Lee, C.W.,
Tsai, W.H.[Wen-Hsiang],
A Secret-Sharing-Based Method for Authentication of Grayscale Document
Images via the Use of the PNG Image With a Data Repair Capability,
IP(21), No. 1, January 2012, pp. 207-218.
IEEE DOI
1112
BibRef
Choi, S.H.[Sang-Hoon],
Yun, J.[Joobeom],
Park, K.W.[Ki-Woong],
Doc-Trace: Tracing Secret Documents in Cloud Computing via
Steganographic Marking,
IEICE(E100-D), No. 10, October 2017, pp. 2373-2376.
WWW Link.
1710
BibRef
Kuribayashi, M.[Minoru],
Fukushima, T.[Takuya],
Funabiki, N.[Nobuo],
Robust and Secure Data Hiding for PDF Text Document,
IEICE(E102-D), No. 1, January 2019, pp. 41-47.
WWW Link.
1901
BibRef
Wen, J.[Juan],
Zhou, X.J.[Xue-Jin],
Li, M.D.[Meng-Di],
Zhong, P.[Ping],
Xue, Y.M.[Yi-Ming],
A novel natural language steganographic framework based on image
description neural network,
JVCIR(61), 2019, pp. 157-169.
Elsevier DOI
1906
Natural language steganography, Image description,
Neural network, Embedding capacity, BLEU, Perplexity
BibRef
Wen, J.,
Zhou, X.,
Zhong, P.,
Xue, Y.,
Convolutional Neural Network Based Text Steganalysis,
SPLetters(26), No. 3, March 2019, pp. 460-464.
IEEE DOI
1903
convolutional neural nets, data encapsulation,
feature extraction, learning (artificial intelligence),
decision strategy
BibRef
Niu, Y.,
Wen, J.,
Zhong, P.,
Xue, Y.,
A Hybrid R-BILSTM-C Neural Network Based Text Steganalysis,
SPLetters(26), No. 12, December 2019, pp. 1907-1911.
IEEE DOI
2001
feature extraction, learning (artificial intelligence),
recurrent neural nets, steganography, text analysis,
local feature
BibRef
Yang, Z.,
Wang, K.,
Li, J.,
Huang, Y.,
Zhang, Y.,
TS-RNN: Text Steganalysis Based on Recurrent Neural Networks,
SPLetters(26), No. 12, December 2019, pp. 1743-1747.
IEEE DOI
2001
feature extraction, learning (artificial intelligence),
natural language processing, pattern classification,
Embedded Rate Estimation
BibRef
Zhang, S.,
Yang, Z.,
Yang, J.,
Huang, Y.,
Linguistic Steganography: From Symbolic Space to Semantic Space,
SPLetters(28), 2021, pp. 11-15.
IEEE DOI
2101
Semantics, Linguistics, Security, Task analysis, semantic steganography
BibRef
Yang, Z.,
Xiang, L.,
Zhang, S.,
Sun, X.,
Huang, Y.,
Linguistic Generative Steganography With Enhanced
Cognitive-Imperceptibility,
SPLetters(28), 2021, pp. 409-413.
IEEE DOI
2103
Semantics, Data mining, Decoding, Security, Linguistics,
Feature extraction, Encoding, Linguistic steganography,
semantic controllable
BibRef
Wu, H.,
Yi, B.,
Ding, F.,
Feng, G.,
Zhang, X.,
Linguistic Steganalysis With Graph Neural Networks,
SPLetters(28), 2021, pp. 558-562.
IEEE DOI
2104
Feature extraction, Training, Linguistics, Testing, Data mining,
Semantics, Graph neural networks, Deep learning,
linguistic steganography
BibRef
Peng, W.L.[Wan-Li],
Zhang, J.[Jinyu],
Xue, Y.M.[Yi-Ming],
Yang, Z.H.[Zheng-Hong],
Real-Time Text Steganalysis Based on Multi-Stage Transfer Learning,
SPLetters(28), 2021, pp. 1510-1514.
IEEE DOI
2108
Feature extraction, Training, Bit error rate, Transfer learning,
Social networking (online), Knowledge engineering, Task analysis,
pre-trained BERT
BibRef
Xiang, L.Y.[Ling-Yun],
Liu, Y.H.[Yu-Hang],
You, H.Q.[Hui-Qing],
Ou, C.F.[Cheng-Fu],
Aggregating Local and Global Text Features for Linguistic
Steganalysis,
SPLetters(29), 2022, pp. 1502-1506.
IEEE DOI
2208
Feature extraction, Bit error rate, Linguistics, Semantics,
Syntactics, Correlation, Task analysis, Linguistic steganalysis,
graph attention network
BibRef
Yi, B.[Biao],
Wu, H.Z.[Han-Zhou],
Feng, G.R.[Guo-Rui],
Zhang, X.P.[Xin-Peng],
ALiSa: Acrostic Linguistic Steganography Based on BERT and Gibbs
Sampling,
SPLetters(29), 2022, pp. 687-691.
IEEE DOI
2203
Linguistics, Bit error rate, Steganography, Receivers, Task analysis,
Probability distribution, Data mining, BERT, covert communication,
natural language processing
BibRef
Fu, Z.J.[Zhang-Jie],
Yu, Q.[Qi],
Wang, F.[Fan],
Ding, C.[Changhao],
HGA: Hierarchical Feature Extraction With Graph and Attention
Mechanism for Linguistic Steganalysis,
SPLetters(29), 2022, pp. 1734-1738.
IEEE DOI
2208
Feature extraction, Linguistics, Logic gates, Steganography,
Payloads, Motion pictures, Data mining, Linguistic steganalysis,
hierarchical feature
BibRef
Keserwani, P.[Prateek],
Roy, P.P.[Partha Pratim],
Text Region Conditional Generative Adversarial Network for Text
Concealment in the Wild,
CirSysVideo(32), No. 5, May 2022, pp. 3152-3163.
IEEE DOI
2205
Generators, Generative adversarial networks, Image segmentation,
Annotations, Task analysis, Convolutional neural networks, Privacy,
generative adversarial network
BibRef
Yan, R.Y.[Rui-Yi],
Yang, Y.T.[Ya-Ting],
Song, T.[Tian],
A Secure and Disambiguating Approach for Generative Linguistic
Steganography,
SPLetters(30), 2023, pp. 1047-1051.
IEEE DOI
2309
BibRef
Wang, Y.H.[Yi-Hao],
Zhang, R.[Ru],
Liu, J.[Jianyi],
RLS-DTS: Reinforcement-Learning Linguistic Steganalysis in
Distribution-Transformed Scenario,
SPLetters(30), 2023, pp. 1232-1236.
IEEE DOI
2310
BibRef
Xiang, L.Y.[Ling-Yun],
Ou, C.[Chengfu],
Zeng, D.[Daojian],
Linguistic Steganography: Hiding Information in Syntax Space,
SPLetters(31), 2024, pp. 261-265.
IEEE DOI
2402
Syntactics, Semantics, Distortion, Generators, Binary codes,
Steganography, Linguistics, Linguistic steganography,
syntax-controlled paraphrase generation
BibRef
Li, Y.H.[Yi-Hao],
Zhang, R.[Ru],
Liu, J.[Jianyi],
Lei, Q.[Qi],
A Semantic Controllable Long Text Steganography Framework Based on
LLM Prompt Engineering and Knowledge Graph,
SPLetters(31), 2024, pp. 2610-2614.
IEEE DOI
2410
Steganography, Encoding, Semantics, Mathematical models, Training,
Prompt engineering, Probability distribution, Text steganography,
knowledge graph
BibRef
Li, S.B.[Song-Bin],
Du, H.[Hui],
Wang, J.[Jingang],
General Steganalysis of Generative Linguistic Steganography Based on
Dynamic Segment-Level Lexical Association Extraction,
SPLetters(32), 2025, pp. 191-195.
IEEE DOI
2501
Feature extraction, Steganography, Linguistics, Convolution,
Signal processing algorithms, Correlation, Semantics, Payloads,
segment-level lexical association extraction
BibRef
Tang, Y.F.[Yi-Fan],
Wang, Y.H.[Yi-Hao],
Zhang, R.[Ru],
Liu, J.[Jianyi],
Linguistic Steganalysis via LLMs: Two Modes for Efficient Detection
of Strongly Concealed Stego,
SPLetters(32), 2025, pp. 541-545.
IEEE DOI
2501
Training, Knowledge engineering, Steganography, Neural networks,
Linguistics, Feature extraction, Classification mode, LLMs
BibRef
Yang, Z.L.[Zhong-Liang],
Wei, N.[Nan],
Liu, Q.H.[Qing-He],
Huang, Y.F.[Yong-Feng],
Zhang, Y.J.[Yu-Jin],
GAN-TSTEGA: Text Steganography Based on Generative Adversarial Networks,
IWDW19(18-31).
Springer DOI
2003
BibRef
Chen, Z.L.[Zhi-Li],
Huang, L.S.[Liu-Sheng],
Meng, P.[Peng],
Yang, W.[Wei],
Miao, H.B.[Hai-Bo],
Blind Linguistic Steganalysis against Translation Based Steganography,
DW10(251-265).
Springer DOI
1010
BibRef
Mayer, J.[Joceli],
Bermudez, J.C.M.,
Legg, A.P.,
Uchoa-Filho, B.F.,
Mukherjee, D.,
Said, A.,
Samadani, R.,
Simske, S.,
Design of high capacity 3D print codes aiming for robustness to the PS
channel and external distortions,
ICIP09(105-108).
IEEE DOI
0911
Adding high-density information to printed document.
BibRef
Puhan, N.B.,
Ho, A.T.S.,
Sattar, F.,
High Capacity Data Hiding in Binary Document Images,
DW09(149-161).
Springer DOI
0908
BibRef
Culnane, C.,
Treharne, H.,
Ho, A.T.S.,
Authenticating Binary Text Documents Using a Localising OMAC Watermark
Robust to Printing and Scanning,
DW07(173-187).
Springer DOI
0712
BibRef
Earlier:
A New Multi-set Modulation Technique for Increasing Hiding Capacity of
Binary Watermark for Print and Scan Processes,
DW06(96-110).
Springer DOI
0611
BibRef
Cheng, J.,
Kot, A.C.,
Liu, J.,
Cao, H.,
Detection of Data Hiding in Binary Text Images,
ICIP05(III: 73-76).
IEEE DOI
0512
BibRef
Choo, H.G.[Hyon-Gon],
Kim, W.Y.[Whoi-Yul],
Data-Hiding Capacity Improvement for Text Watermarking Using Space
Coding Method,
DW03(593-599).
Springer DOI
0405
BibRef
Chotikakamthorn, N.[Nopporn],
Document Image Data hiding Technique Using Character Spacing Width
Sequence Coding,
ICIP99(II:250-254).
IEEE DOI
BibRef
9900
Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Watermarks for Copyright, Ownership Protection, Authentication, Verification .