Hu, Z.Y.,
Wu, F.C.,
A Note on the Number of Solutions of the Noncoplanar P4P Problem,
PAMI(24), No. 4, April 2002, pp. 550-555.
IEEE DOI
0204
Perspective Pose estimation.
Camera calibration issues. Determine the transformation matrix from the object
centered frame to the camera centered frame.
BibRef
Wu, Y.H.[Yi-Hong],
Hu, Z.Y.[Zhan-Yi],
A robust method to recognize critical configuration for camera
calibration,
IVC(24), No. 12, 1 December 2006, pp. 1313-1318.
Elsevier DOI
0610
BibRef
Earlier:
Detecting Critical Configuration of Six Points,
ACCV06(II:447-456).
Springer DOI
0601
Camera calibration; Invariant; Critical configuration
How to detect when you are in the critical configuration (i.e. cannot do the
calibration).
BibRef
Gao, X.S.[Xiao-Shan],
Hou, X.R.[Xiao-Rong],
Tang, J.L.[Jian-Liang],
Cheng, H.F.[Hang-Fei],
Complete solution classification for the perspective-three-point
problem,
PAMI(25), No. 8, August 2003, pp. 930-943.
IEEE Abstract.
0308
Pose from n points.
Algebraic approach (Wu-Ritt zero decomposition)
Analyze to determine how many solutions exist (1 to 4).
And a Geometric approach.
BibRef
Gao, X.S.[Xiao-Shan],
Tang, J.L.[Jian-Liang],
On the Probability of the Number of Solutions for the P4P Problem,
JMIV(25), No. 1, July 2006, pp. 79-86.
Springer DOI
0610
BibRef
Ansar, A.[Adnan],
Daniilidis, K.[Kostas],
Linear Pose Estimation from Points or Lines,
PAMI(25), No. 5, May 2003, pp. 578-589.
IEEE Abstract.
0304
BibRef
Earlier:
ECCV02(IV: 282 ff.).
Springer DOI Or:
PDF File.
0205
BibRef
Earlier:
Linear Augmented Reality Registration,
CAIP01(383 ff.).
Springer DOI
0210
For n points or n lines.
Compare to:
See also Linear N-Point Camera Pose Determination.
See also Linear Epipolar Algorithm for Multiframe Orientation.
See also Robust Methods for Estimating Pose and a Sensitivity Analysis.
BibRef
Wu, Y.H.[Yi-Hong],
Hu, Z.Y.[Zhan-Yi],
PnP Problem Revisited,
JMIV(24), No. 1, January 2006, pp. 131-141.
Springer DOI
0605
Perspective n Point camera pose determination.
For any three non-collinear control points,
the optical center can have 4 solutions.
Explore distance-based and transform based solutions.
BibRef
Duan, F.Q.[Fu-Qing],
Wu, F.C.[Fu-Chao],
Hu, Z.Y.[Zhan-Yi],
Pose determination and plane measurement using a trapezium,
PRL(29), No. 3, 1 February 2008, pp. 223-231.
Elsevier DOI
0801
Pose estimation; PnP; Affine invariant; Trapezium; 3D reconstruction
BibRef
Wang, L.[Liang],
Duan, F.Q.[Fu-Qing],
Zhang's one-dimensional calibration revisited with the heteroscedastic
error-in-variables model,
ICIP11(857-860).
IEEE DOI
1201
BibRef
Wu, F.C.,
Duan, F.Q.,
Hu, Z.Y.,
An Affine Invariant of Parallelograms and Its Application to Camera
Calibration and 3D Reconstruction,
ECCV06(II: 191-204).
Springer DOI
0608
BibRef
Xu, D.[De],
Li, Y.F.[You Fu],
Tan, M.[Min],
A general recursive linear method and unique solution pattern design
for the perspective-n-point problem,
IVC(26), No. 6, 1 June 2008, pp. 740-750.
Elsevier DOI
0804
Perspective-n-point problem; Pattern design; Three-dimensional sensing;
Pose estimation; Visual positioning; Recursive least square;
Solution distribution; Solution stability
BibRef
Lepetit, V.[Vincent],
Moreno-Noguer, F.[Francesc],
Fua, P.[Pascal],
EP n P: An Accurate O(n) Solution to the P n P Problem,
IJCV(81), No. 2, February 2009, pp. xx-yy.
Springer DOI
0901
BibRef
Earlier: A2, A1, A3:
Accurate Non-Iterative O(n) Solution to the PnP Problem,
ICCV07(1-8).
IEEE DOI
0710
Pose of a calibrated camera from n 3D-to-2D point correspondences.
See also Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation.
BibRef
Pylvänäinen, T.[Timo],
Fan, L.X.[Li-Xin],
Lepetit, V.[Vincent],
Revisiting the PnP Problem with a GPS,
ISVC09(I: 819-830).
Springer DOI
0911
BibRef
Hmam, H.[Hatem],
Kim, J.J.[Ji-Joong],
Optimal non-iterative pose estimation via convex relaxation,
IVC(28), No. 11, November 2010, pp. 1515-1523.
Elsevier DOI
1008
Pose estimation; PnP; Robotics; Semidefinite programming;
Sum-of-squares programming
Camera position and pose given known 3D points.
BibRef
Li, S.Q.[Shi-Qi],
Xu, C.[Chi],
Xie, M.[Ming],
A Robust O(n) Solution to the Perspective-n-Point Problem,
PAMI(34), No. 7, July 2012, pp. 1444-1450.
IEEE DOI
1205
Noniterative solution
Robustly retrieve the optimum by solving a seventh order polynomial.
Divide into 3 point subsets (series of 4th order polynomials),
form cost function, find roots of cost function to find optimum.
BibRef
Guo, Y.[Yang],
A Novel Solution to the P4P Problem for an Uncalibrated Camera,
JMIV(45), No. 2, February 2013, pp. 186-198.
WWW Link.
1302
BibRef
Zheng, Y.Q.[Yin-Qiang],
Sugimoto, S.[Shigeki],
Okutomi, M.[Masatoshi],
ASPnP:
An Accurate and Scalable Solution to the Perspective-n-Point Problem,
IEICE(E96-D), No. 7, July 2013, pp. 1525-1535.
WWW Link.
1307
BibRef
Penate-Sanchez, A.[Adrian],
Andrade-Cetto, J.[Juan],
Moreno-Noguer, F.[Francesc],
Exhaustive Linearization for Robust Camera Pose and Focal Length
Estimation,
PAMI(35), No. 10, 2013, pp. 2387-2400.
IEEE DOI
1309
Pose and focal length of a camera from a set of 3D-to-2D point correspondences.
From EPnP algorithm (
See also EP n P: An Accurate O(n) Solution to the P n P Problem. ).
Systematic exploration of space in closed form.
BibRef
Penate-Sanchez, A.[Adrian],
Serradell, E.[Eduard],
Moreno-Noguer, F.[Francesc],
Andrade-Cetto, J.[Juan],
Simultaneous Pose, Focal Length and 2D-to-3D Correspondences from Noisy
Observations,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Penate-Sanchez, A.[Adrian],
Moreno-Noguer, F.[Francesc],
Andrade-Cetto, J.[Juan],
Fleuret, F.[Francois],
LETHA: Learning from High Quality Inputs for 3D Pose Estimation in
Low Quality Images,
3DV14(517-524)
IEEE DOI
1503
Computational modeling
BibRef
Ferraz, L.[Luis],
Binefa, X.[Xavier],
Moreno-Noguer, F.[Francesc],
Leveraging Feature Uncertainty in the PnP Problem,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
And:
Very Fast Solution to the PnP Problem with Algebraic Outlier
Rejection,
CVPR14(501-508)
IEEE DOI
1409
Camera pose estimation
BibRef
Steger, C.[Carsten],
Algorithms for the Orthographic-n-Point Problem,
JMIV(60), No. 2, February 2018, pp. 246-266.
Springer DOI
1802
BibRef
And:
Erratum:
JMIV(60), No. 2, February 2018, pp. 267.
Springer DOI
1802
Orthographic-n-point problem (OnP), which extends the
perspective-n-point problem to telecentric cameras.
BibRef
Wang, P.[Ping],
Xu, G.L.[Gui-Li],
Cheng, Y.H.[Yue-Hua],
Yu, Q.[Qida],
A simple, robust and fast method for the perspective-n-point Problem,
PRL(108), 2018, pp. 31-37.
Elsevier DOI
1805
Perspective-point problem (PP),
Absolute position and orientation, Camera pose estimation,
BibRef
Adli, S.E.[Sahand Eivazi],
Shoaran, M.[Maryam],
Noorani, S.M.S.[S. Mohammadreza Sayyed],
GSPnP: simple and geometric solution for PnP problem,
VC(36), No. 8, August 2020, pp. 1549-1557.
WWW Link.
2007
BibRef
Meng, C.Z.[Cheng-Zhe],
Xu, W.W.[Wei-Wei],
ScPnP: A non-iterative scale compensation solution for PnP problems,
IVC(106), 2021, pp. 104085.
Elsevier DOI
2102
Perspective-n-point, Dixon resultant, Pose estimation
BibRef
Nakano, G.[Gaku],
Efficient DLT-Based Method for Solving PnP, PnPf, and PnPfr Problems,
IEICE(E104-D), No. 9, September 2021, pp. 1467-1477.
WWW Link.
2109
BibRef
Earlier:
A Versatile Approach for Solving PnP, PnPf, and PnPfr Problems,
ECCV16(III: 338-352).
Springer DOI
1611
BibRef
And:
Globally Optimal DLS Method for PnP Problem with Cayley
parameterization,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Barath, D.[Daniel],
Kukelova, Z.[Zuzana],
Relative Pose from SIFT Features,
ECCV22(XXXII:454-469).
Springer DOI
2211
WWW Link.
BibRef
Lourakis, M.,
Pateraki, M.,
Karolos, I.A.,
Pikridas, C.,
Patias, P.,
Pose Estimation of A Moving Camera with Low-cost, Multi-gnss Devices,
ISPRS20(B2:55-62).
DOI Link
2012
BibRef
Terzakis, G.[George],
Lourakis, M.[Manolis],
A Consistently Fast and Globally Optimal Solution to the
Perspective-n-point Problem,
ECCV20(I:478-494).
Springer DOI
2011
BibRef
Campbell, D.[Dylan],
Liu, L.[Liu],
Gould, S.[Stephen],
Solving the Blind Perspective-n-point Problem End-to-end with Robust
Differentiable Geometric Optimization,
ECCV20(II:244-261).
Springer DOI
2011
BibRef
Li, D.,
Zhang, X.,
Li, H.,
Ming, A.,
ACPNP: an Efficient Solution for Absolute Camera Pose Estimation from
Two Affine Correspondences,
ICIP19(479-483)
IEEE DOI
1910
Affine Correspondences, Projection Matrix, Pose Estimation, Perspective-n-Point
BibRef
Lu, G.,
Wong, X.,
McBride, J.,
From Mapping to Localization: A Complete Framework to Visually
Estimate Position and Attitude for Autonomous Vehicles,
ICIP19(3103-3107)
IEEE DOI
1910
Visual localization, Map generation, Feature matching, Perspective-n-point
BibRef
Zhou, L.[Lipu],
Ye, J.[Jiamin],
Kaess, M.[Michael],
A Stable Algebraic Camera Pose Estimation for Minimal Configurations of
2D/3D Point and Line Correspondences,
ACCV18(IV:273-288).
Springer DOI
1906
BibRef
Wang, J.[Jie],
Zhang, X.H.[Xiao-Hu],
Chen, H.[Hao],
Ding, S.W.[Shao-Wen],
Relative pose measurement of Satellite and rocket based on
photogrammetry,
ICIVC17(1117-1122)
IEEE DOI
1708
Adaptation models, Calibration, Cameras, Measurement uncertainty,
Position measurement, Rockets,
EPnP (efficient perspective-n-point), orthogonal Iteration,
position and attitude estimation, satellite-rocket, separation
BibRef
Zheng, Y.Q.[Yin-Qiang],
Kneip, L.[Laurent],
A Direct Least-Squares Solution to the PnP Problem with Unknown Focal
Length,
CVPR16(1790-1798)
IEEE DOI
1612
perspective-n-point (PnP) pose estimation
BibRef
Zheng, Y.Q.[Yin-Qiang],
Kuang, Y.B.[Yu-Bin],
Sugimoto, S.[Shigeki],
Astrom, K.[Kalle],
Okutomi, M.[Masatoshi],
Revisiting the PnP Problem: A Fast, General and Optimal Solution,
ICCV13(2344-2351)
IEEE DOI
1403
BibRef
Guo, Y.[Yang],
A note on the number of solutions of the coplanar P4P problem,
ICARCV12(1413-1418).
IEEE DOI
1304
Perspective 4 point
BibRef
Hesch, J.A.[Joel A.],
Roumeliotis, S.I.[Stergios I.],
A Direct Least-Squares (DLS) method for PnP,
ICCV11(383-390).
IEEE DOI
1201
perspective-n-point camera pose determination for
n GE 3.
BibRef
Wang, B.[Bo],
Sun, F.M.[Feng-Mei],
The Motion Dynamics Approach to the PnP Problem,
ICPR10(1682-1685).
IEEE DOI
1008
minimize energy of dynamic system of springs.
BibRef
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Fundamental Matrix Computation and Use .