12.1.3.3.1 Image Registration, Point Featres, Key Points, Local Feature

Chapter Contents (Back)
Image Registration.

Onishi, H.[Hiroyuki], Kanade, T.[Takeo],
Method of and apparatus for searching corresponding points between images, and computer program,
US_Patent6,941,018, Sep 6, 2005
WWW Link. BibRef 0509

Gerogiannis, D.P.[Demetrios P.], Nikou, C.[Christophoros], Likas, A.[Aristidis],
The mixtures of Student's t-distributions as a robust framework for rigid registration,
IVC(27), No. 9, 3 August 2009, pp. 1285-1294.
Elsevier DOI 0906
BibRef
Earlier:
Robust Image Registration using Mixtures of t-distributions,
MMBIA07(1-8).
IEEE DOI 0710
BibRef
And:
Rigid Image Registration based on Pixel Grouping,
CIAP07(595-602).
IEEE DOI 0709
Image registration; Point set registration; Gaussian mixture model; Mixtures of Student's t-distribution; Expectation-Maximization (EM) algorithm BibRef

Gerogiannis, D.P.[Demetrios P.], Nikou, C.[Christophoros], Likas, A.[Aristidis],
Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle,
SPLetters(22), No. 10, October 2015, pp. 1638-1642.
IEEE DOI 1506
Helmholtz equations BibRef

Myronenko, A.[Andriy], Song, X.[Xubo],
Point Set Registration: Coherent Point Drift,
PAMI(32), No. 12, December 2010, pp. 2262-2275.
IEEE DOI 1011
Assign matches, recover transformation. Probabilistic method. BibRef

Lopez, J.[Jorge], Barbero, A.[Alvaro], Dorronsoro, J.R.[Jose R.],
Clipping algorithms for solving the nearest point problem over reduced convex hulls,
PR(44), No. 3, March 2011, pp. 607-614.
Elsevier DOI 1011
Support vector machines; Nearest point problem; Reduced convex hulls; GSK algorithm; MDM algorithm BibRef

López, J.[Jorge], Dorronsoro, J.R.[José R.],
Linear convergence rate for the MDM algorithm for the Nearest Point Problem,
PR(48), No. 4, 2015, pp. 1510-1522.
Elsevier DOI 1502
Convergence BibRef

Lu, G., Yan, J., Kou, Y., Zhang, J.,
Image registration based on criteria of feature point pair mutual information,
IET-IPR(5), No. 6, 2011, pp. 560-566.
DOI Link 1108
BibRef

Tustison, N.J., Awate, S.P., Song, G., Cook, T.S., Gee, J.C.,
Point Set Registration Using Havrda-Charvat-Tsallis Entropy Measures,
MedImg(30), No. 2, February 2011, pp. 451-460.
IEEE DOI 1102
BibRef

Shimizu, S.[Shoichi], Fujiyoshi, H.[Hironobu],
Keypoint Recognition with Two-Stage Randomized Trees,
IEICE(E95-D), No. 7, July 2012, pp. 1766-1774.
WWW Link. 1208
BibRef

Sanromà, G.[Gerard], Alquézar, R.[René], Serratosa, F.[Francesc], Herrera, B.[Blas],
Smooth point-set registration using neighboring constraints,
PRL(33), No. 15, 1 November 2012, pp. 2029-2037.
Elsevier DOI 1210
Graph matching; Point-set registration; Correspondence problem; Expectation-Maximization; Softassign BibRef

Zhu, Y.X.[Ying-Xuan], Cheng, S.[Samuel], Stankovic, V.[Vladimir], Stankovic, L.[Lina],
Image registration using BP-SIFT,
JVCIR(24), No. 4, May 2013, pp. 448-457.
Elsevier DOI 1305
Image registration; Belief propagation; SIFT; RANSAC; Min-sum algorithm; Keypoint matching; Descriptors matching; Image processing BibRef

Meng, F.Y.[Fan-Yang], Li, X.[Xia], Pei, J.H.[Ji-Hong],
A Feature Point Matching Based on Spatial Order Constraints Bilateral-Neighbor Vote,
IP(24), No. 11, November 2015, pp. 4160-4171.
IEEE DOI 1509
computer vision BibRef

Proença, H.[Hugo],
Performance evaluation of keypoint detection and matching techniques on grayscale data,
SIViP(9), No. 5, July 2015, pp. 1009-1019.
WWW Link. 1506
BibRef

Arnfred, J.T.[Jonas Toft], Winkler, S.[Stefan],
A general framework for image feature matching without geometric constraints,
PRL(73), No. 1, 2016, pp. 26-32.
Elsevier DOI 1604
Feature matching BibRef

Arnfred, J.T.[Jonas Toft], Winkler, S.[Stefan], Susstrunk, S.,
Mirror Match: Reliable Feature Point Matching without Geometric Constraints,
ACPR13(256-260)
IEEE DOI 1408
feature extraction BibRef

González-Díaz, I.[Iván], Birinci, M.[Murat], Díaz-de-María, F.[Fernando], Delp, E.J.[Edward J.],
Neighborhood Matching for Image Retrieval,
MultMed(19), No. 3, March 2017, pp. 544-558.
IEEE DOI 1702
Computational complexity. Keypoint matching that considers the neighborhood of the keypoints BibRef

Bai, L., Yang, X., Gao, H.,
Nonrigid Point Set Registration by Preserving Local Connectivity,
Cyber(48), No. 3, March 2018, pp. 826-835.
IEEE DOI 1802
Algorithm design and analysis, Cybernetics, Distance measurement, Estimation, Probabilistic logic, Robustness, Shape, surface-mount technology (SMT) components positioning BibRef

Fang, B.[Bin], Yu, K.[Kun], Ma, J.[Jie], An, P.[Pei],
EMCM: A Novel Binary Edge-Feature-Based Maximum Clique Framework for Multispectral Image Matching,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Papadaki, A.I., Hänsch, R.,
Match or No Match: Keypoint Filtering based on Matching Probability,
IMW20(4371-4378)
IEEE DOI 2008
Radio frequency, Detectors, Vegetation mapping, Task analysis, Reliability BibRef

Chang, H.H.[Herng-Hua], Chan, W.C.[Wan-Chen],
Automatic Registration of Remote Sensing Images Based on Revised SIFT With Trilateral Computation and Homogeneity Enforcement,
GeoRS(59), No. 9, September 2021, pp. 7635-7650.
IEEE DOI 2109
Remote sensing, Image registration, Feature extraction, Dogs, Histograms, Lighting, Correlation, Image registration, multispectral, scale-invariant feature transform (SIFT) BibRef

Chen, Q.Y.[Qing-Yan], Feng, D.Z.[Da-Zheng], Zheng, W.X.[Wei-Xing], Feng, X.W.[Xiang-Wei],
An efficient point-set registration algorithm with dual terms based on total least squares,
PR(134), 2023, pp. 109124.
Elsevier DOI 2212
Point-set registration, Total least squares, Dual terms, Errors-in-variables (EIV), Bilateral outliers BibRef

Liu, J.[Juan], Sun, K.[Kun], Jiang, S.[San], Li, K.[Kunqian], Tao, W.B.[Wen-Bing],
MSSF: A Novel Mutual Structure Shift Feature for Removing Incorrect Keypoint Correspondences between Images,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Shen, X.[Xuelun], Hu, Q.[Qian], Li, X.[Xin], Wang, C.[Cheng],
A Detector-Oblivious Multi-Arm Network for Keypoint Matching,
IP(32), 2023, pp. 2776-2785.
IEEE DOI 2305
Task analysis, Detectors, Feature extraction, Training, Pipelines, Visualization, Robustness, Keypoint matching, image matching, visual localization BibRef

Jiang, S.P.[Su-Peng], Luo, H.B.[Hai-Bo], Liu, Y.P.[Yun-Peng],
Suitable-Matching Areas' Selection Method Based on Multi-Level Saliency,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef


Yang, X.[Xu], Zeng, S.F.[Shao-Feng], Han, Y.[Yu], Lu, Y.C.[Yu-Chen], Liu, Z.Y.[Zhi-Yong],
A Learning Method for Feature Correspondence with Outliers,
ICPR22(699-705)
IEEE DOI 2212
Learning systems, Deep learning, Robot vision systems, Graph neural networks, Task analysis BibRef

Sharma, C.[Charu], Kaul, M.[Manohar],
Simplicial Complex Based Point Correspondence Between Images Warped onto Manifolds,
ECCV20(XXIX: 54-70).
Springer DOI 2010
BibRef

Lawin, F.J., Forssén, P.E.,
Registration Loss Learning for Deep Probabilistic Point Set Registration,
3DV20(563-572)
IEEE DOI 2102
Probabilistic logic, Feature extraction, Training, Optimization, Computational modeling, end to end BibRef

Lawin, F.J., Danelljan, M., Khan, F.S., Forssén, P., Felsberg, M.,
Density Adaptive Point Set Registration,
CVPR18(3829-3837)
IEEE DOI 1812
Probabilistic logic, Laser radar, Adaptation models, Computational modeling, Iterative closest point algorithm BibRef

Giraldo, L.G.S., Hasanbelliu, E., Rao, M., Principe, J.C.,
Group-Wise Point-Set Registration Based on Renyi's Second Order Entropy,
CVPR17(2454-2462)
IEEE DOI 1711
Closed-form solutions, Cost function, Entropy, Kernel, Probability density function, Random variables, Shape BibRef

Altwaijry, H.[Hani], Trulls, E.[Eduard], Hays, J.[James], Fua, P.[Pascal], Belongie, S.J.[Serge J.],
Learning to Match Aerial Images with Deep Attentive Architectures,
CVPR16(3539-3547)
IEEE DOI 1612
BibRef

Altwaijry, H.[Hani], Veit, A.[Andreas], Belongie, S.J.[Serge J.],
Learning to Detect and Match Keypoints with Deep Architectures,
BMVC16(xx-yy).
HTML Version. 1805
BibRef

Liu, T.[Tong], Liu, W.[Wang], Qiao, L.Y.[Li-Yan], Luo, T.N.[Tian-Nan], Peng, X.Y.[Xi-Yuan],
Point set registration based on implicit surface fitting with equivalent distance,
ICIP15(2680-2684)
IEEE DOI 1512
Levenberg-Marquadt algorithm BibRef

Chen, J.F.[Jun-Fen], Zaman, M.[Munir], Liao, I.Y.[Iman Yi], Belaton, B.[Bahari],
Bi-Stage Large Point Set Registration Using Gaussian Mixture Models,
ACCV14(V: 210-225).
Springer DOI 1504
BibRef

Ptucha, R.[Raymond], Azary, S.[Sherif], Savakis, A.E.[Andreas E.],
Keypoint matching and image registration using sparse representations,
ICIP13(780-784)
IEEE DOI 1402
Boats BibRef

Meshoul, S., Batouche, M.,
Robust Point Correspondence for Image Registration Using Optimization with Extremal Dynamics,
DAGM02(330 ff.).
Springer DOI 0303
BibRef

Kim, D.K.[Dong-Keun], Jang, B.T.[Byung-Tae], Hwang, C.J.[Chi-Jung],
A planar perspective image matching using point correspondences and rectangle-to-quadrilateral mapping,
Southwest02(87-91).
IEEE Top Reference. 0208
BibRef

You, J., Pissaloux, E.E., Hellec, J.L., Bonnin, P.,
A guided image matching approach using Hausdorff distance with interesting points detection,
ICIP94(I: 968-972).
IEEE DOI 9411
BibRef

Bonnin, P., Hoeltzener-Douarin, B., Pissaloux, E.E.,
A new way of image data fusion: the multi-spectral cooperative segmentation,
ICIP95(III: 572-575).
IEEE DOI 9510
BibRef

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Non-Rigid Image Registration, Deformable Registration, Techniques .


Last update:Nov 26, 2024 at 16:40:19