15.2.10.1 Camera Calibration, Perspective N Point Problem

Chapter Contents (Back)
Camera Calibration. Calibration. Perspective-n-point
See also Camera Calibration, Perspective Based, Vanishing Points.

Hu, Z.Y., Wu, F.C.,
A Note on the Number of Solutions of the Noncoplanar P4P Problem,
PAMI(24), No. 4, April 2002, pp. 550-555.
IEEE DOI 0204
Perspective Pose estimation. Camera calibration issues. Determine the transformation matrix from the object centered frame to the camera centered frame. BibRef

Wu, Y.H.[Yi-Hong], Hu, Z.Y.[Zhan-Yi],
A robust method to recognize critical configuration for camera calibration,
IVC(24), No. 12, 1 December 2006, pp. 1313-1318.
Elsevier DOI 0610
BibRef
Earlier:
Detecting Critical Configuration of Six Points,
ACCV06(II:447-456).
Springer DOI 0601
Camera calibration; Invariant; Critical configuration How to detect when you are in the critical configuration (i.e. cannot do the calibration). BibRef

Gao, X.S.[Xiao-Shan], Hou, X.R.[Xiao-Rong], Tang, J.L.[Jian-Liang], Cheng, H.F.[Hang-Fei],
Complete solution classification for the perspective-three-point problem,
PAMI(25), No. 8, August 2003, pp. 930-943.
IEEE Abstract. 0308
Pose from n points. Algebraic approach (Wu-Ritt zero decomposition) Analyze to determine how many solutions exist (1 to 4). And a Geometric approach. BibRef

Gao, X.S.[Xiao-Shan], Tang, J.L.[Jian-Liang],
On the Probability of the Number of Solutions for the P4P Problem,
JMIV(25), No. 1, July 2006, pp. 79-86.
Springer DOI 0610
BibRef

Ansar, A.[Adnan], Daniilidis, K.[Kostas],
Linear Pose Estimation from Points or Lines,
PAMI(25), No. 5, May 2003, pp. 578-589.
IEEE Abstract. 0304
BibRef
Earlier: ECCV02(IV: 282 ff.).
Springer DOI Or:
PDF File. 0205
BibRef
Earlier:
Linear Augmented Reality Registration,
CAIP01(383 ff.).
Springer DOI 0210
For n points or n lines. Compare to:
See also Linear N-Point Camera Pose Determination.
See also Linear Epipolar Algorithm for Multiframe Orientation.
See also Robust Methods for Estimating Pose and a Sensitivity Analysis. BibRef

Wu, Y.H.[Yi-Hong], Hu, Z.Y.[Zhan-Yi],
PnP Problem Revisited,
JMIV(24), No. 1, January 2006, pp. 131-141.
Springer DOI 0605
Perspective n Point camera pose determination. For any three non-collinear control points, the optical center can have 4 solutions. Explore distance-based and transform based solutions. BibRef

Duan, F.Q.[Fu-Qing], Wu, F.C.[Fu-Chao], Hu, Z.Y.[Zhan-Yi],
Pose determination and plane measurement using a trapezium,
PRL(29), No. 3, 1 February 2008, pp. 223-231.
Elsevier DOI 0801
Pose estimation; PnP; Affine invariant; Trapezium; 3D reconstruction BibRef

Wang, L.[Liang], Duan, F.Q.[Fu-Qing],
Zhang's one-dimensional calibration revisited with the heteroscedastic error-in-variables model,
ICIP11(857-860).
IEEE DOI 1201
BibRef

Wu, F.C., Duan, F.Q., Hu, Z.Y.,
An Affine Invariant of Parallelograms and Its Application to Camera Calibration and 3D Reconstruction,
ECCV06(II: 191-204).
Springer DOI 0608
BibRef

Xu, D.[De], Li, Y.F.[You Fu], Tan, M.[Min],
A general recursive linear method and unique solution pattern design for the perspective-n-point problem,
IVC(26), No. 6, 1 June 2008, pp. 740-750.
Elsevier DOI 0804
Perspective-n-point problem; Pattern design; Three-dimensional sensing; Pose estimation; Visual positioning; Recursive least square; Solution distribution; Solution stability BibRef

Lepetit, V.[Vincent], Moreno-Noguer, F.[Francesc], Fua, P.[Pascal],
EP n P: An Accurate O(n) Solution to the P n P Problem,
IJCV(81), No. 2, February 2009, pp. xx-yy.
Springer DOI 0901
BibRef
Earlier: A2, A1, A3:
Accurate Non-Iterative O(n) Solution to the PnP Problem,
ICCV07(1-8).
IEEE DOI 0710
Pose of a calibrated camera from n 3D-to-2D point correspondences.
See also Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation. BibRef

Pylvänäinen, T.[Timo], Fan, L.X.[Li-Xin], Lepetit, V.[Vincent],
Revisiting the PnP Problem with a GPS,
ISVC09(I: 819-830).
Springer DOI 0911
BibRef

Hmam, H.[Hatem], Kim, J.J.[Ji-Joong],
Optimal non-iterative pose estimation via convex relaxation,
IVC(28), No. 11, November 2010, pp. 1515-1523.
Elsevier DOI 1008
Pose estimation; PnP; Robotics; Semidefinite programming; Sum-of-squares programming Camera position and pose given known 3D points. BibRef

Li, S.Q.[Shi-Qi], Xu, C.[Chi], Xie, M.[Ming],
A Robust O(n) Solution to the Perspective-n-Point Problem,
PAMI(34), No. 7, July 2012, pp. 1444-1450.
IEEE DOI 1205
Noniterative solution Robustly retrieve the optimum by solving a seventh order polynomial. Divide into 3 point subsets (series of 4th order polynomials), form cost function, find roots of cost function to find optimum. BibRef

Guo, Y.[Yang],
A Novel Solution to the P4P Problem for an Uncalibrated Camera,
JMIV(45), No. 2, February 2013, pp. 186-198.
WWW Link. 1302
BibRef

Zheng, Y.Q.[Yin-Qiang], Sugimoto, S.[Shigeki], Okutomi, M.[Masatoshi],
ASPnP: An Accurate and Scalable Solution to the Perspective-n-Point Problem,
IEICE(E96-D), No. 7, July 2013, pp. 1525-1535.
WWW Link. 1307
BibRef

Penate-Sanchez, A.[Adrian], Andrade-Cetto, J.[Juan], Moreno-Noguer, F.[Francesc],
Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation,
PAMI(35), No. 10, 2013, pp. 2387-2400.
IEEE DOI 1309
Pose and focal length of a camera from a set of 3D-to-2D point correspondences. From EPnP algorithm (
See also EP n P: An Accurate O(n) Solution to the P n P Problem. ). Systematic exploration of space in closed form. BibRef

Penate-Sanchez, A.[Adrian], Serradell, E.[Eduard], Moreno-Noguer, F.[Francesc], Andrade-Cetto, J.[Juan],
Simultaneous Pose, Focal Length and 2D-to-3D Correspondences from Noisy Observations,
BMVC13(xx-yy).
DOI Link 1402
BibRef

Penate-Sanchez, A.[Adrian], Moreno-Noguer, F.[Francesc], Andrade-Cetto, J.[Juan], Fleuret, F.[Francois],
LETHA: Learning from High Quality Inputs for 3D Pose Estimation in Low Quality Images,
3DV14(517-524)
IEEE DOI 1503
Computational modeling BibRef

Ferraz, L.[Luis], Binefa, X.[Xavier], Moreno-Noguer, F.[Francesc],
Leveraging Feature Uncertainty in the PnP Problem,
BMVC14(xx-yy).
HTML Version. 1410
BibRef
And:
Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection,
CVPR14(501-508)
IEEE DOI 1409
Camera pose estimation BibRef

Steger, C.[Carsten],
Algorithms for the Orthographic-n-Point Problem,
JMIV(60), No. 2, February 2018, pp. 246-266.
Springer DOI 1802
BibRef
And: Erratum: JMIV(60), No. 2, February 2018, pp. 267.
Springer DOI 1802
Orthographic-n-point problem (OnP), which extends the perspective-n-point problem to telecentric cameras. BibRef

Wang, P.[Ping], Xu, G.L.[Gui-Li], Cheng, Y.H.[Yue-Hua], Yu, Q.[Qida],
A simple, robust and fast method for the perspective-n-point Problem,
PRL(108), 2018, pp. 31-37.
Elsevier DOI 1805
Perspective-point problem (PP), Absolute position and orientation, Camera pose estimation, BibRef

Adli, S.E.[Sahand Eivazi], Shoaran, M.[Maryam], Noorani, S.M.S.[S. Mohammadreza Sayyed],
GSPnP: simple and geometric solution for PnP problem,
VC(36), No. 8, August 2020, pp. 1549-1557.
WWW Link. 2007
BibRef

Meng, C.Z.[Cheng-Zhe], Xu, W.W.[Wei-Wei],
ScPnP: A non-iterative scale compensation solution for PnP problems,
IVC(106), 2021, pp. 104085.
Elsevier DOI 2102
Perspective-n-point, Dixon resultant, Pose estimation BibRef

Nakano, G.[Gaku],
Efficient DLT-Based Method for Solving PnP, PnPf, and PnPfr Problems,
IEICE(E104-D), No. 9, September 2021, pp. 1467-1477.
WWW Link. 2109
BibRef
Earlier:
A Versatile Approach for Solving PnP, PnPf, and PnPfr Problems,
ECCV16(III: 338-352).
Springer DOI 1611
BibRef
And:
Globally Optimal DLS Method for PnP Problem with Cayley parameterization,
BMVC15(xx-yy).
DOI Link 1601
BibRef


Ding, Y.Q.[Ya-Qing], Chien, C.H.[Chiang-Heng], Larsson, V.[Viktor], Åström, K.[Karl], Kimia, B.[Benjamin],
Minimal Solutions to Generalized Three-View Relative Pose Problem,
ICCV23(8122-8130)
IEEE DOI 2401
BibRef

Barath, D.[Daniel], Kukelova, Z.[Zuzana],
Relative Pose from SIFT Features,
ECCV22(XXXII:454-469).
Springer DOI 2211

WWW Link. BibRef

Lourakis, M., Pateraki, M., Karolos, I.A., Pikridas, C., Patias, P.,
Pose Estimation of A Moving Camera with Low-cost, Multi-gnss Devices,
ISPRS20(B2:55-62).
DOI Link 2012
BibRef

Terzakis, G.[George], Lourakis, M.[Manolis],
A Consistently Fast and Globally Optimal Solution to the Perspective-n-point Problem,
ECCV20(I:478-494).
Springer DOI 2011
BibRef

Campbell, D.[Dylan], Liu, L.[Liu], Gould, S.[Stephen],
Solving the Blind Perspective-n-point Problem End-to-end with Robust Differentiable Geometric Optimization,
ECCV20(II:244-261).
Springer DOI 2011
BibRef

Li, D., Zhang, X., Li, H., Ming, A.,
ACPNP: an Efficient Solution for Absolute Camera Pose Estimation from Two Affine Correspondences,
ICIP19(479-483)
IEEE DOI 1910
Affine Correspondences, Projection Matrix, Pose Estimation, Perspective-n-Point BibRef

Lu, G., Wong, X., McBride, J.,
From Mapping to Localization: A Complete Framework to Visually Estimate Position and Attitude for Autonomous Vehicles,
ICIP19(3103-3107)
IEEE DOI 1910
Visual localization, Map generation, Feature matching, Perspective-n-point BibRef

Zhou, L.[Lipu], Ye, J.[Jiamin], Kaess, M.[Michael],
A Stable Algebraic Camera Pose Estimation for Minimal Configurations of 2D/3D Point and Line Correspondences,
ACCV18(IV:273-288).
Springer DOI 1906
BibRef

Wang, J.[Jie], Zhang, X.H.[Xiao-Hu], Chen, H.[Hao], Ding, S.W.[Shao-Wen],
Relative pose measurement of Satellite and rocket based on photogrammetry,
ICIVC17(1117-1122)
IEEE DOI 1708
Adaptation models, Calibration, Cameras, Measurement uncertainty, Position measurement, Rockets, EPnP (efficient perspective-n-point), orthogonal Iteration, position and attitude estimation, satellite-rocket, separation BibRef

Zheng, Y.Q.[Yin-Qiang], Kneip, L.[Laurent],
A Direct Least-Squares Solution to the PnP Problem with Unknown Focal Length,
CVPR16(1790-1798)
IEEE DOI 1612
perspective-n-point (PnP) pose estimation BibRef

Zheng, Y.Q.[Yin-Qiang], Kuang, Y.B.[Yu-Bin], Sugimoto, S.[Shigeki], Astrom, K.[Kalle], Okutomi, M.[Masatoshi],
Revisiting the PnP Problem: A Fast, General and Optimal Solution,
ICCV13(2344-2351)
IEEE DOI 1403
BibRef

Guo, Y.[Yang],
A note on the number of solutions of the coplanar P4P problem,
ICARCV12(1413-1418).
IEEE DOI 1304
Perspective 4 point BibRef

Hesch, J.A.[Joel A.], Roumeliotis, S.I.[Stergios I.],
A Direct Least-Squares (DLS) method for PnP,
ICCV11(383-390).
IEEE DOI 1201
perspective-n-point camera pose determination for n GE 3. BibRef

Wang, B.[Bo], Sun, F.M.[Feng-Mei],
The Motion Dynamics Approach to the PnP Problem,
ICPR10(1682-1685).
IEEE DOI 1008
minimize energy of dynamic system of springs. BibRef

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Fundamental Matrix Computation and Use .


Last update:Sep 28, 2024 at 17:47:54