Zou, W.B.[Wen-Bin],
Liu, Z.[Zhi],
Kpalma, K.,
Ronsin, J.,
Zhao, Y.[Yong],
Komodakis, N.,
Unsupervised Joint Salient Region Detection and Object Segmentation,
IP(24), No. 11, November 2015, pp. 3858-3873.
IEEE DOI
1509
Markov processes
BibRef
Cholakkal, H.[Hisham],
Johnson, J.[Jubin],
Rajan, D.[Deepu],
A classifier-guided approach for top-down salient object detection,
SP:IC(45), No. 1, 2016, pp. 24-40.
Elsevier DOI
1605
Saliency
BibRef
Cholakkal, H.[Hisham],
Johnson, J.[Jubin],
Rajan, D.[Deepu],
Backtracking Spatial Pyramid Pooling-Based Image Classifier for
Weakly Supervised Top-Down Salient Object Detection,
IP(27), No. 12, December 2018, pp. 6064-6078.
IEEE DOI
1810
convolution, feature extraction, feedforward neural nets,
image classification, object detection, probability,
CNN image classifier
BibRef
Liu, L.C.[Liang-Chen],
Wiliem, A.[Arnold],
Chen, S.K.[Shao-Kang],
Lovell, B.C.[Brian C.],
What is the best way for extracting meaningful attributes from
pictures?,
PR(64), No. 1, 2017, pp. 314-326.
Elsevier DOI
1701
Visual attribute
measure visual attribute meaningfulness.
BibRef
Yang, S.Q.[Si-Qi],
Wu, L.[Lin],
Wiliem, A.[Arnold],
Lovell, B.C.[Brian C.],
Unsupervised Domain Adaptive Object Detection Using Forward-backward
Cyclic Adaptation,
ACCV20(III:124-142).
Springer DOI
2103
BibRef
Quan, R.[Rong],
Han, J.W.[Jun-Wei],
Zhang, D.W.[Ding-Wen],
Nie, F.P.[Fei-Ping],
Qian, X.M.[Xue-Ming],
Li, X.L.[Xue-Long],
Unsupervised Salient Object Detection via Inferring from Imperfect
Saliency Models,
MultMed(20), No. 5, May 2018, pp. 1101-1112.
IEEE DOI
1805
Analytical models, Computational complexity,
Computational modeling, Fuses, Labeling, Object detection,
weak prediction
BibRef
Tao, Q.Y.[Qing-Yi],
Yang, H.[Hao],
Cai, J.F.[Jian-Fei],
Exploiting Web Images for Weakly Supervised Object Detection,
MultMed(21), No. 5, May 2019, pp. 1135-1146.
IEEE DOI
1905
convolutional neural nets, Internet,
learning (artificial intelligence), object detection,
curriculum learning
BibRef
Jerripothula, K.R.[Koteswar Rao],
Cai, J.F.[Jian-Fei],
Yuan, J.S.[Jun-Song],
QCCE:
Quality constrained co-saliency estimation for common object detection,
VCIP15(1-4)
IEEE DOI
1605
Estimation
BibRef
Luo, A.[Ao],
Li, X.[Xin],
Yang, F.[Fan],
Jiao, Z.C.[Zhi-Cheng],
Cheng, H.[Hong],
Webly-supervised learning for salient object detection,
PR(103), 2020, pp. 107308.
Elsevier DOI
2005
Salient object detection, Webly-supervised learning, Deep learning
BibRef
Liu, Y.X.[Yu-Xuan],
Wang, P.J.[Peng-Jie],
Cao, Y.[Ying],
Liang, Z.J.[Zi-Jian],
Lau, R.W.H.[Rynson W. H.],
Weakly-Supervised Salient Object Detection With Saliency Bounding
Boxes,
IP(30), 2021, pp. 4423-4435.
IEEE DOI
2104
Object detection, Annotations, Detectors, Training, Proposals,
Computer science, Task analysis, Saliency bounding boxes,
weak supervision
BibRef
Zheng, X.Y.[Xiao-Yang],
Tan, X.[Xin],
Zhou, J.[Jie],
Ma, L.Z.[Li-Zhuang],
Lau, R.W.H.[Rynson W. H.],
Weakly-Supervised Saliency Detection via Salient Object Subitizing,
CirSysVideo(31), No. 11, November 2021, pp. 4370-4380.
IEEE DOI
2112
Saliency detection, Task analysis, Object detection,
Feature extraction, Training, Image segmentation, Annotations,
object subitizing
BibRef
Liang, Z.J.[Zi-Jian],
Wang, P.J.[Peng-Jie],
Xu, K.[Ke],
Zhang, P.P.[Ping-Ping],
Lau, R.W.H.[Rynson W. H.],
Weakly-Supervised Salient Object Detection on Light Fields,
IP(31), 2022, pp. 6295-6305.
IEEE DOI
2210
Light fields, Saliency detection, Object detection, Annotations,
Visualization, Image color analysis, Feature extraction, weak supervision
BibRef
He, S.F.[Sheng-Feng],
Lau, R.W.H.[Rynson W. H.],
Exemplar-Driven Top-Down Saliency Detection via Deep Association,
CVPR16(5723-5732)
IEEE DOI
1612
BibRef
Earlier:
Saliency Detection with Flash and No-flash Image Pairs,
ECCV14(III: 110-124).
Springer DOI
1408
Only closer (foreground or salient) objects are well lit by the flash.
BibRef
Zhou, Z.H.[Zhi-Heng],
Guo, Y.F.[Yong-Fan],
Dai, M.[Ming],
Huang, J.C.[Jun-Chu],
Li, X.W.[Xiang-Wei],
Weakly Supervised Salient Object Detection Via Double Object
Proposals Guidance,
IET-IPR(15), No. 9, 2021, pp. 1957-1970.
DOI Link
2106
BibRef
Dong, B.[Bowen],
Huang, Z.T.[Zi-Tong],
Guo, Y.L.[Yue-Lin],
Wang, Q.L.[Qi-Long],
Niu, Z.X.[Zhen-Xing],
Zuo, W.M.[Wang-Meng],
Boosting Weakly Supervised Object Detection via Learning Bounding Box
Adjusters,
ICCV21(2856-2865)
IEEE DOI
2203
Training, Location awareness, Codes, Computational modeling,
Object detection, Classification algorithms,
BibRef
Zhang, L.[Libao],
Ma, J.[Jie],
Salient Object Detection Based on Progressively Supervised Learning
for Remote Sensing Images,
GeoRS(59), No. 11, November 2021, pp. 9682-9696.
IEEE DOI
2111
Annotations, Training, Supervised learning, Remote sensing,
Object detection, Image segmentation, Feature extraction,
weakly supervised learning (WSL)
BibRef
Liu, Y.[Yan],
Zhang, Y.Z.[Yun-Zhou],
Wang, Z.Y.[Zhen-Yu],
Yang, F.[Fei],
Qin, C.[Cao],
Qiu, F.[Feng],
Coleman, S.[Sonya],
Kerr, D.[Dermot],
Complementary Characteristics Fusion Network for Weakly Supervised
Salient Object Detection,
IVC(126), 2022, pp. 104536.
Elsevier DOI
2209
Salient object detection, Weakly supervised learning,
Edge fusion module, Feature correlation module,
Self-supervised salient detection loss
BibRef
Yang, J.[Jie],
Shi, Y.[Yong],
Qi, Z.Q.[Zhi-Quan],
Learning deep feature correspondence for unsupervised anomaly
detection and segmentation,
PR(132), 2022, pp. 108874.
Elsevier DOI
2209
Anomaly detection, Anomaly segmentation,
Feature correspondence, Dual network
BibRef
Wu, Z.H.[Zhi-Hao],
Liu, C.L.[Cheng-Liang],
Wen, J.[Jie],
Xu, Y.[Yong],
Yang, J.[Jian],
Li, X.L.[Xue-Long],
Selecting High-Quality Proposals for Weakly Supervised Object
Detection With Bottom-Up Aggregated Attention and Phase-Aware Loss,
IP(32), 2023, pp. 682-693.
IEEE DOI
2301
Proposals, Training, Object detection, Loss measurement, Detectors,
Feature extraction, Phase measurement,
high-quality supervision
BibRef
Wang, Y.F.[Yi-Fan],
Zhang, W.[Wenbo],
Wang, L.J.[Li-Jun],
Liu, T.[Ting],
Lu, H.C.[Hu-Chuan],
Multi-Source Uncertainty Mining for Deep Unsupervised Saliency
Detection,
CVPR22(11717-11726)
IEEE DOI
2210
Adaptation models, Uncertainty, Computer network reliability,
Training data, Object detection, Reliability engineering,
Self- semi- meta- unsupervised learning
BibRef
Shin, G.[Gyungin],
Albanie, S.[Samuel],
Xie, W.[Weidi],
Unsupervised Salient Object Detection with Spectral Cluster Voting,
L3D-IVU22(3970-3979)
IEEE DOI
2210
Conferences, Object detection, Object segmentation, Detectors,
Benchmark testing, Feature extraction, Pattern recognition
BibRef
Li, L.T.B.[Lv Tang Bo],
Zhong, Y.J.[Yi-Jie],
Ding, S.H.[Shou-Hong],
Song, M.[Mofei],
Disentangled High Quality Salient Object Detection,
ICCV21(3560-3570)
IEEE DOI
2203
Training, Deep learning, Uncertainty, Semantics, Refining,
Graphics processing units,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Ouyang, S.X.[Sheng-Xiong],
Wang, X.L.[Xing-Lu],
Lyu, K.[Kejie],
Li, Y.M.[Ying-Ming],
Pseudo-Label Generation-Evaluation Framework for Cross Domain Weakly
Supervised Object Detection,
ICIP21(724-728)
IEEE DOI
2201
Annotations, Image processing, Detectors, Object detection,
Task analysis, Cross domain, Weakly supervised, Object detection, Evaluator
BibRef
Kosugi, S.,
Yamasaki, T.,
Aizawa, K.,
Object-Aware Instance Labeling for Weakly Supervised Object Detection,
ICCV19(6063-6071)
IEEE DOI
2004
image annotation, image classification, iterative methods,
learning (artificial intelligence), object detection, Focusing
BibRef
Inoue, N.,
Furuta, R.,
Yamasaki, T.,
Aizawa, K.,
Cross-Domain Weakly-Supervised Object Detection Through Progressive
Domain Adaptation,
CVPR18(5001-5009)
IEEE DOI
1812
Object detection, Task analysis, Detectors, Dogs, Search engines,
Feature extraction, Noise measurement
BibRef
Zhang, D.,
Han, J.,
Zhang, Y.,
Supervision by Fusion: Towards Unsupervised Learning of Deep Salient
Object Detector,
ICCV17(4068-4076)
IEEE DOI
1802
convolution, image fusion, neural nets, object detection,
unsupervised learning, DNNs, deep convolutional models,
Unsupervised learning
BibRef
López-Sastre, R.J.[Roberto J.],
Unsupervised Robust Feature-Based Partition Ensembling to Discover
Categories,
Robust16(1187-1195)
IEEE DOI
1612
Different features to aggregate different partitions to get objects.
BibRef
Cholakkal, H.[Hisham],
Johnson, J.[Jubin],
Rajan, D.[Deepu],
Backtracking ScSPM Image Classifier for Weakly Supervised Top-Down
Saliency,
CVPR16(5278-5287)
IEEE DOI
1612
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Color, Multispectral, RGB, for Salient Regions .