Yan, F.Q.[Feng-Qin],
Yu, L.X.[Ling-Xue],
Yang, C.B.[Chao-Bin],
Zhang, S.W.[Shu-Wen],
Paddy Field Expansion and Aggregation Since the Mid-1950s in a Cold
Region and Its Possible Causes,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Wagner, M.P.[Matthias P.],
Oppelt, N.[Natascha],
Deep Learning and Adaptive Graph-Based Growing Contours for
Agricultural Field Extraction,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Vlachopoulos, O.[Odysseas],
Leblon, B.[Brigitte],
Wang, J.F.[Jin-Fei],
Haddadi, A.[Ataollah],
LaRocque, A.[Armand],
Patterson, G.[Greg],
Delineation of Crop Field Areas and Boundaries from UAS Imagery Using
PBIA and GEOBIA with Random Forest Classification,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Liu, J.[Jin],
Zheng, H.[Haokun],
EFN: Field-Based Object Detection for Aerial Images,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Chang, L.[Lena],
Chen, Y.T.[Yi-Ting],
Wang, J.H.[Jung-Hua],
Chang, Y.L.[Yang-Lang],
Rice-Field Mapping with Sentinel-1A SAR Time-Series Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Gilcher, M.[Mario],
Udelhoven, T.[Thomas],
Field Geometry and the Spatial and Temporal Generalization of Crop
Classification Algorithms: A Randomized Approach to Compare Pixel
Based and Convolution Based Methods,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Taravat, A.[Alireza],
Wagner, M.P.[Matthias P.],
Bonifacio, R.[Rogerio],
Petit, D.[David],
Advanced Fully Convolutional Networks for Agricultural Field Boundary
Detection,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Waldner, F.[François],
Diakogiannis, F.I.[Foivos I.],
Batchelor, K.[Kathryn],
Ciccotosto-Camp, M.[Michael],
Cooper-Williams, E.[Elizabeth],
Herrmann, C.[Chris],
Mata, G.[Gonzalo],
Toovey, A.[Andrew],
Detect, Consolidate, Delineate: Scalable Mapping of Field Boundaries
Using Satellite Images,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wen, C.Y.[Cai-Yun],
Lu, M.[Miao],
Bi, Y.[Ying],
Zhang, S.N.[Sheng-Nan],
Xue, B.[Bing],
Zhang, M.J.[Meng-Jie],
Zhou, Q.B.[Qing-Bo],
Wu, W.B.[Wen-Bin],
An Object-Based Genetic Programming Approach for Cropland Field
Extraction,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
See also New Genetic Programming-Based Approach to Object Detection in Mussel Farm Images, A.
BibRef
Li, T.[Ting],
Johansen, K.[Kasper],
McCabe, M.F.[Matthew F.],
A machine learning approach for identifying and delineating
agricultural fields and their multi-temporal dynamics using three
decades of Landsat data,
PandRS(186), 2022, pp. 83-101.
Elsevier DOI
2203
Center-pivot field, Delineation, DBSCAN,
Convolution neural networks, Spectral clustering, Random forest
BibRef
Lu, R.[Rui],
Wang, N.[Nan],
Zhang, Y.B.[Yan-Bin],
Lin, Y.N.[Ye-Neng],
Wu, W.Q.[Wen-Qiang],
Shi, Z.[Zhou],
Extraction of Agricultural Fields via DASFNet with Dual Attention
Mechanism and Multi-scale Feature Fusion in South Xinjiang, China,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhang, Z.Q.[Zhi-Qi],
Lu, W.[Wen],
Cao, J.S.[Jin-Shan],
Xie, G.Q.[Guang-Qi],
MKANet: An Efficient Network with Sobel Boundary Loss for Land-Cover
Classification of Satellite Remote Sensing Imagery,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ge, J.[Ji],
Zhang, H.[Hong],
Xu, L.[Lu],
Sun, C.L.[Chun-Ling],
Duan, H.X.[Hao-Xuan],
Guo, Z.H.[Zi-Huan],
Wang, C.[Chao],
A Physically Interpretable Rice Field Extraction Model for PolSAR
Imagery,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Liu, X.C.[Xiang-Chen],
Shao, Y.[Yun],
Li, K.[Kun],
Liu, Z.[Zhiqu],
Liu, L.[Long],
Xiao, X.[Xiulai],
Backscattering Statistics of Indoor Full-Polarization Scatterometric
and Synthetic Aperture Radar Measurements of a Rice Field,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Xu, Y.[Yang],
Xue, X.Y.[Xin-Yu],
Sun, Z.[Zhu],
Gu, W.[Wei],
Cui, L.F.[Long-Fei],
Jin, Y.[Yongkui],
Lan, Y.[Yubin],
Deriving Agricultural Field Boundaries for Crop Management from
Satellite Images Using Semantic Feature Pyramid Network,
RS(15), No. 11, 2023, pp. 2937.
DOI Link
2306
BibRef
Li, M.M.[Meng-Meng],
Long, J.[Jiang],
Stein, A.[Alfred],
Wang, X.Q.[Xiao-Qin],
Using a semantic edge-aware multi-task neural network to delineate
agricultural parcels from remote sensing images,
PandRS(200), 2023, pp. 24-40.
Elsevier DOI
2306
Agricultural parcel delineation, SEANet,
Multi-task neural networks, Semantic edge-aware detection,
Uncertainty weighted loss
BibRef
Chen, L.[Long],
Song, W.L.[Wen-Long],
Sun, T.[Tao],
Lu, Y.Z.[Yi-Zhu],
Jiang, W.[Wei],
Liu, J.[Jun],
Liu, H.J.[Hong-Jie],
Feng, T.S.[Tian-Shi],
Gui, R.J.[Rong-Jie],
Abbas, H.[Haider],
Meng, L.W.[Ling-Wei],
Lin, S.J.[Sheng-Jie],
He, Q.[Qian],
Field Patch Extraction Based on High-Resolution Imaging and U2-Net++
Convolutional Neural Networks,
RS(15), No. 20, 2023, pp. 4900.
DOI Link
2310
BibRef
Awad, B.[Bahaa],
Erer, I.[Isin],
FAUNet: Frequency Attention U-Net for Parcel Boundary Delineation in
Satellite Images,
RS(15), No. 21, 2023, pp. 5123.
DOI Link
2311
BibRef
Cai, Z.W.[Zhi-Wen],
Hu, Q.[Qiong],
Zhang, X.Y.[Xin-Yu],
Yang, J.Y.[Jing-Ya],
Wei, H.D.[Hao-Dong],
Wang, J.[Jiayue],
Zeng, Y.[Yelu],
Yin, G.F.[Gao-Fei],
Li, W.J.[Wen-Juan],
You, L.Z.[Liang-Zhi],
Xu, B.D.[Bao-Dong],
Shi, Z.H.[Zhi-Hua],
Improving agricultural field parcel delineation with a dual branch
spatiotemporal fusion network by integrating multimodal satellite
data,
PandRS(205), 2023, pp. 34-49.
Elsevier DOI
2311
Agricultural field parcel delineation, Deep learning,
Multimodal satellite data, Spatiotemporal fusion, Spatial transferability
BibRef
Liu, L.[Lei],
Li, G.[Guorun],
Du, Y.F.[Yue-Feng],
Li, X.Y.[Xiao-Yu],
Wu, X.[Xiuheng],
Qiao, Z.[Zhi],
Wang, T.Y.[Tian-Yi],
CS-net: Conv-simpleformer network for agricultural image segmentation,
PR(147), 2024, pp. 110140.
Elsevier DOI
2312
Semantic segmentation, CS-net, Agricultural image, CNNs,
Transformers, Simple-attention
BibRef
Qi, L.[Liang],
Zuo, D.F.[Dan-Feng],
Wang, Y.R.[Yi-Rong],
Tao, Y.[Ye],
Tang, R.[Runkang],
Shi, J.[Jiayu],
Gong, J.J.[Jia-Jun],
Li, B.[Bangyu],
Convolutional Neural Network-Based Method for Agriculture Plot
Segmentation in Remote Sensing Images,
RS(16), No. 2, 2024, pp. 346.
DOI Link
2402
BibRef
Nair, S.[Shruti],
Sharifzadeh, S.[Sara],
Palade, V.[Vasile],
Farmland Segmentation in Landsat 8 Satellite Images Using Deep
Learning and Conditional Generative Adversarial Networks,
RS(16), No. 5, 2024, pp. 823.
DOI Link
2403
BibRef
Chen, G.[Gang],
Hammelman, C.[Colleen],
Anantsuksomsri, S.[Sutee],
Tontisirin, N.[Nij],
Todd, A.R.[Amelia R.],
Hicks, W.W.[William W.],
Robinson, H.M.[Harris M.],
Calloway, M.G.[Miles G.],
Bell, G.M.[Grace M.],
Kinsey, J.E.[John E.],
Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in
Eastern Thailand,
RS(16), No. 6, 2024, pp. 1035.
DOI Link
2403
BibRef
Gundermann, N.[Niels],
Lowe, W.[Welf],
Fransson, J.E.S.[Johan E. S.],
Olofsson, E.[Erika],
Wehrenpfennig, A.[Andreas],
Object Identification in Land Parcels Using a Machine Learning
Approach,
RS(16), No. 7, 2024, pp. 1143.
DOI Link
2404
BibRef
Luo, F.[Fang],
Zhang, Y.Q.[Yi-Qing],
Zhao, X.[Xiang],
Understanding the Spatiotemporal Dynamics and Influencing Factors of
the Rice-Crayfish Field in Jianghan Plain, China,
RS(16), No. 9, 2024, pp. 1541.
DOI Link
2405
BibRef
Su, M.Y.[Meng-Yuan],
Sun, K.[Kaiying],
Deng, B.Y.[Bo-Yang],
Cheng, N.[Nuo],
Cao, Y.[Yu],
Quantification and Driving Factors of Cultivated Land Fragmentation
in Rapidly Urbanizing Area: A Case Study in Guangdong Province,
RS(16), No. 14, 2024, pp. 2633.
DOI Link
2408
BibRef
Meyer, L.,
Lemarchand, F.,
Sidiropoulos, P.,
A Deep Learning Architecture for Batch-mode Fully Automated Field
Boundary Detection,
ISPRS20(B3:1009-1016).
DOI Link
2012
BibRef
Wakabayashi, H.,
Motohashi, K.,
Kitagami, T.,
Tjahjono, B.,
Dewayani, S.,
Hidayat, D.,
Hongo, C.,
Flooded Area Extraction of Rice Paddy Field in Indonesia Using
Sentinel-1 Sar Data,
Environmental19(73-76).
DOI Link
1904
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Smallholder Analysis .