Convex Hull of Polygons

Chapter Contents (Back)
Convex Hull.

Graham, R.L.,
An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set,
IPL(1), 1972, pp. 132-133. BibRef 7200

Graham, R.L., Yao, F.F.,
Finding the Convex Hull of a Simple Polygon,
Algorithms(4), 1983, pp. 324-331. BibRef 8300

Appel, A., Will, P.M.,
Determining the Three-Dimensional Convex Hull of a Polyhedron,
IBMRD(20), 1976, pp. 590-601. BibRef 7600

Hu, T.C., Shing, M.T.,
An O(N) Algorithm to Find a Near-Optimum Partition of a Convex Polygon,
Algorithms(2), 1981, pp. 122-138. BibRef 8100

Bhattacharya, B.K., ElGindy, H.,
A New Linear Convex Hull Algorithm for Simple Polygons,
IT(30), 1984, pp. 85-88. BibRef 8400

ElGindy, H., Avis, D.,
A Linear Algorithm for Computing the Visibility Polygon from a Point,
Algorithms(2), 1981, pp. 186-197. BibRef 8100

Sklansky, J.,
Finding the Convex Hull of a Simple Polygon,
PRL(1), 1982, pp. 79-83. BibRef 8200

McCallum, D., Avis, D.,
A Linear Algorithm for Finding the Convex Hull of a Simple Polygon,
IPL(9), 1979, pp. 201-206. BibRef 7900

Klette, R., Krishnamurthy, E.V.,
Algorithms for Testing Convexity of Digital Polygons,
CGIP(16), No. 2, June 1981, pp. 177-184.
WWW Link. BibRef 8106

Dori, D.[Dov], Ben-Bassat, M.[Moshe],
Circumscribing a Convex Polygon by a Polygon of Fewer Sides with Minimal Area Addition,
CVGIP(24), No. 2, November 1983, pp. 131-159.
WWW Link. BibRef 8311

Dori, D.[Dov], Ben-Bassat, M.[Moshe],
Efficient Nesting Of Congruent Convex Figures,
CACM(27), 1984, pp. 228-235. BibRef 8400

Nicholl, T.M., Lee, D.T., Liao, Y.Z., Wong, C.K.,
On the X-Y Convex Hull of a Set of X-Y Polygons,
BIT(23), 1983, pp. 456-471. BibRef 8300

Ghosh, S.K., Shyamasundar, R.K.,
A Linear Time Algorithm for Obtaining the Convex Hull of a Simple Polygon,
PR(16), No. 6, 1983, pp. 587-592.
WWW Link. 9611

Lee, D.T.,
On Finding the Convex Hull of a Simple Polygon,
CIS(12), 1983, pp. 87-98. BibRef 8300

Ghosh, S.K., Shyamasundar, R.K.,
A Linear Time Algorithm for Computing the Convex Hull of an Ordered Crossing Polygon,
PR(17), No. 3, 1984, pp. 351-358.
WWW Link. 9611

Ghosh, S.K.,
A Note On Convex Hull Algorithms,
PR(19), No. 1, 1986, pp. Page 75.
WWW Link. BibRef 8600

Orlawski, M.,
On The Conditions for Success of Sklansky's Convex Hull Algorithm,
PR(16), No. 6, 1983, pp. 579-586.
WWW Link. 9611

Orlawski, M.,
A Convex Hull Algorithm for Planar Simple Polygons,
PR(18), No. 5, 1985, pp. 361-366.
WWW Link. BibRef 8500

Woo, T.C., Lee, H.C.,
On the Time Complexity for Circumscribing a Convex Polygon,
CVGIP(30), No. 3, June 1985, pp. 362-363.
WWW Link. BibRef 8506

Shin, S.Y., Woo, T.C.,
Finding The Convex Hull Of A Simple Polygon In Linear Time,
PR(19), No. 6, 1986, pp. 453-458.
WWW Link. BibRef 8600

Chen, C.L.,
Computing The Convex Hull Of A Simple Polygon,
PR(22), No. 5, 1989, pp. 561-565.
WWW Link. BibRef 8900

Gualtieri, J.A., Baugher, S., Werman, M.,
The Visual Potential: One Convex Polygon,
CVGIP(46), No. 1, April 1989, pp. 96-130.
WWW Link. BibRef 8904

Laurentini, A.,
A Note on the Paper 'The Visual Potential: One Convex Polygon',
CVIP92(577-583). BibRef 9200

Toussaint, G.T.[Godfried T.],
A counter-example to a convex hull algorithm for polygons,
PR(24), No. 2, 1991, pp. 183-184.
WWW Link. 0401

Boxer, L.[Laurence],
Computing Deviations from Convexity in Polygons,
PRL(14), 1993, pp. 163-167. BibRef 9300

Stern, H.I.,
Polygonal Entropy: A Convexity Measure,
PRL(10), 1989, pp. 229-235. BibRef 8900

Leou, J.J., Tsai, W.H.,
The Minimum Feature Point Set Representing a Convex Polyhedral Object,
PRL(11), 1990, pp. 225-229. BibRef 9000

Saha, P.K.[Punam K.], Rosenfeld, A.[Azriel],
Strongly Normal Sets of Convex Polygons or Polyhedra,
PRL(19), No. 12, 30 October 1998, pp. 1119-1124. BibRef 9810
Earlier: UMD--TR3844, November 1997.
WWW Link. BibRef

Bhattacharya, P.[Prabir], Rosenfeld, A.[Azriel],
'Convexity' of sets of lines,
PRL(19), No. 13, November 1998, pp. 1199-1205. BibRef 9811

Bhattacharya, P.[Prabir], Rosenfeld, A.[Azriel],
PRL(21), No. 10, October 2000, pp. 955-957. 0008

Bhattacharya, P.[Prabir], Rosenfeld, A.[Azriel],
Convexity properties of space curves,
PRL(24), No. 15, November 2003, pp. 2509-2517.
WWW Link. 0308

Lee, I.K.[In-Kwon], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Polynomial/Rational Approximation of Minkowski Sum Boundary Curves,
GMIP(60), No. 2, March 1998, pp. 136-165. BibRef 9803

Elber, G.[Gershon], Kim, M.S.[Myung-Soo], Heo, H.S.[Hee-Seok],
The Convex Hull of Rational Plane Curves,
GM(63), No. 3, May 2001, pp. 151-162.
DOI Link Find zero-sets of polynomial equations, uses these zero-sets to characterize curve segments on the boundary. 0111

Kim, Y.J.[Yong-Joon], Oh, Y.T.[Young-Taek], Yoon, S.H.[Seung-Hyun], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer,
VC(26), No. 6-8, June 2010, pp. 1007-1016.
WWW Link. 1101

Lee, J.W.[Jae-Wook], Kim, Y.J.[Yong-Joon], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Comparison of three bounding regions with cubic convergence to planar freeform curves,
VC(31), No. 6-8, June 2015, pp. 809-818.
WWW Link. 1506

Oh, Y.T.[Young-Taek], Kim, Y.J.[Yong-Joon], Lee, J.[Jieun], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Continuous point projection to planar freeform curves using spiral curves,
VC(28), No. 1, January 2012, pp. 111-123.
WWW Link. 1201

Elber, G.[Gershon], Grandine, T.[Tom],
Hausdorff and Minimal Distances between Parametric Freeforms in R2 and R3,
Springer DOI 0804

Zunic, J.[Jovisa],
On discrete triangles characterization,
CVIU(90), No. 2, May 2003, pp. 169-189.
WWW Link. 0307

Sirakov, N.M.[Nikolay M.],
A New Active Convex Hull Model for Image Regions,
JMIV(26), No. 3, December 2006, pp. 309-325.
Springer DOI 0701

Sirakov, N.M.[Nikolay Metodiev],
Monotonic Vector Forces and Green's Theorem for Automatic Area Calculation,
ICIP07(IV: 297-300).
Automatic Concavity's Area Calculation using Active Contours and Increasing Flow,

Sirakov, N.M., Simonelli, I.,
A New Automatic Concavity Extraction Model,

Yang, Q.[Qing], Parvin, B.,
CHEF: convex hull of elliptic features for 3D blob detection,
ICPR02(II: 282-285).

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Concavity Detection .

Last update:Sep 25, 2017 at 16:36:46