Graham, R.L.,
An Efficient Algorithm for Determining the Convex Hull of a
Finite Planar Set,
IPL(1), 1972, pp. 132-133.
BibRef
7200
Graham, R.L.,
Yao, F.F.,
Finding the Convex Hull of a Simple Polygon,
Algorithms(4), 1983, pp. 324-331.
BibRef
8300
Appel, A.,
Will, P.M.,
Determining the Three-Dimensional Convex Hull of a Polyhedron,
IBMRD(20), 1976, pp. 590-601.
BibRef
7600
Hu, T.C.,
Shing, M.T.,
An O(N) Algorithm to Find a Near-Optimum Partition of a Convex Polygon,
Algorithms(2), 1981, pp. 122-138.
BibRef
8100
Bhattacharya, B.K.,
El Gindy, H.,
A New Linear Convex Hull Algorithm for Simple Polygons,
IT(30), 1984, pp. 85-88.
BibRef
8400
El Gindy, H.,
Avis, D.,
A linear algorithm for computing the visibility polygon from a point,
Algorithms(2), No. 2, June 1981, pp. 186-197.
Elsevier DOI
Hidden line problem in graphics.
BibRef
8106
Sklansky, J.,
Finding the Convex Hull of a Simple Polygon,
PRL(1), 1982, pp. 79-83.
BibRef
8200
McCallum, D.,
Avis, D.,
A Linear Algorithm for Finding the Convex Hull of a Simple Polygon,
IPL(9), 1979, pp. 201-206.
BibRef
7900
Klette, R.[Reinhard],
Krishnamurthy, E.V.,
Algorithms for Testing Convexity of Digital Polygons,
CGIP(16), No. 2, June 1981, pp. 177-184.
Elsevier DOI Based on Shoenberg's theorem, test set of border points of a 4-connected
digital picture.
BibRef
8106
Dori, D.[Dov],
Ben-Bassat, M.[Moshe],
Circumscribing a Convex Polygon by a Polygon of
Fewer Sides with Minimal Area Addition,
CVGIP(24), No. 2, November 1983, pp. 131-159.
Elsevier DOI Applied to cutting shapes.
For more analysis:
See also On the Time Complexity for Circumscribing a Convex Polygon. Counterexample:
See also Counterexamples to a Minimal Circumscription Algorithm.
BibRef
8311
Dori, D.[Dov],
Ben-Bassat, M.[Moshe],
Efficient Nesting Of Congruent Convex Figures,
CACM(27), 1984, pp. 228-235.
BibRef
8400
Nicholl, T.M.,
Lee, D.T.,
Liao, Y.Z.,
Wong, C.K.,
On the X-Y Convex Hull of a Set of X-Y Polygons,
BIT(23), 1983, pp. 456-471.
BibRef
8300
Ghosh, S.K.,
Shyamasundar, R.K.,
A Linear Time Algorithm for Obtaining the Convex Hull of a
Simple Polygon,
PR(16), No. 6, 1983, pp. 587-592.
Elsevier DOI
9611
Non-self intersecting.
BibRef
Ghosh, S.K.,
Shyamasundar, R.K.,
A Linear Time Algorithm for Computing the Convex Hull of an
Ordered Crossing Polygon,
PR(17), No. 3, 1984, pp. 351-358.
Elsevier DOI
9611
BibRef
Ghosh, S.K.,
A Note On Convex Hull Algorithms,
PR(19), No. 1, 1986, pp. Page 75.
Elsevier DOI
BibRef
8600
Lee, D.T.,
On Finding the Convex Hull of a Simple Polygon,
CIS(12), 1983, pp. 87-98.
BibRef
8300
Orlowski, M.[Marian],
On The Conditions for Success of Sklansky's Convex Hull Algorithm,
PR(16), No. 6, 1983, pp. 579-586.
Elsevier DOI
9611
Toussaint and Avis
See also On A Convex Hull Algorithm for Polygons and Its Application to Triangulation Problems.
BibRef
Orlowski, M.[Marian],
A Convex Hull Algorithm for Planar Simple Polygons,
PR(18), No. 5, 1985, pp. 361-366.
Elsevier DOI
BibRef
8500
Wood, T.C.[Tony C.],
Lee, H.C.[Hyun-Chan],
On the Time Complexity for Circumscribing a Convex Polygon,
CVGIP(30), No. 3, June 1985, pp. 362-363.
Elsevier DOI Analysis of:
See also Circumscribing a Convex Polygon by a Polygon of Fewer Sides with Minimal Area Addition.
BibRef
8506
Shin, S.Y.,
Woo, T.C.,
Finding The Convex Hull Of A Simple Polygon In Linear Time,
PR(19), No. 6, 1986, pp. 453-458.
Elsevier DOI
BibRef
8600
Chen, C.L.[Chern-Lin],
Computing The Convex Hull Of A Simple Polygon,
PR(22), No. 5, 1989, pp. 561-565.
Elsevier DOI See:
See also counter-example to a convex hull algorithm for polygons, A.
BibRef
8900
Gualtieri, J.A.[J. Anthony],
Baugher, S.[Sam],
Werman, M.[Michael],
The Visual Potential: One Convex Polygon,
CVGIP(46), No. 1, April 1989, pp. 96-130.
Elsevier DOI Aspect graph of convex polygon.
BibRef
8904
Laurentini, A.,
A Note on the Paper 'The Visual Potential: One Convex Polygon',
CVIP92(577-583).
BibRef
9200
Toussaint, G.T.[Godfried T.],
A counter-example to a convex hull algorithm for polygons,
PR(24), No. 2, 1991, pp. 183-184.
Elsevier DOI
0401
See also Computing The Convex Hull Of A Simple Polygon.
BibRef
Boxer, L.[Laurence],
Computing Deviations from Convexity in Polygons,
PRL(14), 1993, pp. 163-167.
BibRef
9300
Stern, H.I.,
Polygonal Entropy: A Convexity Measure,
PRL(10), 1989, pp. 229-235.
BibRef
8900
Leou, J.J.,
Tsai, W.H.,
The Minimum Feature Point Set Representing a Convex Polyhedral Object,
PRL(11), 1990, pp. 225-229.
BibRef
9000
Saha, P.K.[Punam K.],
Rosenfeld, A.[Azriel],
Strongly Normal Sets of Convex Polygons or Polyhedra,
PRL(19), No. 12, 30 October 1998, pp. 1119-1124.
BibRef
9810
Earlier:
UMD--TR3844, November 1997.
WWW Link.
BibRef
Bhattacharya, P.[Prabir],
Rosenfeld, A.[Azriel],
'Convexity' of sets of lines,
PRL(19), No. 13, November 1998, pp. 1199-1205.
BibRef
9811
Bhattacharya, P.[Prabir],
Rosenfeld, A.[Azriel],
A-Convexity,
PRL(21), No. 10, October 2000, pp. 955-957.
0008
BibRef
Bhattacharya, P.[Prabir],
Rosenfeld, A.[Azriel],
Convexity properties of space curves,
PRL(24), No. 15, November 2003, pp. 2509-2517.
Elsevier DOI
0308
Analysis of convexity.
BibRef
Lee, I.K.[In-Kwon],
Kim, M.S.[Myung-Soo],
Elber, G.[Gershon],
Polynomial/Rational Approximation of Minkowski Sum Boundary Curves,
GMIP(60), No. 2, March 1998, pp. 136-165.
BibRef
9803
Elber, G.[Gershon],
Kim, M.S.[Myung-Soo],
Heo, H.S.[Hee-Seok],
The Convex Hull of Rational Plane Curves,
GM(63), No. 3, May 2001, pp. 151-162.
DOI Link Find zero-sets of polynomial equations, uses these zero-sets to characterize
curve segments on the boundary.
0111
BibRef
Kim, Y.J.[Yong-Joon],
Oh, Y.T.[Young-Taek],
Yoon, S.H.[Seung-Hyun],
Kim, M.S.[Myung-Soo],
Elber, G.[Gershon],
Precise Hausdorff distance computation for planar freeform curves using
biarcs and depth buffer,
VC(26), No. 6-8, June 2010, pp. 1007-1016.
WWW Link.
1101
BibRef
Han, S.J.[Sang-Jun],
Yoon, S.H.[Seung-Hyun],
Kim, M.S.[Myung-Soo],
Elber, G.[Gershon],
Minkowski sum computation for planar freeform geometric models using
G1-biarc approximation and interior disk culling,
VC(35), No. 6-8, June 2018, pp. 921-933.
WWW Link.
1906
BibRef
Lee, J.W.[Jae-Wook],
Kim, Y.J.[Yong-Joon],
Kim, M.S.[Myung-Soo],
Elber, G.[Gershon],
Comparison of three bounding regions with cubic convergence to planar
freeform curves,
VC(31), No. 6-8, June 2015, pp. 809-818.
WWW Link.
1506
BibRef
Oh, Y.T.[Young-Taek],
Kim, Y.J.[Yong-Joon],
Lee, J.[Jieun],
Kim, M.S.[Myung-Soo],
Elber, G.[Gershon],
Continuous point projection to planar freeform curves using spiral
curves,
VC(28), No. 1, January 2012, pp. 111-123.
WWW Link.
1201
BibRef
Elber, G.[Gershon],
Grandine, T.[Tom],
Hausdorff and Minimal Distances between Parametric Freeforms
in R2 and R3,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Zunic, J.[Jovisa],
On discrete triangles characterization,
CVIU(90), No. 2, May 2003, pp. 169-189.
Elsevier DOI
0307
Coding of digital triangles.
BibRef
Sirakov, N.M.[Nikolay M.],
A New Active Convex Hull Model for Image Regions,
JMIV(26), No. 3, December 2006, pp. 309-325.
Springer DOI
0701
BibRef
Sirakov, N.M.[Nikolay Metodiev],
Monotonic Vector Forces and Green's Theorem for Automatic Area
Calculation,
ICIP07(IV: 297-300).
IEEE DOI
0709
BibRef
Earlier:
Automatic Concavity's Area Calculation using Active Contours and
Increasing Flow,
ICIP06(225-228).
IEEE DOI
0610
BibRef
Sirakov, N.M.,
Simonelli, I.,
A New Automatic Concavity Extraction Model,
Southwest06(178-182).
IEEE DOI
0603
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Concavity Detection .