Kara, S.[Sadik],
Okandan, M.[Mustafa],
Atrial fibrillation classification with artificial neural networks,
PR(40), No. 11, November 2007, pp. 2967-2973.
Elsevier DOI
0707
Electrocardiography; Atrial fibrillation; Artificial neural network;
Wavelet; Welch method; Power spectral density
BibRef
Manzke, R.,
Meyer, C.,
Ecabert, O.,
Peters, J.,
Noordhoek, N.J.,
Thiagalingam, A.,
Reddy, V.Y.,
Chan, R.C.,
Weese, J.,
Automatic Segmentation of Rotational X-Ray Images for Anatomic
Intra-Procedural Surface Generation in Atrial Fibrillation Ablation
Procedures,
MedImg(29), No. 2, February 2010, pp. 260-272.
IEEE DOI
1002
BibRef
Brost, A.[Alexander],
Wimmer, A.[Andreas],
Liao, R.[Rui],
Bourier, F.,
Koch, M.,
Strobel, N.[Norbert],
Kurzidim, K.,
Hornegger, J.[Joachim],
Constrained Registration for Motion Compensation in Atrial Fibrillation
Ablation Procedures,
MedImg(31), No. 4, April 2012, pp. 870-881.
IEEE DOI
1204
BibRef
Brost, A.[Alexander],
Wimmer, A.[Andreas],
Liao, R.[Rui],
Hornegger, J.[Joachim],
Strobel, N.[Norbert],
Catheter Tracking: Filter-Based vs. Learning-Based,
DAGM10(293-302).
Springer DOI
1009
BibRef
Brost, A.[Alexander],
Liao, R.[Rui],
Hornegger, J.[Joachim],
Strobel, N.[Norbert],
Model-Based Registration for Motion Compensation during EP Ablation
Procedures,
WBIR10(234-245).
Springer DOI
1007
BibRef
Zheng, Y.F.[Ye-Feng],
Yang, D.[Dong],
John, M.,
Comaniciu, D.,
Multi-Part Modeling and Segmentation of Left Atrium in C-Arm CT for
Image-Guided Ablation of Atrial Fibrillation,
MedImg(33), No. 2, February 2014, pp. 318-331.
IEEE DOI
1403
blood vessels
BibRef
Baumert, M.,
Sanders, P.,
Ganesan, A.,
Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation
in Atrial Fibrillation,
PIEEE(104), No. 2, February 2016, pp. 416-431.
IEEE DOI
1601
Atrial fibrillation
BibRef
Pourbabaee, B.,
Roshtkhari, M.J.,
Khorasani, K.,
Deep Convolutional Neural Networks and Learning ECG Features for
Screening Paroxysmal Atrial Fibrillation Patients,
SMCS(48), No. 12, December 2018, pp. 2095-2104.
IEEE DOI
1812
convolution, electrocardiography, feature extraction,
feedforward neural nets, learning (artificial intelligence),
paroxysmal atrial fibrillation (PAF)
BibRef
Gadaleta, M.,
Rossi, M.,
Topol, E.J.,
Steinhubl, S.R.,
Quer, G.,
On the Effectiveness of Deep Representation Learning:
The Atrial Fibrillation Case,
Computer(52), No. 11, November 2019, pp. 18-29.
IEEE DOI
1911
medical diagnostic computing, time series, unsupervised learning,
deep representation learning, atrial fibrillation case,
Discrete wavelet transforms
BibRef
Faust, O.[Oliver],
Kareem, M.[Murtadha],
Shenfield, A.[Alex],
Ali, A.[Ali],
Acharya, U.R.[U Rajendra],
Validating the robustness of an internet of things based atrial
fibrillation detection system,
PRL(133), 2020, pp. 55-61.
Elsevier DOI
2005
Intelligent internet of things, Deep learning,
Atrial fibrillation, Heart rate, Blindfold validation
BibRef
Prashar, N.[Navdeep],
Sood, M.[Meenakshi],
Jain, S.[Shruti],
Novel Cardiac Arrhythmia Processing using Machine Learning Techniques,
IJIG(20), No. 3, July 2020, pp. 2050023.
DOI Link
2008
BibRef
Rodrigo, M.[Miguel],
Pagano, B.[Benjamin],
Takur, S.[Sumiran],
Liberos, A.[Alejandro],
Sebastián, R.[Rafael],
Narayan, S.M.[Sanjiv M.],
Intra-cardiac Signatures of Atrial Arrhythmias Identified by Machine
Learning and Traditional Features,
FIMH21(671-678).
Springer DOI
2108
BibRef
Potse, M.[Mark],
Vinet, A.[Alain],
Gharaviri, A.[Ali],
Pezzuto, S.[Simone],
Fibrillation Patterns Creep and Jump in a Detailed Three-Dimensional
Model of the Human Atria,
FIMH19(131-138).
Springer DOI
1906
BibRef
Roy, A.[Aditi],
Varela, M.[Marta],
Chubb, H.[Henry],
MacLeod, R.S.[Robert S.],
Hancox, J.[Jules],
Schaeffter, T.[Tobias],
O'Neill, M.[Mark],
Aslanidi, O.[Oleg],
Virtual Catheter Ablation of Target Areas Identified from Image-Based
Models of Atrial Fibrillation,
FIMH19(11-19).
Springer DOI
1906
BibRef
Li, X.,
Alikhani, I.,
Shi, J.,
Seppanen, T.,
Junttila, J.,
Majamaa-Voltti, K.,
Tulppo, M.,
Zhao, G.,
The OBF Database: A Large Face Video Database for Remote
Physiological Signal Measurement and Atrial Fibrillation Detection,
FG18(242-249)
IEEE DOI
1806
Biomedical monitoring, Databases, Electrocardiography, Face,
Heart rate variability, Radio frequency, atrial fibrillation,
heart rate variability
BibRef
Jia, S.[Shuman],
Camaioni, C.[Claudia],
Rohé, M.M.[Marc-Michel],
Jaïs, P.[Pierre],
Pennec, X.[Xavier],
Cochet, H.[Hubert],
Sermesant, M.[Maxime],
Prediction of Post-Ablation Outcome in Atrial Fibrillation Using Shape
Parameterization and Partial Least Squares Regression,
FIMH17(311-321).
Springer DOI
1706
BibRef
Zaidi, A.M.A.,
Ahmed, M.J.,
Bakibillah, A.S.M.,
Feature extraction and characterization of cardiovascular arrhythmia
and normal sinus rhythm from ECG signals using LabVIEW,
IVPR17(1-6)
IEEE DOI
1704
Atrial fibrillation
BibRef
Connolly, A.[Adam],
Bishop, M.J.[Martin J.],
The Role of Endocardial Trabeculations in Low-Energy Defibrillation,
FIMH15(412-420).
Springer DOI
1507
BibRef
Donoso, F.[Felipe],
Lecannelier, E.[Eduardo],
Pino, E.[Esteban],
Rojas, A.[Alejandro],
Reliable Atrial Activity Extraction from ECG Atrial Fibrillation
Signals,
CIARP11(621-629).
Springer DOI
1111
BibRef
Karim, R.[Rashed],
Gao, G.[Gang],
Harrison, J.[James],
Arujuna, A.[Aruna],
Lambert, H.[Hendrik],
Leo, G.[Giovanni],
Gill, J.[Jaswinder],
Razavi, R.[Reza],
Schaeffter, T.[Tobias],
O'Neill, M.[Mark],
Rhode, K.S.[Kawal S.],
Mapping Contact Force during Catheter Ablation for the Treatment of
Atrial Fibrillation: New Insights into Ablation Therapy,
FIMH11(302-303).
Springer DOI
1105
BibRef
Das, S.,
Chakraborty, M.,
Extraction of Fibrillation Components from Ventricular Arrhythmic
Electrocardiograms,
NCVPRIPG11(138-141).
IEEE DOI
1205
BibRef
Couceiro, R.,
Carvalho, P.,
Henriques, J.,
Antunes, M.,
Harris, M.,
Habetha, J.,
Detection of Atrial Fibrillation using model-based ECG analysis,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Govindan, A.[Anupama],
Deng, G.[Guang],
Kalman, J.,
Power, J.[John],
Independent Component Analysis Applied to
Electrogram Classification During Atrial Fibrillation,
ICPR98(Vol II: 1662-1664).
IEEE DOI
9808
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Myocardial Infarction .