Lai, S.H.[Shang-Hong],
Robust Image Matching under Partial Occlusion and Spatially Varying
Illumination Change,
CVIU(78), No. 1, April 2000, pp. 84-98.
DOI Link
0004
BibRef
Lai, S.H.[Shang-Hong],
Fang, M.[Ming],
Robust and Efficient Image Alignment with Spatially-Varying
Illumination Models,
CVPR99(II: 167-172).
IEEE DOI Alignment when intensity (lighting) changes between views.
BibRef
9900
Wei, S.D.[Shou-Der],
Lai, S.H.[Shang-Hong],
Robust and Efficient Image Alignment Based on Relative Gradient
Matching,
IP(15), No. 10, October 2006, pp. 2936-2943.
IEEE DOI
0609
BibRef
Earlier:
Robust face recognition under lighting variations,
ICPR04(I: 354-357).
IEEE DOI
0409
BibRef
Earlier: A2, A1:
Reliable image matching based on relative gradients,
ICPR02(II: 802-805).
IEEE DOI
0211
See also Computation of optical flow under non-uniform brightness variations.
BibRef
Su, H.R.[Hong-Ren],
Lai, S.H.[Shang-Hong],
CT-MR Image Registration in 3D K-Space Based on Fourier Moment Matching,
PSIVT11(II: 299-310).
Springer DOI
1111
BibRef
Su, H.R.[Hong-Ren],
Kuo, H.Y.[Hao-Yuan],
Lai, S.H.[Shang-Hong],
Wu, C.C.[Chin-Chia],
Fast 3D Object Alignment from Depth Image with 3D Fourier Moment
Matching on GPU,
3DV14(179-186)
IEEE DOI
1503
Fourier transforms
BibRef
Su, H.R.[Hong-Ren],
Lai, S.H.[Shang-Hong],
Tsai, Y.H.[Ya-Hui],
Robust Fourier-Based Image Alignment with Gradient Complex Image,
ICPR10(2378-2381).
IEEE DOI
1008
BibRef
Hsieh, C.K.,
Lai, S.H.[Shang-Hong],
Chen, Y.C.,
An Optical Flow-Based Approach to Robust Face Recognition Under
Expression Variations,
IP(19), No. 1, January 2010, pp. 233-240.
IEEE DOI
1001
BibRef
Pan, W.H.[Wei-Hau],
Wei, S.D.[Shou-Der],
Lai, S.H.[Shang-Hong],
Efficient NCC-Based Image Matching in Walsh-Hadamard Domain,
ECCV08(III: 468-480).
Springer DOI
0810
BibRef
Yang, C.H.T.[Chyuan-Huei Thomas],
Lai, S.H.[Shang-Hong],
Chang, L.W.[Long-Wen],
Hybrid image matching combining Hausdorff distance with normalized
gradient matching,
PR(40), No. 4, April 2007, pp. 1173-1181.
Elsevier DOI
0701
Image matching; Illumination variation; Face recognition;
Hausdorff distance; Normalized gradient
BibRef
Ping, Z.L.[Zi-Liang],
Ren, H.P.[Hai-Ping],
Zou, J.[Jian],
Sheng, Y.L.[Yun-Long],
Bo, W.[Wurigen],
Generic orthogonal moments: Jacobi-Fourier moments for invariant image
description,
PR(40), No. 4, April 2007, pp. 1245-1254.
Elsevier DOI
0701
Jacobi polynomial; Multi-distorted invariance; Jacobi-Fourier Moments;
Image reconstruction error; Noise sensibility
See also Errata and comments on Generic orthogonal moments: Jacobi-Fourier moments for invariant image description.
BibRef
Xiao, B.[Bin],
Ma, J.F.[Jian-Feng],
Wang, X.[Xuan],
Image analysis by Bessel-Fourier moments,
PR(43), No. 8, August 2010, pp. 2620-2629.
Elsevier DOI
1006
Bessel function; Orthogonal moments; Images reconstruction; Image
recognition; Invariant moments
BibRef
Hoang, T.V.[Thai V.],
Tabbone, S.[Salvatore],
Errata and comments on 'Generic orthogonal moments: Jacobi-Fourier
moments for invariant image description',
PR(46), No. 11, November 2013, pp. 3148-3155.
Elsevier DOI
1306
Jacobi polynomials; Legendre polynomials; Chebyshev
polynomials; Zernike moments; Pseudo-Zernike moments; Orthogonal
Fourier-Mellin moments; Chebyshev-Fourier moments;
Pseudo-Jacobi-Fourier moments
See also Generic orthogonal moments: Jacobi-Fourier moments for invariant image description.
BibRef
Upneja, R.[Rahul],
Singh, C.[Chandan],
Fast computation of Jacobi-Fourier moments for invariant image
recognition,
PR(48), No. 5, 2015, pp. 1836-1843.
Elsevier DOI
1502
Jacobi-Fourier moments
See also Comments on 'fast computation of jacobi-Fourier moments for invariant image recognition'.
BibRef
Sáez-Landete, J.[José],
Comments on 'fast computation of jacobi-Fourier moments for invariant
image recognition',
PR(67), No. 1, 2017, pp. 16-22.
Elsevier DOI
1704
Jacobi polynomials
See also Fast computation of Jacobi-Fourier moments for invariant image recognition.
BibRef
Camacho-Bello, C.,
Toxqui-Quitl, C.,
Padilla-Vivanco, A.,
Baez-Rojas, J.J.,
High-precision and fast computation of Jacobi-Fourier moments for
image description,
JOSA-A(31), No. 1, January 2014, pp. 124-134.
DOI Link
1402
Image processing
BibRef
Hu, H.T.[Hai-Tao],
Zhang, Y.D.[Ya-Dong],
Shao, C.[Chao],
Ju, Q.[Quan],
Orthogonal moments based on exponent functions:
Exponent-Fourier moments,
PR(47), No. 8, 2014, pp. 2596-2606.
Elsevier DOI
1405
BibRef
And: A1, A4, A3, Only:
Errata and Comments:
Errata and comments on 'Errata and comments on Orthogonal moments
based on exponent functions: Exponent-Fourier moments',
PR(52), No. 1, 2016, pp. 471-476.
Elsevier DOI
1601
Exponent-Fourier moments
Orthogonal moments
BibRef
Xiao, B.[Bin],
Li, W.S.[Wei-Sheng],
Wang, G.Y.[Guo-Yin],
Errata and comments on 'Orthogonal moments based on exponent functions:
Exponent-Fourier moments',
PR(48), No. 4, 2015, pp. 1571-1573.
Elsevier DOI
1502
Orthogonal moments.
Comments:
See also Orthogonal moments based on exponent functions: Exponent-Fourier moments.
BibRef
Shao, Z.H.[Zhu-Hong],
Shu, H.Z.[Hua-Zhong],
Wu, J.S.[Jia-Song],
Chen, B.J.[Bei-Jing],
Coatrieux, J.L.[Jean Louis],
Quaternion Bessel-Fourier moments and their invariant descriptors for
object reconstruction and recognition,
PR(47), No. 2, 2014, pp. 603-611.
Elsevier DOI
1311
Quaternion Bessel-Fourier moment
BibRef
Wang, T.S.[Tian-Sheng],
Liao, S.[Simon],
Computational aspects of exponent-Fourier moments,
PRL(84), No. 1, 2016, pp. 35-42.
Elsevier DOI
1612
Orthogonal Exponent-Fourier moments
BibRef
Zhu, H.Q.[Hong-Qing],
Yang, Y.[Yan],
Gui, Z.G.[Zhi-Guo],
Zhu, Y.[Yu],
Chen, Z.H.[Zhi-Hua],
Image analysis by generalized Chebyshev-Fourier and generalized
pseudo-Jacobi-Fourier moments,
PR(51), No. 1, 2016, pp. 1-11.
Elsevier DOI
1601
Generalized radial polynomial
BibRef
Camacho-Bello, C.,
Exact Legendre-Fourier moments in improved polar pixels configuration
for image analysis,
IET-IPR(13), No. 1, January 2019, pp. 118-124.
DOI Link
1812
BibRef
Hosny, K.M.[Khalid M],
Darwish, M.M.[Mohamed M],
Aboelenen, T.[Tarek],
New fractional-order Legendre-Fourier moments for pattern recognition
applications,
PR(103), 2020, pp. 107324.
Elsevier DOI
2005
Color image descriptors, Pattern recognition,
Rotation invariance, Fractional-order moments, Legendre-Fourier moments
BibRef
He, B.[Bing],
Cui, J.T.[Jiang-Tao],
Peng, Y.[Yanguo],
Yang, T.F.[Teng-Fei],
Image analysis by fast improved radial harmonic-Fourier moments
algorithm,
IJIST(30), No. 4, 2020, pp. 1033-1045.
DOI Link
2011
computation complexity, image reconstruction,
numerical instability, radial harmonic-Fourier moments
BibRef
Wang, C.,
Wang, X.,
Xia, Z.,
Ma, B.,
Shi, Y.Q.,
Image Description With Polar Harmonic Fourier Moments,
CirSysVideo(30), No. 12, December 2020, pp. 4440-4452.
IEEE DOI
2012
Image reconstruction, Harmonic analysis, Object recognition,
Image recognition, Kernel, Market research,
BibRef
Yang, H.Y.[Hong-Ying],
Qi, S.[Shuren],
Tian, J.L.[Jia-Lin],
Niu, P.P.[Pan-Pan],
Wang, X.Y.[Xiang-Yang],
Robust and discriminative image representation:
Fractional-Order Jacobi-Fourier moments,
PR(115), 2021, pp. 107898.
Elsevier DOI
2104
Image representation, Fractional, Jacobi-Fourier moments,
Robustness, Discriminability
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Matching, Descriptions Using Moments .