], Grêt-Regamey, A.[Adrienne],
Developing a GIS-Based Visual-Acoustic 3D Simulation for Wind Farm Assessment,
IJGI(3), No. 1, 2014, pp. 29-48.
DOI Link 1402
BibRef

Chang, R.[Rui], Zhu, R.[Rong], Guo, P.[Peng],
A Case Study of Land-Surface-Temperature Impact from Large-Scale Deployment of Wind Farms in China from Guazhou,
RS(8), No. 10, 2016, pp. 790.
DOI Link 1609
BibRef

Xia, G.[Geng], Zhou, L.M.[Li-Ming],
Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Tang, B.J.[Bi-Jian], Wu, D.H.[Dong-Hai], Zhao, X.[Xiang], Zhou, T.[Tao], Zhao, W.Q.[Wen-Qian], Wei, H.[Hong],
The Observed Impacts of Wind Farms on Local Vegetation Growth in Northern China,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Valldecabres, L.[Laura], Nygaard, N.G.[Nicolai Gayle], Vera-Tudela, L.[Luis], von Bremen, L.[Lueder], Kühn, M.[Martin],
On the Use of Dual-Doppler Radar Measurements for Very Short-Term Wind Power Forecasts,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Gusatu, L.F.[Laura Florentina], Yamu, C.[Claudia], Zuidema, C.[Christian], Faaij, A.[André],
A Spatial Analysis of the Potentials for Offshore Wind Farm Locations in the North Sea Region: Challenges and Opportunities,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Ahsbahs, T.[Tobias], Nygaard, N.G.[Nicolai Gayle], Newcombe, A.[Alexander], Badger, M.[Merete],
Wind Farm Wakes from SAR and Doppler Radar,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Xu, W.Q.[Wen-Qing], Ning, L.[Like], Luo, Y.[Yong],
Applying Satellite Data Assimilation to Wind Simulation of Coastal Wind Farms in Guangdong, China,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Owda, A.[Abdalmenem], Badger, M.[Merete],
Wind Speed Variation Mapped Using SAR before and after Commissioning of Offshore Wind Farms,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Hoeser, T.[Thorsten], Kuenzer, C.[Claudia],
SyntEO: Synthetic dataset generation for earth observation and deep learning: Demonstrated for offshore wind farm detection,
PandRS(189), 2022, pp. 163-184.
Elsevier DOI 2206
SyntEO, Synthetic training data, Explainable machine learning, Deep learning, CNN, Offshore wind farm BibRef

Guan, J.J.[Jin-Jin],
Landscape Visual Impact Evaluation for Onshore Wind Farm: A Case Study,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link 2301
BibRef

Lai, J.S.[Jhe-Syuan], Tsai, Y.H.[Yi-Hung], Chang, M.J.[Min-Jhen], Huang, J.Y.[Jun-Yi], Chi, C.M.[Chao-Ming],
A Technical and Operational Perspective on Quality Analysis of Stitching Images with Multi-Row Panorama and Multimedia Sources for Visualizing the Tourism Site of Onshore Wind Farm,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Cai, L.[Lina], Hu, Q.F.[Qun-Fei], Qiu, Z.F.[Zhong-Feng], Yin, J.[Jie], Zhang, Y.Z.[Yuan-Zhi], Zhang, X.K.[Xin-Kai],
Study on the Impact of Offshore Wind Farms on Surrounding Water Environment in the Yangtze Estuary Based on Remote Sensing,
RS(15), No. 22, 2023, pp. 5347.
DOI Link 2311
BibRef

Liang, G.[Guanhui], Li, S.[Shujiang], Bao, K.[Ke], Wang, G.[Guanlin], Teng, F.[Fei], Zhang, F.[Fengye], Wang, Y.F.[Yan-Feng], Guan, S.[Sheng], Wei, Z.[Zexun],
Development of GNSS Buoy for Sea Surface Elevation Observation of Offshore Wind Farm,
RS(15), No. 22, 2023, pp. 5323.
DOI Link 2311
BibRef

Ma, T.[Teng], Yu, Y.[Ye], Dong, L.X.[Long-Xiang], Zhao, G.[Guo], Zhang, T.[Tong], Wang, X.W.[Xue-Wei], Zhao, S.[Suping],
Near-Surface Wind Profiling in a Utility-Scale Onshore Wind Farm Using Scanning Doppler Lidar: Quality Control and Validation,
RS(16), No. 6, 2024, pp. 989.
DOI Link 2403
BibRef

Zhang, Y.[Yang], Wang, D.L.[De-Li], Hu, B.[Bin], Zhang, J.M.[Jun-Ming], Gong, X.B.[Xiang-Bo], Chen, Y.F.[Yi-Fei],
Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse Regularization in Multi-Channel Predictive Deconvolution,
RS(16), No. 16, 2024, pp. 2935.
DOI Link 2408
BibRef

Albraheem, L.[Lamya], Almutlaq, F.[Fahad],
A Geographic Information System-Based Model and Analytic Hierarchy Process for Wind Farm Site Selection in the Red Sea,
IJGI(13), No. 11, 2024, pp. 416.
DOI Link 2412
BibRef

Katikas, L.[Loukas], Kontos, T.[Themistoklis], Dimitriadis, P.[Panayiotis], Kavouras, M.[Marinos],
A Raster-Based Multi-Objective Spatial Optimization Framework for Offshore Wind Farm Site-Prospecting,
IJGI(13), No. 11, 2024, pp. 409.
DOI Link 2412
BibRef

Han, X.H.[Xiao-Hui], Lu, C.[Chen], Wang, J.[Jiao],
Long-Term Impacts of 250 Wind Farms on Surface Temperature and Vegetation in China: A Remote Sensing Analysis,
RS(17), No. 1, 2025, pp. 10.
DOI Link 2501
BibRef

Kleebauer, M.[Maximilian], Karamanski, S.[Stefan], Callies, D.[Doron], Braun, M.[Martin],
A Wind Turbines Dataset for South Africa: OpenStreetMap Data, Deep Learning Based Geo-Coordinate Correction and Capacity Analysis,
IJGI(14), No. 6, 2025, pp. 232.
DOI Link 2506
BibRef

Song, X.[Xike], Li, Z.Y.[Zi-Yang],
Seasonally Robust Offshore Wind Turbine Detection in Sentinel-2 Imagery Using Imaging Geometry-Aware Deep Learning,
RS(17), No. 14, 2025, pp. 2482.
DOI Link 2508
BibRef

Liu, C.[Chao], Qian, Q.[Quan],
Twin proximal support vector regression with Gauss-Laplace mixed noise,
PR(169), 2026, pp. 111860.
Elsevier DOI 2509
Proximal support vector regression, Twin support vector regression, Gauss-Laplace mixed noise, Short-term wind power forecast BibRef

Gao, Y.[Yao], Zeng, Q.Y.[Qiang-Yu], Liu, Y.[Yin], Zhang, F.[Fugui], Wang, H.[Hao], Ren, Z.C.[Zhi-Cheng],
WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine Clutter in Weather Radar Data,
RS(17), No. 16, 2025, pp. 2763.
DOI Link 2509
BibRef


Saleous, N., Issa, S., Mazrouei, J.A.[J. Al],
GIS-based Wind Farm Site Selection Model Offshore Abu Dhabi Emirate, Uae,
ISPRS16(B8: 437-441).
DOI Link 1610
BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
GNSS, GPS, CYGNSS for Wind Sensing, Wind Speed .


Last update:Oct 6, 2025 at 14:07:43