Borzuchowski, J.,
Schulz, K.,
Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using
Hyperspectral Remote Sensing under Controlled Glass House Conditions
for Spring Barley and Sugar Beet,
RS(2), No. 7, July 2010, pp. 1702-1721.
DOI Link
1203
BibRef
Yu, K.,
Lenz-Wiedemann, V.I.S.,
Leufen, G.,
Hunsche, M.,
Noga, G.,
Chen, X.P.,
Bareth, G.,
Assessing Hyperspectral Vegetation Indices for Estimating Leaf
Chlorophyll Concentration of Summer Barley,
AnnalsPRS(I-7), No. 2012, pp. 89-94.
DOI Link
1209
BibRef
Yu, K.[Kang],
Leufen, G.[Georg],
Hunsche, M.[Mauricio],
Noga, G.[Georg],
Chen, X.P.[Xin-Ping],
Bareth, G.[Georg],
Investigation of Leaf Diseases and Estimation of Chlorophyll
Concentration in Seven Barley Varieties Using Fluorescence and
Hyperspectral Indices,
RS(6), No. 1, 2013, pp. 64-86.
DOI Link
1402
BibRef
Yu, K.[Kang],
Lenz-Wiedemann, V.[Victoria],
Chen, X.P.[Xin-Ping],
Bareth, G.[Georg],
Estimating leaf chlorophyll of barley at different growth stages
using spectral indices to reduce soil background and canopy structure
effects,
PandRS(97), No. 1, 2014, pp. 58-77.
Elsevier DOI
1410
Leaf chlorophyll
BibRef
Bendig, J.[Juliane],
Bolten, A.[Andreas],
Bennertz, S.[Simon],
Broscheit, J.[Janis],
Eichfuss, S.[Silas],
Bareth, G.[Georg],
Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived
from UAV-Based RGB Imaging,
RS(6), No. 11, 2014, pp. 10395-10412.
DOI Link
1412
BibRef
Brocks, S.[Sebastian],
Bareth, G.[Georg],
Estimating Barley Biomass with Crop Surface Models from Oblique RGB
Imagery,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Tilly, N.[Nora],
Aasen, H.[Helge],
Bareth, G.[George],
Fusion of Plant Height and Vegetation Indices for the Estimation of
Barley Biomass,
RS(7), No. 9, 2015, pp. 11449.
DOI Link
1511
BibRef
And:
Correction:
RS(7), No. 12, 2015, pp. 15878.
DOI Link
1601
BibRef
Näsi, R.[Roope],
Viljanen, N.[Niko],
Kaivosoja, J.[Jere],
Alhonoja, K.[Katja],
Hakala, T.[Teemu],
Markelin, L.[Lauri],
Honkavaara, E.[Eija],
Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV
and Aircraft Based Spectral and Photogrammetric 3D Features,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Cicuéndez, V.[Víctor],
Rodríguez-Rastrero, M.[Manuel],
Recuero, L.[Laura],
Huesca, M.[Margarita],
Schmid, T.[Thomas],
Inclán, R.[Rosa],
Litago, J.[Javier],
Sánchez-Girón, V.[Víctor],
Palacios-Orueta, A.[Alicia],
First Insights on Soil Respiration Prediction across the Growth
Stages of Rainfed Barley Based on Simulated MODIS and Sentinel-2
Spectral Indices,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Shawon, A.R.[Ashifur Rahman],
Ko, J.[Jonghan],
Jeong, S.[Seungtaek],
Shin, T.[Taehwan],
Lee, K.D.[Kyung Do],
Shim, S.I.[Sang In],
Two-Dimensional Simulation of Barley Growth and Yield Using a Model
Integrated with Remote-Controlled Aerial Imagery,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Liu, Y.[Yu],
Hatou, K.[Kenji],
Aihara, T.[Takanori],
Kurose, S.[Sakuya],
Akiyama, T.[Tsutomu],
Kohno, Y.S.[Yasu-Shi],
Lu, S.[Shan],
Omasa, K.[Kenji],
A Robust Vegetation Index Based on Different UAV RGB Images to
Estimate SPAD Values of Naked Barley Leaves,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Wengert, M.[Matthias],
Piepho, H.P.[Hans-Peter],
Astor, T.[Thomas],
Graß, R.[Rüdiger],
Wijesingha, J.[Jayan],
Wachendorf, M.[Michael],
Assessing Spatial Variability of Barley Whole Crop Biomass Yield and
Leaf Area Index in Silvoarable Agroforestry Systems Using UAV-Borne
Remote Sensing,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Herzig, P.[Paul],
Borrmann, P.[Peter],
Knauer, U.[Uwe],
Klück, H.C.[Hans-Christian],
Kilias, D.[David],
Seiffert, U.[Udo],
Pillen, K.[Klaus],
Maurer, A.[Andreas],
Evaluation of RGB and Multispectral Unmanned Aerial Vehicle (UAV)
Imagery for High-Throughput Phenotyping and Yield Prediction in
Barley Breeding,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Harfenmeister, K.[Katharina],
Itzerott, S.[Sibylle],
Weltzien, C.[Cornelia],
Spengler, D.[Daniel],
Detecting Phenological Development of Winter Wheat and Winter Barley
Using Time Series of Sentinel-1 and Sentinel-2,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, J.L.[Ji-Long],
Tan, H.Y.[Hai-Yun],
Ji, Y.Y.[Yong-Yue],
Tang, Q.Q.[Qing-Qing],
Yan, L.Y.[Ling-Yun],
Chen, Q.[Qiao],
Tan, D.M.[Da-Ming],
Evapotranspiration Components Dynamic of Highland Barley Using PML ET
Product in Tibet,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sipols, A.E.[Ana E.],
Valcarce-Diñeiro, R.[Rubén],
Santos-Martín, M.T.[Maria Teresa],
Sánchez, N.[Nilda],
de Blas, C.S.[Clara Simón],
Time Series of Quad-Pol C-Band Synthetic Aperture Radar for the
Forecasting of Crop Biophysical Variables of Barley Fields Using
Statistical Techniques,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Duffková, R.[Renata],
Poláková, L.[Lucie],
Lukas, V.[Vojtech],
Fucík, P.[Petr],
The Effect of Controlled Tile Drainage on Growth and Grain Yield of
Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture
Content,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Shin, T.[Taehwan],
Ko, J.[Jonghan],
Jeong, S.[Seungtaek],
Kang, J.[Jiwoo],
Lee, K.[Kyungdo],
Shim, S.[Sangin],
Assimilation of Deep Learning and Machine Learning Schemes into a
Remote Sensing-Incorporated Crop Model to Simulate Barley and Wheat
Productivities,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Khoramshahi, E.[Ehsan],
Näsi, R.[Roope],
Rua, S.[Stefan],
Oliveira, R.A.[Raquel A.],
Päivänsalo, A.[Axel],
Niemeläinen, O.[Oiva],
Niskanen, M.[Markku],
Honkavaara, E.[Eija],
A Novel Deep Multi-Image Object Detection Approach for Detecting
Alien Barleys in Oat Fields Using RGB UAV Images,
RS(15), No. 14, 2023, pp. 3582.
DOI Link
2307
BibRef
Thomas, L.F.[Leon-Friedrich],
Änäkkälä, M.[Mikael],
Lajunen, A.[Antti],
Weakly Supervised Perennial Weed Detection in a Barley Field,
RS(15), No. 11, 2023, pp. 2877.
DOI Link
2306
BibRef
Urquizo, J.[Julio],
Ccopi, D.[Dennis],
Ortega, K.[Kevin],
Castañeda, I.[Italo],
Patricio, S.[Solanch],
Passuni, J.[Jorge],
Figueroa, D.[Deyanira],
Enriquez, L.[Lucia],
Ore, Z.[Zoila],
Pizarro, S.[Samuel],
Estimation of Forage Biomass in Oat (Avena sativa) Using Agronomic
Variables through UAV Multispectral Imaging,
RS(16), No. 19, 2024, pp. 3720.
DOI Link
2410
BibRef
Zhang, P.P.[Peng-Peng],
Lu, B.[Bing],
Shang, J.L.[Jia-Li],
Wang, X.Y.[Xing-Yu],
Hou, Z.W.[Zhen-Wei],
Jin, S.J.[Shu-Jian],
Yang, Y.D.[Ya-Dong],
Zang, H.D.[Hua-Dong],
Ge, J.Y.[Jun-Yong],
Zeng, Z.[Zhaohai],
Ensemble Learning for Oat Yield Prediction Using Multi-Growth Stage
UAV Images,
RS(16), No. 23, 2024, pp. 4575.
DOI Link
2501
BibRef
Hu, J.B.[Jing-Bo],
Du, X.[Xin],
Li, Q.Z.[Qiang-Zi],
Zhang, Y.[Yuan],
Wang, H.Y.[Hong-Yan],
Xu, J.Y.[Jing-Yuan],
Xiao, J.[Jing],
Shen, Y.Q.[Yun-Qi],
Dong, Y.[Yong],
Hu, H.X.[Hao-Xuan],
Yan, S.[Sifeng],
Gong, S.G.[Shu-Guang],
Aboveground Biomass Estimation of Highland Barley in Qinghai-Tibet
Plateau: Exploring the Advantages of Time Series Data and Terrain
Effects,
RS(17), No. 4, 2025, pp. 655.
DOI Link
2502
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Potato Crop Analysis, Production, Detection, Health, Change .