Robins, V.,
Wood, P.J.,
Sheppard, A.P.,
Theory and Algorithms for Constructing Discrete Morse Complexes from
Grayscale Digital Images,
PAMI(33), No. 8, August 2011, pp. 1646-1658.
IEEE DOI
1107
Each cell of Morse complex corresponds to critical point in level set.
BibRef
Delgado-Friedrichs, O.[Olaf],
Robins, V.[Vanessa],
Sheppard, A.P.[Adrian P.],
Skeletonization and Partitioning of Digital Images Using Discrete
Morse Theory,
PAMI(37), No. 3, March 2015, pp. 654-666.
IEEE DOI
1502
BibRef
Earlier:
Morse theory and persistent homology for topological analysis of 3D
images of complex materials,
ICIP14(4872-4876)
IEEE DOI
1502
Bridges
BibRef
Song, R.[Ran],
Liu, Y.H.[Yong-Huai],
Martin, R.R.[Ralph R.],
Rosin, P.L.[Paul L.],
3D point of interest detection via spectral irregularity diffusion,
VC(29), No. 6-8, June 2013, pp. 695-705.
WWW Link.
1306
BibRef
Zhao, Y.T.[Yi-Tian],
Liu, Y.H.[Yong-Huai],
Zeng, Z.M.[Zi-Ming],
Using Region-Based Saliency for 3D Interest Points Detection,
CAIP13(II:108-116).
Springer DOI
1311
BibRef
Zhao, Y.T.[Yi-Tian],
Liu, Y.H.[Yong-Huai],
3D Interest Points Detection Using Symmetric Surround-Based Surface
Saliency,
CIAP13(I:632-641).
Springer DOI
1311
BibRef
Citraro, L.[Leonardo],
Mahmoodi, S.[Sasan],
Darekar, A.[Angela],
Vollmer, B.[Brigitte],
Extended three-dimensional rotation invariant local binary patterns,
IVC(62), No. 1, 2017, pp. 8-18.
Elsevier DOI
1706
Local, binary, patterns, (LBPs)
BibRef
Sharif, H.[Helia],
Hölzel, M.[Matthew],
A comparison of prefilters in ORB-based object detection,
PRL(93), No. 1, 2017, pp. 154-161.
Elsevier DOI
1706
Keypoint recognition
BibRef
Poulenard, A.[Adrien],
Guibas, L.J.[Leonidas J.],
A functional approach to rotation equivariant non-linearities for
Tensor Field Networks,
CVPR21(13169-13178)
IEEE DOI
2111
Deep learning, Tensors, Shape, Harmonic analysis
BibRef
Poulenard, A.[Adrien],
Rakotosaona, M.J.[Marie-Julie],
Ponty, Y.[Yann],
Ovsjanikov, M.[Maks],
Effective Rotation-Invariant Point CNN with Spherical Harmonics
Kernels,
3DV19(47-56)
IEEE DOI
1911
Kernel, Convolution, Harmonic analysis,
Shape, Computer architecture, Task analysis, Shape analysis,
Shape recognition
BibRef
Guo, H.[Han],
Niu, D.M.[Dong-Mei],
Zhang, M.X.[Ming-Xuan],
Zhao, X.Y.[Xiu-Yang],
Yang, B.[Bo],
Zhang, C.M.[Cai-Ming],
Multiscale bilateral filtering to detect 3D interest points,
IET-CV(14), No. 1, February 2020, pp. 36-47.
DOI Link
2002
BibRef
Lühr, D.[Daniel],
Adams, M.[Martin],
Houshiar, H.[Hamidreza],
Borrmann, D.[Dorit],
Nüchter, A.[Andreas],
Feature Detection With a Constant FAR in Sparse 3-D Point Cloud Data,
GeoRS(58), No. 3, March 2020, pp. 1877-1891.
IEEE DOI
2003
Feature extraction, Detectors, Program processors,
Image edge detection, Clutter, Radar,
BibRef
Ban, Y.[Yuseok],
Lee, S.Y.[Sang-Youn],
Protuberance of depth: Detecting interest points from a depth image,
CVIU(194), 2020, pp. 102927.
Elsevier DOI
2005
Interest point detection, Depth image, Feature extraction,
Protuberance of depth
BibRef
Jin, H.R.[Hai-Rong],
Shen, Y.[Yuefan],
Lou, J.W.[Jian-Wen],
Zhou, K.[Kun],
Zheng, Y.[Youyi],
Keypointdetr: An End-to-end 3d Keypoint Detector,
ECCV24(LXXIV: 374-390).
Springer DOI
2412
BibRef
Teng, H.Z.[Han-Zhe],
Chatziparaschis, D.[Dimitrios],
Kan, X.Y.[Xin-Yue],
Roy-Chowdhury, A.K.[Amit K.],
Karydis, K.[Konstantinos],
Centroid Distance Keypoint Detector for Colored Point Clouds,
WACV23(1196-1205)
IEEE DOI
2302
Point cloud compression, Navigation, Estimation, Detectors, Color,
Algorithms: 3D computer vision, Robotics
BibRef
Jakab, T.[Tomas],
Tucker, R.[Richard],
Makadia, A.[Ameesh],
Wu, J.J.[Jia-Jun],
Snavely, N.[Noah],
Kanazawa, A.J.[Ang-Joo],
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape
Control,
CVPR21(12778-12787)
IEEE DOI
2111
Deformable models, Solid modeling,
Shape control, Shape, Semantics
BibRef
Jeon, S.[Sangryul],
Min, D.B.[Dong-Bo],
Kim, S.[Seungryong],
Sohn, K.H.[Kwang-Hoon],
Joint Learning of Semantic Alignment and Object Landmark Detection,
ICCV19(7293-7302)
IEEE DOI
2004
convolutional neural nets, object detection,
unsupervised learning, object landmark detection, Boosting
BibRef
Azimi, S.,
Lall, B.,
Gandhi, T.K.,
Performance Evalution of 3D Keypoint Detectors and Descriptors for
Plants Health Classification,
MVA19(1-6)
DOI Link
1806
biology computing, diseases, feature extraction,
image classification, transforms, SIFT-SIFT combinations,
Performance evaluation
BibRef
Vasconcelos, L.O.,
Mancini, M.,
Boscaini, D.,
Caputo, B.,
Ricci, E.,
Structured Domain Adaptation for 3D Keypoint Estimation,
3DV19(57-66)
IEEE DOI
1806
Estimation,
Task analysis, Adaptation models, Predictive models,
Deep Learning
BibRef
Azzi, C.[Charbel],
Asmar, D.[Daniel],
Fakih, A.[Adel],
Zelek, J.[John],
Filtering 3D Keypoints Using GIST For Accurate Image-Based Localization,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Yang, T.Y.,
Hsu, J.H.,
Lin, Y.Y.,
Chuang, Y.Y.,
DeepCD: Learning Deep Complementary Descriptors for Patch
Representations,
ICCV17(3334-3342)
IEEE DOI
1802
filtering theory, image representation,
learning (artificial intelligence), DeepCD framework,
BibRef
Khoury, M.[Marc],
Zhou, Q.Y.[Qian-Yi],
Koltun, V.[Vladlen],
Learning Compact Geometric Features,
ICCV17(153-161)
IEEE DOI
1802
Local features, local geometry in point cloud.
computational geometry, learning (artificial intelligence),
compact geometric feature learning, geometric registration,
BibRef
Teran, L.[Leizer],
Mordohai, P.[Philippos],
3D Interest Point Detection via Discriminative Learning,
ECCV14(I: 159-173).
Springer DOI
1408
BibRef
Gao, T.[Tianshi],
Stark, M.[Michael],
Koller, D.[Daphne],
What Makes a Good Detector?: Structured Priors for Learning from Few
Examples,
ECCV12(V: 354-367).
Springer DOI
1210
BibRef
Prokudin, S.[Sergey],
Gehler, P.V.[Peter V.],
Nowozin, S.[Sebastian],
Deep Directional Statistics:
Pose Estimation with Uncertainty Quantification,
ECCV18(IX: 542-559).
Springer DOI
1810
BibRef
Prokudin, S.[Sergey],
Kappler, D.[Daniel],
Nowozin, S.[Sebastian],
Gehler, P.V.[Peter V.],
Learning to Filter Object Detections,
GCPR17(52-62).
Springer DOI
1711
BibRef
Pepik, B.[Bojan],
Stark, M.[Michael],
Gehler, P.V.[Peter V.],
Ritschel, T.[Tobias],
Schiele, B.[Bernt],
3D object class detection in the wild,
SingleImage15(1-10)
IEEE DOI
1510
Computational modeling. More than 2D bounding box localization.
Iterative extraction.
BibRef
Holzer, S.[Stefan],
Shotton, J.D.J.[Jamie D.J.],
Kohli, P.[Pushmeet],
Learning to Efficiently Detect Repeatable Interest Points in Depth Data,
ECCV12(I: 200-213).
Springer DOI
1210
BibRef
Cao, Y.P.[Yan-Peng],
McDonald, J.[John],
Viewpoint invariant features from single images using 3D geometry,
WACV09(1-6).
IEEE DOI
0912
BibRef
Viksten, F.[Fredrik],
Nordberg, K.[Klas],
Kalms, M.[Mikael],
Point-of-interest detection for range data,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Rotation Invariant Features .