Borgefors, G.[Gunilla],
Distance Transformations in Arbitrary Dimensions,
CVGIP(27), No. 3, September 1984, pp. 321-345.
Elsevier DOI
See also Note on Distance Transformations in Arbitrary Dimensions, A.
BibRef
8409
Borgefors, G.[Gunilla],
On Digital Distance Transforms in Three Dimensions,
CVIU(64), No. 3, November 1996, pp. 368-376.
DOI Link
9612
BibRef
Okabe, N.,
Toriwaki, J.I.,
Fukumura, T.,
Paths and Distance Functions on Three-Dimensional Digitized Pictures,
PRL(1), 1983, pp. 205-212.
BibRef
8300
Mullikin, J.C.[James C.],
The Vector Distance Transform in Two and Three Dimensions,
GMIP(54), No. 6, November 1992, pp. 526-535.
BibRef
9211
Beckers, A.L.D.,
Smeulders, A.W.M.,
Optimization of Length Measurements for Isotropic Distance Transformations
in Three Dimension[s],
CVGIP(55), No. 3, May 1992, pp. 296-306.
Elsevier DOI Estimate length of line from digitization.
BibRef
9205
Verwer, B.J.H.,
Local Distances for Distance Transformations in Two and
Three Dimensions,
PRL(12), 1991, pp. 671-682.
BibRef
9100
Bhattacharya, P.,
A New Three-Dimensional Transform Using a Ternary Product,
TSP(43), No. 12, December 1995, pp. 3081-3084.
BibRef
9512
Svensson, S.[Stina],
Sanniti di Baja, G.[Gabriella],
Using distance transforms to decompose 3D discrete objects,
IVC(20), No. 8, June 2002, pp. 529-540.
Elsevier DOI
0206
BibRef
Svensson, S.[Stina],
Borgefors, G.[Gunilla],
Distance transforms in 3D using four different weights,
PRL(23), No. 12, October 2002, pp. 1407-1418.
Elsevier DOI
0206
BibRef
Borgefors, G.[Gunilla],
Svensson, S.[Stina],
Optimal Local Distances for Distance Transforms in 3D Using an Extended
Neighbourhood,
VF01(113 ff.).
Springer DOI
0209
BibRef
Svensson, S.[Stina],
Nyström, I.[Ingela],
Sanniti di Baja, G.[Gabriella],
Curve skeletonization of surface-like objects in 3D images guided by
voxel classification,
PRL(23), No. 12, October 2002, pp. 1419-1426.
Elsevier DOI
0206
BibRef
Earlier: A2, A3, A1:
Curve Skeletonization by Junction Detection in Surface Skeletons,
VF01(229 ff.).
Springer DOI
0209
BibRef
Borgefors, G.[Gunilla],
Nystrom, I.[Ingela], and
Sanniti di Baja, G.[Gabriella],
Connected Components in 3D Neighbourhoods,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
And:
Quantitative Shape Analysis of Volume Images:
Thinning Volume Objects to Surface Skeletons,
SSAB97(Image Processing)
9703
BibRef
Borgefors, G.[Gunilla],
Nystrom, I.[Ingela],
Sanniti di Baja, G.[Gabriella],
Computing Covering Polyhedra of Non-Convex Objects,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Nyström, I.[Ingela],
Borgefors, G.[Gunilla],
Synthesising objects and scenes using the reverse distance
transformation in 2D and 3D,
CIAP95(441-446).
Springer DOI
9509
BibRef
Svensson, S.[Stina],
Sanniti di Baja, G.[Gabriella],
Simplifying curve skeletons in volume images,
CVIU(90), No. 3, June 2003, pp. 242-257.
Elsevier DOI
0307
BibRef
Earlier: A2, A1:
Editing 3d Binary Images Using Distance Transforms,
ICPR00(Vol II: 1030-1033).
IEEE DOI
0009
See also new shape descriptor for surfaces in 3D images, A.
BibRef
Shih, F.Y.[Frank Y.],
Wu, Y.T.[Yi-Ta],
Three-dimensional Euclidean distance transformation and its application
to shortest path planning,
PR(37), No. 1, January 2004, pp. 79-92.
Elsevier DOI
0311
See also Fast Euclidean Distance Transformation in Two Scans Using a 3X3 Neighborhood.
BibRef
Sintorn, I.M.[Ida-Maria],
Borgefors, G.[Gunilla],
Weighted distance transforms for volume images digitized in elongated
voxel grids,
PRL(25), No. 5, 5 April 2004, pp. 571-580.
Elsevier DOI
0403
BibRef
Earlier:
Weighted distance transforms in rectangular grids,
CIAP01(322-326).
IEEE DOI
0210
equal dimension on 2 axes, lower on third.
BibRef
Yang, L.[Li],
Building k-edge-connected neighborhood graph for distance-based data
projection,
PRL(26), No. 13, 1 October 2005, pp. 2015-2021.
Elsevier DOI
0509
BibRef
Earlier:
K-edge connected neighborhood graph for geodesic distance estimation
and nonlinear data projection,
ICPR04(I: 196-199).
IEEE DOI
0409
BibRef
Yang, L.[Li],
Building k Edge-Disjoint Spanning Trees of Minimum Total Length for
Isometric Data Embedding,
PAMI(27), No. 10, October 2005, pp. 1680-1683.
IEEE DOI
0509
BibRef
Yang, L.[Li],
Building k-Connected Neighborhood Graphs for Isometric Data Embedding,
PAMI(28), No. 5, May 2006, pp. 827-831.
IEEE DOI
0604
BibRef
And:
Building Connected Neighborhood Graphs for Locally Linear Embedding,
ICPR06(IV: 194-197).
IEEE DOI
0609
BibRef
Zhao, D.F.[Dong-Fang],
Yang, L.[Li],
Incremental Isometric Embedding of High-Dimensional Data Using
Connected Neighborhood Graphs,
PAMI(31), No. 1, January 2009, pp. 86-98.
IEEE DOI
0812
BibRef
Coquin, D.[Didier],
Bolon, P.[Philippe],
Integer approximation of 3D chamfer mask coefficients using a scaling
factor in anisotropic grids,
PRL(32), No. 9, 1 July 2011, pp. 1365-1373.
Elsevier DOI
1101
Distance transformation; Chamfer distance; Anisotropic lattice
BibRef
Coquin, D.[Didier],
Bolon, P.[Philippe],
Onea, A.[Alexandru],
3D Nonstationary Local Distance Operator,
ICPR00(Vol III: 951-954).
IEEE DOI
0009
BibRef
Lott, III, G.K.,
Direct Orthogonal Distance to Quadratic Surfaces in 3D,
PAMI(36), No. 9, September 2014, pp. 1888-1892.
IEEE DOI
1408
Approximation algorithms
BibRef
Ilic, V.[Vladimir],
Lindblad, J.[Joakim],
Sladoje, N.[Nataša],
Precise Euclidean distance transforms in 3D from voxel coverage
representation,
PRL(65), No. 1, 2015, pp. 184-191.
Elsevier DOI
1511
Distance transform
BibRef
Dražic, S.[Slobodan],
Sladoje, N.[Nataša],
Lindblad, J.[Joakim],
Estimation of Feret's diameter from pixel coverage representation of
a shape,
PRL(80), No. 1, 2016, pp. 37-45.
Elsevier DOI
1609
Feret's diameter
BibRef
Drost, B.H.[Bertram H.],
Ilic, S.[Slobodan],
Almost constant-time 3D nearest-neighbor lookup using implicit octrees,
MVA(29), No. 2, February 2018, pp. 299-311.
Springer DOI
1802
BibRef
Nguyen, T.[Trung],
Pham, Q.H.[Quang-Hieu],
Le, T.[Tam],
Pham, T.[Tung],
Ho, N.[Nhat],
Hua, B.S.[Binh-Son],
Point-set Distances for Learning Representations of 3D Point Clouds,
ICCV21(10458-10467)
IEEE DOI
2203
Point cloud compression, Measurement, Training, Solid modeling,
Systematics, Representation learning,
BibRef
Shamai, G.[Gil],
Kimmel, R.[Ron],
Geodesic Distance Descriptors,
CVPR17(3624-3632)
IEEE DOI
1711
Eigenvalues and eigenfunctions, Image reconstruction, Manifolds,
Measurement, Minimization, Shape, Symmetric, matrices
BibRef
Bhunre, P.K.[Piyush K.],
Bhowmick, P.[Partha],
Mukhopadhyay, J.[Jayanta],
On Characterization and Decomposition of Isothetic Distance Functions
for 2-Manifolds,
IWCIA17(212-225).
Springer DOI
1706
BibRef
Earlier:
Solving Distance Geometry Problem with Inexact Distances in Integer
Plane,
CTIC16(277-289).
Springer DOI
1608
BibRef
Rebatel, F.[Fabien],
Thiel, É.[Édouard],
Metric Bases for Polyhedral Gauges,
DGCI11(116-128).
Springer DOI
1104
used for graphs with intrinsic distance, planar city-block, etc. Apply to
polyhedral gauges.
BibRef
Cheng, M.[Ming],
Huang, S.H.[Shao-Hui],
Huang, X.Y.[Xiao-Yang],
Wang, B.L.[Bo-Liang],
Anisotropic 3-D Distance Transform Based on Contour Propagation,
CISP09(1-4).
IEEE DOI
0910
BibRef
Huang, Z.J.[Zhang-Jin],
Wang, G.P.[Guo-Ping],
Bounding the Distance between a Loop Subdivision Surface and Its Limit
Mesh,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Yoshida, T.,
Distance metric for motion vector histograms based on human perceptual
characteristics,
ICIP02(I: 904-907).
IEEE DOI
0210
BibRef
Twining, C.J.,
Marsland, S.,
Taylor, C.J.,
Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms,
BMVC02(Face and Gesture Processing).
0208
BibRef
Borgefors, G.,
Guo, H.,
Weighted Distance Transform Hyperspheres in Four Dimensions,
SSAB97(Image Processing)
9703
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Similarity Measure, Distance Transforms and Functions for Objects and Shapes .