7.2.2.1 Convex Hull of Polygons

Chapter Contents (Back)
Convex Hull.

Graham, R.L.,
An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set,
IPL(1), 1972, pp. 132-133. BibRef 7200

Graham, R.L., Yao, F.F.,
Finding the Convex Hull of a Simple Polygon,
Algorithms(4), 1983, pp. 324-331. BibRef 8300

Appel, A., Will, P.M.,
Determining the Three-Dimensional Convex Hull of a Polyhedron,
IBMRD(20), 1976, pp. 590-601. BibRef 7600

Hu, T.C., Shing, M.T.,
An O(N) Algorithm to Find a Near-Optimum Partition of a Convex Polygon,
Algorithms(2), 1981, pp. 122-138. BibRef 8100

Bhattacharya, B.K., El Gindy, H.,
A New Linear Convex Hull Algorithm for Simple Polygons,
IT(30), 1984, pp. 85-88. BibRef 8400

El Gindy, H., Avis, D.,
A linear algorithm for computing the visibility polygon from a point,
Algorithms(2), No. 2, June 1981, pp. 186-197.
Elsevier DOI Hidden line problem in graphics. BibRef 8106

Sklansky, J.,
Finding the Convex Hull of a Simple Polygon,
PRL(1), 1982, pp. 79-83. BibRef 8200

McCallum, D., Avis, D.,
A Linear Algorithm for Finding the Convex Hull of a Simple Polygon,
IPL(9), 1979, pp. 201-206. BibRef 7900

Klette, R.[Reinhard], Krishnamurthy, E.V.,
Algorithms for Testing Convexity of Digital Polygons,
CGIP(16), No. 2, June 1981, pp. 177-184.
Elsevier DOI Based on Shoenberg's theorem, test set of border points of a 4-connected digital picture. BibRef 8106

Dori, D.[Dov], Ben-Bassat, M.[Moshe],
Circumscribing a Convex Polygon by a Polygon of Fewer Sides with Minimal Area Addition,
CVGIP(24), No. 2, November 1983, pp. 131-159.
Elsevier DOI Applied to cutting shapes. For more analysis:
See also On the Time Complexity for Circumscribing a Convex Polygon. Counterexample:
See also Counterexamples to a Minimal Circumscription Algorithm. BibRef 8311

Dori, D.[Dov], Ben-Bassat, M.[Moshe],
Efficient Nesting Of Congruent Convex Figures,
CACM(27), 1984, pp. 228-235. BibRef 8400

Nicholl, T.M., Lee, D.T., Liao, Y.Z., Wong, C.K.,
On the X-Y Convex Hull of a Set of X-Y Polygons,
BIT(23), 1983, pp. 456-471. BibRef 8300

Ghosh, S.K., Shyamasundar, R.K.,
A Linear Time Algorithm for Obtaining the Convex Hull of a Simple Polygon,
PR(16), No. 6, 1983, pp. 587-592.
Elsevier DOI 9611
Non-self intersecting. BibRef

Ghosh, S.K., Shyamasundar, R.K.,
A Linear Time Algorithm for Computing the Convex Hull of an Ordered Crossing Polygon,
PR(17), No. 3, 1984, pp. 351-358.
Elsevier DOI 9611
BibRef

Ghosh, S.K.,
A Note On Convex Hull Algorithms,
PR(19), No. 1, 1986, pp. Page 75.
Elsevier DOI BibRef 8600

Lee, D.T.,
On Finding the Convex Hull of a Simple Polygon,
CIS(12), 1983, pp. 87-98. BibRef 8300

Orlowski, M.[Marian],
On The Conditions for Success of Sklansky's Convex Hull Algorithm,
PR(16), No. 6, 1983, pp. 579-586.
Elsevier DOI 9611
Toussaint and Avis
See also On A Convex Hull Algorithm for Polygons and Its Application to Triangulation Problems. BibRef

Orlowski, M.[Marian],
A Convex Hull Algorithm for Planar Simple Polygons,
PR(18), No. 5, 1985, pp. 361-366.
Elsevier DOI BibRef 8500

Wood, T.C.[Tony C.], Lee, H.C.[Hyun-Chan],
On the Time Complexity for Circumscribing a Convex Polygon,
CVGIP(30), No. 3, June 1985, pp. 362-363.
Elsevier DOI Analysis of:
See also Circumscribing a Convex Polygon by a Polygon of Fewer Sides with Minimal Area Addition. BibRef 8506

Shin, S.Y., Woo, T.C.,
Finding The Convex Hull Of A Simple Polygon In Linear Time,
PR(19), No. 6, 1986, pp. 453-458.
Elsevier DOI BibRef 8600

Chen, C.L.[Chern-Lin],
Computing The Convex Hull Of A Simple Polygon,
PR(22), No. 5, 1989, pp. 561-565.
Elsevier DOI See:
See also counter-example to a convex hull algorithm for polygons, A. BibRef 8900

Gualtieri, J.A.[J. Anthony], Baugher, S.[Sam], Werman, M.[Michael],
The Visual Potential: One Convex Polygon,
CVGIP(46), No. 1, April 1989, pp. 96-130.
Elsevier DOI Aspect graph of convex polygon. BibRef 8904

Laurentini, A.,
A Note on the Paper 'The Visual Potential: One Convex Polygon',
CVIP92(577-583). BibRef 9200

Toussaint, G.T.[Godfried T.],
A counter-example to a convex hull algorithm for polygons,
PR(24), No. 2, 1991, pp. 183-184.
Elsevier DOI 0401

See also Computing The Convex Hull Of A Simple Polygon. BibRef

Boxer, L.[Laurence],
Computing Deviations from Convexity in Polygons,
PRL(14), 1993, pp. 163-167. BibRef 9300

Stern, H.I.,
Polygonal Entropy: A Convexity Measure,
PRL(10), 1989, pp. 229-235. BibRef 8900

Leou, J.J., Tsai, W.H.,
The Minimum Feature Point Set Representing a Convex Polyhedral Object,
PRL(11), 1990, pp. 225-229. BibRef 9000

Saha, P.K.[Punam K.], Rosenfeld, A.[Azriel],
Strongly Normal Sets of Convex Polygons or Polyhedra,
PRL(19), No. 12, 30 October 1998, pp. 1119-1124. BibRef 9810
Earlier: UMD--TR3844, November 1997.
WWW Link. BibRef

Bhattacharya, P.[Prabir], Rosenfeld, A.[Azriel],
'Convexity' of sets of lines,
PRL(19), No. 13, November 1998, pp. 1199-1205. BibRef 9811

Bhattacharya, P.[Prabir], Rosenfeld, A.[Azriel],
A-Convexity,
PRL(21), No. 10, October 2000, pp. 955-957. 0008
BibRef

Bhattacharya, P.[Prabir], Rosenfeld, A.[Azriel],
Convexity properties of space curves,
PRL(24), No. 15, November 2003, pp. 2509-2517.
Elsevier DOI 0308
Analysis of convexity. BibRef

Lee, I.K.[In-Kwon], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Polynomial/Rational Approximation of Minkowski Sum Boundary Curves,
GMIP(60), No. 2, March 1998, pp. 136-165. BibRef 9803

Elber, G.[Gershon], Kim, M.S.[Myung-Soo], Heo, H.S.[Hee-Seok],
The Convex Hull of Rational Plane Curves,
GM(63), No. 3, May 2001, pp. 151-162.
DOI Link Find zero-sets of polynomial equations, uses these zero-sets to characterize curve segments on the boundary. 0111
BibRef

Kim, Y.J.[Yong-Joon], Oh, Y.T.[Young-Taek], Yoon, S.H.[Seung-Hyun], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer,
VC(26), No. 6-8, June 2010, pp. 1007-1016.
WWW Link. 1101
BibRef

Han, S.J.[Sang-Jun], Yoon, S.H.[Seung-Hyun], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Minkowski sum computation for planar freeform geometric models using G1-biarc approximation and interior disk culling,
VC(35), No. 6-8, June 2018, pp. 921-933.
WWW Link. 1906
BibRef

Lee, J.W.[Jae-Wook], Kim, Y.J.[Yong-Joon], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Comparison of three bounding regions with cubic convergence to planar freeform curves,
VC(31), No. 6-8, June 2015, pp. 809-818.
WWW Link. 1506
BibRef

Oh, Y.T.[Young-Taek], Kim, Y.J.[Yong-Joon], Lee, J.[Jieun], Kim, M.S.[Myung-Soo], Elber, G.[Gershon],
Continuous point projection to planar freeform curves using spiral curves,
VC(28), No. 1, January 2012, pp. 111-123.
WWW Link. 1201
BibRef

Elber, G.[Gershon], Grandine, T.[Tom],
Hausdorff and Minimal Distances between Parametric Freeforms in R2 and R3,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Zunic, J.[Jovisa],
On discrete triangles characterization,
CVIU(90), No. 2, May 2003, pp. 169-189.
Elsevier DOI 0307
Coding of digital triangles. BibRef

Sirakov, N.M.[Nikolay M.],
A New Active Convex Hull Model for Image Regions,
JMIV(26), No. 3, December 2006, pp. 309-325.
Springer DOI 0701
BibRef

Sirakov, N.M.[Nikolay Metodiev],
Monotonic Vector Forces and Green's Theorem for Automatic Area Calculation,
ICIP07(IV: 297-300).
IEEE DOI 0709
BibRef
Earlier:
Automatic Concavity's Area Calculation using Active Contours and Increasing Flow,
ICIP06(225-228).
IEEE DOI 0610
BibRef

Sirakov, N.M., Simonelli, I.,
A New Automatic Concavity Extraction Model,
Southwest06(178-182).
IEEE DOI 0603
BibRef


Yang, Q.[Qing], Parvin, B.,
CHEF: convex hull of elliptic features for 3D blob detection,
ICPR02(II: 282-285).
IEEE DOI 0211
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Concavity Detection .


Last update:Nov 26, 2024 at 16:40:19