Wu, S.H.[Song-Hua],
Yin, J.P.[Jia-Ping],
Liu, B.Y.[Bing-Yi],
Liu, J.T.[Jin-Tao],
Li, R.Z.[Rong-Zhong],
Wang, X.T.[Xi-Tao],
Feng, C.Z.[Chang-Zhong],
Zhang, K.L.[Kai-Lin],
Coherent Doppler lidar to investigate wind turbulence,
SPIE(Newsroom), December 24, 2014
DOI Link
1501
Characterizing the turbulent wake of wind turbines enables their
optimal arrangement in a wind farm, potentially increasing power
output.
BibRef
Miller, A.[Adam],
Li, R.[Ruopu],
A Geospatial Approach for Prioritizing Wind Farm Development in
Northeast Nebraska, USA,
IJGI(3), No. 3, 2014, pp. 968-979.
DOI Link
1407
BibRef
Harris, R.A.[Ronald A.],
Zhou, L.M.[Li-Ming],
Xia, G.[Geng],
Satellite Observations of Wind Farm Impacts on Nocturnal Land Surface
Temperature in Iowa,
RS(6), No. 12, 2014, pp. 12234-12246.
DOI Link
1412
BibRef
Manyoky, M.[Madeleine],
Hayek, U.W.[Ulrike Wissen],
Heutschi, K.[Kurt],
Pieren, R.[Reto],
Grêt-Regamey, A.[Adrienne],
Developing a GIS-Based Visual-Acoustic 3D Simulation for Wind Farm
Assessment,
IJGI(3), No. 1, 2014, pp. 29-48.
DOI Link
1402
BibRef
Chang, R.[Rui],
Zhu, R.[Rong],
Guo, P.[Peng],
A Case Study of Land-Surface-Temperature Impact from Large-Scale
Deployment of Wind Farms in China from Guazhou,
RS(8), No. 10, 2016, pp. 790.
DOI Link
1609
BibRef
Xia, G.[Geng],
Zhou, L.M.[Li-Ming],
Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and
Illinois Using MODIS Vegetation Greenness Measurements,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Tang, B.J.[Bi-Jian],
Wu, D.H.[Dong-Hai],
Zhao, X.[Xiang],
Zhou, T.[Tao],
Zhao, W.Q.[Wen-Qian],
Wei, H.[Hong],
The Observed Impacts of Wind Farms on Local Vegetation Growth in
Northern China,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Valldecabres, L.[Laura],
Nygaard, N.G.[Nicolai Gayle],
Vera-Tudela, L.[Luis],
von Bremen, L.[Lueder],
Kühn, M.[Martin],
On the Use of Dual-Doppler Radar Measurements for Very Short-Term
Wind Power Forecasts,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Gusatu, L.F.[Laura Florentina],
Yamu, C.[Claudia],
Zuidema, C.[Christian],
Faaij, A.[André],
A Spatial Analysis of the Potentials for Offshore Wind Farm Locations
in the North Sea Region: Challenges and Opportunities,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Ahsbahs, T.[Tobias],
Nygaard, N.G.[Nicolai Gayle],
Newcombe, A.[Alexander],
Badger, M.[Merete],
Wind Farm Wakes from SAR and Doppler Radar,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Xu, W.Q.[Wen-Qing],
Ning, L.[Like],
Luo, Y.[Yong],
Applying Satellite Data Assimilation to Wind Simulation of Coastal
Wind Farms in Guangdong, China,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Owda, A.[Abdalmenem],
Badger, M.[Merete],
Wind Speed Variation Mapped Using SAR before and after Commissioning
of Offshore Wind Farms,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Hoeser, T.[Thorsten],
Kuenzer, C.[Claudia],
SyntEO: Synthetic dataset generation for earth observation and deep
learning: Demonstrated for offshore wind farm detection,
PandRS(189), 2022, pp. 163-184.
Elsevier DOI
2206
SyntEO, Synthetic training data, Explainable machine learning,
Deep learning, CNN, Offshore wind farm
BibRef
Guan, J.J.[Jin-Jin],
Landscape Visual Impact Evaluation for Onshore Wind Farm:
A Case Study,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Lai, J.S.[Jhe-Syuan],
Tsai, Y.H.[Yi-Hung],
Chang, M.J.[Min-Jhen],
Huang, J.Y.[Jun-Yi],
Chi, C.M.[Chao-Ming],
A Technical and Operational Perspective on Quality Analysis of
Stitching Images with Multi-Row Panorama and Multimedia Sources for
Visualizing the Tourism Site of Onshore Wind Farm,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Cai, L.[Lina],
Hu, Q.F.[Qun-Fei],
Qiu, Z.F.[Zhong-Feng],
Yin, J.[Jie],
Zhang, Y.Z.[Yuan-Zhi],
Zhang, X.K.[Xin-Kai],
Study on the Impact of Offshore Wind Farms on Surrounding Water
Environment in the Yangtze Estuary Based on Remote Sensing,
RS(15), No. 22, 2023, pp. 5347.
DOI Link
2311
BibRef
Liang, G.[Guanhui],
Li, S.[Shujiang],
Bao, K.[Ke],
Wang, G.[Guanlin],
Teng, F.[Fei],
Zhang, F.[Fengye],
Wang, Y.F.[Yan-Feng],
Guan, S.[Sheng],
Wei, Z.[Zexun],
Development of GNSS Buoy for Sea Surface Elevation Observation of
Offshore Wind Farm,
RS(15), No. 22, 2023, pp. 5323.
DOI Link
2311
BibRef
Ma, T.[Teng],
Yu, Y.[Ye],
Dong, L.X.[Long-Xiang],
Zhao, G.[Guo],
Zhang, T.[Tong],
Wang, X.W.[Xue-Wei],
Zhao, S.[Suping],
Near-Surface Wind Profiling in a Utility-Scale Onshore Wind Farm
Using Scanning Doppler Lidar: Quality Control and Validation,
RS(16), No. 6, 2024, pp. 989.
DOI Link
2403
BibRef
Zhang, Y.[Yang],
Wang, D.L.[De-Li],
Hu, B.[Bin],
Zhang, J.M.[Jun-Ming],
Gong, X.B.[Xiang-Bo],
Chen, Y.F.[Yi-Fei],
Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse
Regularization in Multi-Channel Predictive Deconvolution,
RS(16), No. 16, 2024, pp. 2935.
DOI Link
2408
BibRef
Albraheem, L.[Lamya],
Almutlaq, F.[Fahad],
A Geographic Information System-Based Model and Analytic Hierarchy
Process for Wind Farm Site Selection in the Red Sea,
IJGI(13), No. 11, 2024, pp. 416.
DOI Link
2412
BibRef
Katikas, L.[Loukas],
Kontos, T.[Themistoklis],
Dimitriadis, P.[Panayiotis],
Kavouras, M.[Marinos],
A Raster-Based Multi-Objective Spatial Optimization Framework for
Offshore Wind Farm Site-Prospecting,
IJGI(13), No. 11, 2024, pp. 409.
DOI Link
2412
BibRef
Han, X.H.[Xiao-Hui],
Lu, C.[Chen],
Wang, J.[Jiao],
Long-Term Impacts of 250 Wind Farms on Surface Temperature and
Vegetation in China: A Remote Sensing Analysis,
RS(17), No. 1, 2025, pp. 10.
DOI Link
2501
BibRef
Kleebauer, M.[Maximilian],
Karamanski, S.[Stefan],
Callies, D.[Doron],
Braun, M.[Martin],
A Wind Turbines Dataset for South Africa: OpenStreetMap Data, Deep
Learning Based Geo-Coordinate Correction and Capacity Analysis,
IJGI(14), No. 6, 2025, pp. 232.
DOI Link
2506
BibRef
Song, X.[Xike],
Li, Z.Y.[Zi-Yang],
Seasonally Robust Offshore Wind Turbine Detection in Sentinel-2
Imagery Using Imaging Geometry-Aware Deep Learning,
RS(17), No. 14, 2025, pp. 2482.
DOI Link
2508
BibRef
Liu, C.[Chao],
Qian, Q.[Quan],
Twin proximal support vector regression with Gauss-Laplace mixed
noise,
PR(169), 2026, pp. 111860.
Elsevier DOI
2509
Proximal support vector regression, Twin support vector regression,
Gauss-Laplace mixed noise, Short-term wind power forecast
BibRef
Gao, Y.[Yao],
Zeng, Q.Y.[Qiang-Yu],
Liu, Y.[Yin],
Zhang, F.[Fugui],
Wang, H.[Hao],
Ren, Z.C.[Zhi-Cheng],
WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine
Clutter in Weather Radar Data,
RS(17), No. 16, 2025, pp. 2763.
DOI Link
2509
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
GNSS, GPS, CYGNSS for Wind Sensing, Wind Speed .