4.11.5.1.1 Retinex for Low Light Images

Chapter Contents (Back)
Retinex.
See also Color Constancy, Retinex.
See also Low Light Color Enhancement.
See also Low Light Enhancement.

Liu, C.J.[Chang-Jiang], Cheng, I.[Irene], Zhang, Y.[Yi], Basu, A.[Anup],
Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency,
PandRS(128), No. 1, 2017, pp. 16-26.
Elsevier DOI 1706
Multi-scale, Retinex BibRef

Li, M.D.[Ma-Ding], Liu, J.Y.[Jia-Ying], Yang, W.H.[Wen-Han], Sun, X.Y.[Xiao-Yan], Guo, Z.M.[Zong-Ming],
Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model,
IP(27), No. 6, June 2018, pp. 2828-2841.
IEEE DOI 1804
image enhancement, optimisation, augmented Lagrange multiplier based alternating direction minimization algorithm, structure-revealing. BibRef

Ren, X., Yang, W., Cheng, W., Liu, J.,
LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model,
IP(29), 2020, pp. 5862-5876.
IEEE DOI 2005
Lighting, Robustness, Noise reduction, Histograms, Minimization, Visualization, Estimation, Low-light enhancement, denoising, low-rank decomposition BibRef

Gu, Z., Li, F., Fang, F., Zhang, G.,
A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light,
IP(29), 2020, pp. 3239-3253.
IEEE DOI 2002
Retinex, low-light image, fractional-order, variational model, image enhancement, reflectance, illumination BibRef

Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.,
Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement,
IP(30), 2021, pp. 2072-2086.
IEEE DOI 2101
Lighting, Image restoration, Image enhancement, Image coding, Noise reduction, Atmospheric modeling, Minimization, denoising BibRef

Li, M.[Miao], Zhou, D.M.[Dong-Ming], Nie, R.C.[Ren-Can], Xie, S.D.[Shi-Dong], Liu, Y.Y.[Yan-Yu],
AMBCR: Low-Light Image Enhancement via Attention Guided Multi-Branch Construction and Retinex Theory,
IET-IPR(15), No. 9, 2021, pp. 2020-2038.
DOI Link 2106
attention networks, low-light image enhancement, multi-branch construction, Retinex theory BibRef

Yang, J.Y.[Jing-Yu], Xu, Y.W.[Yu-Wei], Yue, H.J.[Huan-Jing], Jiang, Z.Y.[Zhong-Yu], Li, K.[Kun],
Low-light image enhancement based on Retinex decomposition and adaptive gamma correction,
IET-IPR(15), No. 5, 2021, pp. 1189-1202.
DOI Link 2106
BibRef

Kong, X.Y.[Xiang-Yu], Liu, L.[Lei], Qian, Y.S.[Yun-Sheng],
Low-Light Image Enhancement via Poisson Noise Aware Retinex Model,
SPLetters(28), 2021, pp. 1540-1544.
IEEE DOI 2108
Lighting, Reflectivity, Kernel, Image enhancement, Noise reduction, Photonics, Standards, Image denoising, low-light image enhancement, Retinex model BibRef

Lv, X.Q.[Xiao-Qian], Sun, Y.J.[Yu-Jing], Zhang, J.[Jun], Jiang, F.[Feng], Zhang, S.P.[Sheng-Ping],
Low-light image enhancement via deep Retinex decomposition and bilateral learning,
SP:IC(99), 2021, pp. 116466.
Elsevier DOI 2111
Low-light image enhancement, Image decomposition, Deep neural network, Attention, Illumination adjustment BibRef

Zhao, Z.J.[Zun-Jin], Xiong, B.S.[Bang-Shu], Wang, L.[Lei], Ou, Q.F.[Qiao-Feng], Yu, L.[Lei], Kuang, F.[Fa],
RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement,
CirSysVideo(32), No. 3, March 2022, pp. 1076-1088.
IEEE DOI 2203
Lighting, Couplings, Image enhancement, Task analysis, Histograms, Cameras, Low-light image enhancement, zero-reference BibRef

Lin, Y.H.[Yi-Hsien], Lu, Y.C.[Yi-Chang],
Low-Light Enhancement Using a Plug-and-Play Retinex Model With Shrinkage Mapping for Illumination Estimation,
IP(31), 2022, pp. 4897-4908.
IEEE DOI 2208
Lighting, Optimization, Image edge detection, Stars, Learning systems, Linear programming, Image quality, alternating direction method of multipliers BibRef

Rasheed, M.T.[Muhammad Tahir], Guo, G.Y.[Gui-Yu], Shi, D.M.[Da-Ming], Khan, H.[Hufsa], Cheng, X.C.[Xiao-Chun],
An Empirical Study on Retinex Methods for Low-Light Image Enhancement,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Wang, Y.[Yong], Li, B.[Bo], Jiang, L.J.[Li-Jun], Yang, W.M.[Wen-Ming],
R2Net: Relight the restored low-light image based on complementarity of illumination and reflection,
SP:IC(108), 2022, pp. 116800.
Elsevier DOI 2209
Low-light image enhancement, Retinex-based method, Attention module, Image restoration BibRef

Jia, F.[Fan], Wong, H.S.[Hok Shing], Wang, T.[Tiange], Zeng, T.Y.[Tie-Yong],
A reflectance re-weighted Retinex model for non-uniform and low-light image enhancement,
PR(144), 2023, pp. 109823.
Elsevier DOI 2310
Image enhancement, Variational method, Retinex model, Non-uniform enhancement BibRef

Jia, F.[Fan], Mao, S.[Shen], Tai, X.C.[Xue-Cheng], Zeng, T.Y.[Tie-Yong],
A Variational Model for Nonuniform Low-Light Image Enhancement,
SIIMS(17), No. 1, 2024, pp. 1-30.
DOI Link 2404
BibRef

Ma, Q.T.[Qian-Ting], Wang, Y.[Yang], Zeng, T.Y.[Tie-Yong],
A Contrast-Saturation Adaptive Model for Low-Light Image Enhancement,
SIIMS(18), No. 1, 2025, pp. 765-787.
DOI Link 2504
BibRef

Hai, J.[Jiang], Hao, Y.T.[Yu-Tong], Zou, F.Z.[Feng-Zhu], Lin, F.[Fang], Han, S.C.[Song-Chen],
Advanced RetinexNet: A fully convolutional network for low-light image enhancement,
SP:IC(112), 2023, pp. 116916.
Elsevier DOI 2302
Retinex, Low-light image enhancement, Image processing, Fully convolutional network BibRef

Yang, J.[Jie], Wang, J.[Jun], Dong, L.L.[Lin-Lu], Chen, S.Y.[Shu-Yuan], Wu, H.[Hao], Zhong, Y.W.[Ya-Wen],
Optimization algorithm for low-light image enhancement based on Retinex theory,
IET-IPR(17), No. 2, 2023, pp. 505-517.
DOI Link 2302
fast and robust fuzzy C-means, guided filtering, image enhancement, low-light image BibRef

Wang, Y.N.[Yong-Nian], Zhang, Z.B.[Zhi-Bin],
Global attention retinex network for low light image enhancement,
JVCIR(92), 2023, pp. 103795.
Elsevier DOI 2303
Low light image enhancement, Retinex, Global attention, Channel attention BibRef

Lu, H.X.[Hao-Xiang], Liu, Z.B.[Zhen-Bing], Lan, R.[Rushi], Pan, X.P.[Xi-Peng], Gong, J.M.[Jun-Ming],
Retinex-inspired contrast stretch and detail boosting for lowlight image enhancement,
IET-IPR(17), No. 6, 2023, pp. 1718-1738.
DOI Link 2305
image enhancement, image fusion, image processing BibRef

Yang, B.[Biao], Zheng, L.L.[Liang-Liang], Wu, X.B.[Xia-Bin], Gao, T.[Tan], Chen, X.L.[Xiao-Long],
Low-Illumination Image Enhancement Using Local Gradient Relative Deviation for Retinex Models,
RS(15), No. 17, 2023, pp. 4327.
DOI Link 2310
BibRef

Ma, L.[Long], Liu, R.S.[Ri-Sheng], Wang, Y.Y.[Yi-Yang], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Low-Light Image Enhancement via Self-Reinforced Retinex Projection Model,
MultMed(25), 2023, pp. 3573-3586.
IEEE DOI 2310
BibRef

An, N.[Nan], Ma, L.[Long], Han, G.C.[Guang-Chao], Fan, X.[Xin], Liu, R.S.[Ri-Sheng],
Striving for Faster and Better: A One-Layer Architecture With Auto Re-Parameterization for Low-Light Image Enhancement,
CirSysVideo(35), No. 8, August 2025, pp. 7455-7470.
IEEE DOI Code:
WWW Link. 2508
Visualization, Image enhancement, Computational efficiency, Lighting, Reflectivity, Computational modeling, Optimization, tiered architecture search BibRef

Ma, L.[Long], Ma, T.Y.[Teng-Yu], Liu, R.S.[Ri-Sheng], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Toward Fast, Flexible, and Robust Low-Light Image Enhancement,
CVPR22(5627-5636)
IEEE DOI 2210
Training, Adaptation models, Visualization, Image segmentation, Computational modeling, Semantics, Lighting, Low-level vision BibRef

Ma, L.[Long], Ma, T.Y.[Teng-Yu], Xu, C.P.[Cheng-Pei], Liu, J.Y.[Jin-Yuan], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan], Liu, R.S.[Ri-Sheng],
Learning with Self-Calibrator for Fast and Robust Low-Light Image Enhancement,
PAMI(47), No. 10, October 2025, pp. 9095-9112.
IEEE DOI 2510
Lighting, Image enhancement, Training, Visualization, Estimation, Convergence, Architecture, Reflectivity, Optimization, low-light vision BibRef

Ma, Q.T.[Qian-Ting], Wang, Y.[Yang], Zeng, T.Y.[Tie-Yong],
Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising,
MultMed(25), 2023, pp. 5580-5588.
IEEE DOI 2311
BibRef

Zhao, Z.J.[Zun-Jin], Lin, H.X.[He-Xiu], Shi, D.M.[Da-Ming], Zhou, G.Q.[Guo-Qing],
A non-regularization self-supervised Retinex approach to low-light image enhancement with parameterized illumination estimation,
PR(146), 2024, pp. 110025.
Elsevier DOI Code:
WWW Link. 2311
Low-light image enhancement, Illumination estimation, Parameterization, Bilateral grid, Non-regularization BibRef

Zhou, M.L.[Ming-Liang], Wu, X.T.[Xing-Tai], Wei, X.K.[Xue-Kai], Xiang, T.[Tao], Fang, B.[Bin], Kwong, S.[Sam],
Low-Light Enhancement Method Based on a Retinex Model for Structure Preservation,
MultMed(26), 2024, pp. 650-662.
IEEE DOI 2402
Lighting, Reflectivity, Image enhancement, Dispersion, Standards, Sensitivity, Histograms, Coefficient of variation, retinex model, structure-preserving BibRef

Li, X.F.[Xiao-Fang], Wang, W.W.[Wei-Wei], Feng, X.C.[Xiang-Chu], Li, M.[Min],
Deep Parametric Retinex Decomposition Model for Low-Light Image Enhancement,
CVIU(241), 2024, pp. 103948.
Elsevier DOI 2403
Low-light image enhancement, Parametric Retinex decomposition, Deep network, Denoising BibRef

Wang, Z.X.[Ze-Xin], Qingge, L.[Letu], Pan, Q.Y.[Qing-Yi], Yang, P.[Pei],
Retinex decomposition based low-light image enhancement by integrating Swin transformer and U-Net-like architecture,
IET-IPR(18), No. 11, 2024, pp. 3028-3041.
DOI Link 2409
low-light image enhancement, residual connection, swin transformer, U-Net BibRef

Weng, R.[Ruidi], Zhang, Y.[Ya], Wu, H.Y.[Han-Yang], Wang, W.Y.[Wei-Yong], Wang, D.Y.[Dong-Yun],
The Retinex enhancement algorithm for low-light intensity image based on improved illumination map,
IET-IPR(18), No. 12, 2024, pp. 3381-3392.
DOI Link 2411
image denoising, image enhancement, image processing BibRef

Chen, L.W.[Li-Wei], Liu, Y.Y.[Yan-Yan], Li, G.[Guoning], Hong, J.T.[Jin-Tao], Li, J.[Jin], Peng, J.T.[Jian-Tao],
Double-function enhancement algorithm for low-illumination images based on retinex theory,
JOSA-A(40), No. 2, February 2023, pp. 316-325.
DOI Link 2503
Deep learning, Image metrics, Image quality, Machine vision, Neural networks, Wavelet transforms BibRef

Chen, X.Y.[Xin-Yu], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
Low-Light Image Enhancement Based on Exponential Retinex Variational Model,
IET-IPR(15), No. 12, 2021, pp. 3003-3019.
DOI Link 2109
BibRef

Xu, X.T.[Xin-Tao], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Attention-Based Multi-Channel Feature Fusion Enhancement Network to Process Low-Light Images,
IET-IPR(16), No. 12, 2022, pp. 3374-3393.
DOI Link 2209
BibRef

Yu, N.[Nana], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
LBP-Based Progressive Feature Aggregation Network for Low-Light Image Enhancement,
IET-IPR(16), No. 2, 2022, pp. 535-553.
DOI Link 2201
BibRef

Feng, X.M.[Xiao-Mei], Li, J.J.[Jin-Jiang], Fan, H.[Hui],
Hierarchical guided network for low-light image enhancement,
IET-IPR(15), No. 13, 2021, pp. 3254-3266.
DOI Link 2110
BibRef

Li, J.J.[Jin-Jiang], Feng, X.M.[Xiao-Mei], Hua, Z.[Zhen],
Low-Light Image Enhancement via Progressive-Recursive Network,
CirSysVideo(31), No. 11, November 2021, pp. 4227-4240.
IEEE DOI 2112
Image enhancement, Lighting, Training, Feature extraction, Brightness, Task analysis, Image color analysis, attention model BibRef

Huang, Z.X.[Zhi-Xiong], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Attention-Based Dual-Color Space Fusion Network for Low-Light Image Enhancement,
SP:IC(119), 2023, pp. 117060.
Elsevier DOI 2310
Low-light image enhancement, Dual-color space, Adaptive large-kernel attention, Deep learning
See also Underwater Image Enhancement via LBP-Based Attention Residual Network. BibRef

Cai, R.T.[Rong-Tai], Chen, Z.K.[Ze-Kun],
Brain-like retinex: A biologically plausible retinex algorithm for low light image enhancement,
PR(136), 2023, pp. 109195.
Elsevier DOI 2301
Retinex, Low light image enhancement, Contour detection, Edge detection, Brain-inspired computation, Color constancy, Retinal circuit BibRef

Gao, X.Y.[Xing-Yun], Zhang, W.B.[Wei-Bo], Zhuang, P.X.[Pei-Xian], Zhao, W.[Wenyi], Zhang, W.D.[Wei-Dong],
RDANet: Retinex decomposition attention network for low-light image enhancement,
PRL(197), 2025, pp. 175-181.
Elsevier DOI 2510
Low-light image enhancement, Cascaded attention, Retinex decomposition BibRef

Qiang, H.[Hu], Zhong, Y.Z.[Yu-Zhong], Liao, Y.W.[Yi-Wei], You, X.X.[Xing-Xing], Zhu, Y.Q.[Yu-Qi], Dian, S.[Songyi],
GWRetinex-Net: Gray World Retinex Network for Low-Light Image Enhancement,
CirSysVideo(35), No. 10, October 2025, pp. 9636-9649.
IEEE DOI 2510
Lighting, Reflection, Image color analysis, Image enhancement, Distortion, Degradation, Deep learning, Brightness, Training, Noise, color balance BibRef

Li, W.C.[Wen-Chao], Wen, S.Y.[Shu-Yuan], Zhu, J.H.[Jin-Hao], Ou, Q.[Qiaofeng], Guo, Y.C.[Yan-Chun], Chen, J.[Jiabao], Xiong, B.S.[Bang-Shu],
ZERRIN-Net: Adaptive low-light image enhancement using Retinex decomposition and noise extraction,
SP:IC(138), 2025, pp. 117345.
Elsevier DOI Code:
WWW Link. 2509
Low-light image enhancement, Image denoise, Zero-shot learning, Retinex decomposition BibRef

Yi, X.P.[Xun-Peng], Xu, H.[Han], Zhang, H.[Hao], Tang, L.F.[Lin-Feng], Ma, J.Y.[Jia-Yi],
Diff-Retinex++: Retinex-Driven Reinforced Diffusion Model for Low-Light Image Enhancement,
PAMI(47), No. 8, August 2025, pp. 6823-6841.
IEEE DOI 2507
BibRef
Earlier:
Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model,
ICCV23(12268-12277)
IEEE DOI 2401
Diffusion models, Image enhancement, Image restoration, Degradation, Lighting, Image synthesis, Noise reduction, mixture of experts BibRef

Zhang, K.B.[Kai-Bing], Yuan, C.[Cheng], Li, J.[Jie], Gao, X.B.[Xin-Bo], Li, M.Q.[Min-Qi],
Multi-Branch and Progressive Network for Low-Light Image Enhancement,
IP(32), 2023, pp. 2295-2308.
IEEE DOI 2305
Image enhancement, Lighting, Degradation, Image color analysis, Network architecture, Technological innovation, Task analysis, recurrent network BibRef

Wang, H.K.[Hua-Ke], Hou, X.S.[Xing-Song], Li, J.T.[Ju-Tao], Yan, Y.[Yadi], Sun, W.K.[Wen-Ke], Zeng, X.[Xin], Zhang, K.B.[Kai-Bing], Cao, X.Y.[Xiang-Yong],
Multi-Scale Retinex Unfolding Network for Low-Light Image Enhancement,
MultMed(27), 2025, pp. 5709-5721.
IEEE DOI 2509
Image enhancement, Lighting, Computational modeling, Optimization, Transformers, Image restoration, Image color analysis, Data mining, scale-aware proximal mapping BibRef

Wu, K.[Kangle], Huang, J.[Jun], Ma, Y.[Yong], Fan, F.[Fan], Ma, J.Y.[Jia-Yi],
Cycle-Retinex: Unpaired Low-Light Image Enhancement via Retinex-Inline CycleGAN,
MultMed(26), 2024, pp. 1213-1228.
IEEE DOI 2402
Image enhancement, Image color analysis, Image restoration, Lighting, Colored noise, Degradation, Deep learning, unsupervised learning BibRef

Xu, H.[Han], Zhang, H.[Hao], Yi, X.P.[Xun-Peng], Ma, J.Y.[Jia-Yi],
CRetinex: A Progressive Color-Shift Aware Retinex Model for Low-Light Image Enhancement,
IJCV(132), No. 1, January 2024, pp. 3610-3632.
Springer DOI 2409
BibRef

Kang, S.C.[Si-Cong], Gao, S.B.[Shuai-Bo], Wu, W.H.[Wen-Hui], Wang, X.[Xu], Wang, S.[Shuoyao], Qiu, G.P.[Guo-Ping],
Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement,
CirSysVideo(34), No. 12, December 2024, pp. 13244-13256.
IEEE DOI Code:
WWW Link. 2501
Lighting, Image restoration, Reflectivity, Diffusion models, Feature extraction, Image color analysis, Image enhancement, retinex decomposition BibRef

Liu, C.X.[Chun-Xiao], Wang, Z.[Zelong], Birch, P.[Philip], Wang, X.[Xun],
Efficient Retinex-Based Framework for Low-Light Image Enhancement Without Additional Networks,
CirSysVideo(35), No. 5, May 2025, pp. 4896-4909.
IEEE DOI 2505
Lighting, Degradation, Image enhancement, Image color analysis, Estimation, Transforms, Colored noise, multiscale attention network BibRef

Guo, R.[Ruoyu], Pagnucco, M.[Maurice], Song, Y.[Yang],
Exploring Multi-Feature Relationship in Retinex Decomposition for Low-Light Image Enhancement,
MultMed(27), 2025, pp. 7271-7284.
IEEE DOI 2510
Reflectivity, Lighting, Image color analysis, Feature extraction, Image enhancement, Training, Brightness, Unsupervised learning, Retinex theory BibRef

Ma, A.[Ailin], Jiang, H.[Hai], Liang, B.B.[Bin-Bin], Han, S.C.[Song-Chen],
Incorporating Fourier Transformation With Diffusion Models for Low-Light Image Enhancement,
SPLetters(32), 2025, pp. 2354-2358.
IEEE DOI 2507
Image restoration, Image reconstruction, Diffusion models, Noise reduction, Training, Degradation, Image enhancement, low-light image enhancement BibRef

Jiang, H.[Hai], Luo, A.[Ao], Liu, X.H.[Xiao-Hong], Han, S.C.[Song-Chen], Liu, S.C.[Shuai-Cheng],
Lightendiffusion: Unsupervised Low-light Image Enhancement with Latent-retinex Diffusion Models,
ECCV24(XLVIII: 161-179).
Springer DOI 2412
BibRef


Fu, H.Y.[Hui-Yuan], Zheng, W.K.[Wen-Kai], Meng, X.Y.[Xiang-Yu], Wang, X.[Xin], Wang, C.M.[Chuan-Ming], Ma, H.D.[Hua-Dong],
You Do Not Need Additional Priors or Regularizers in Retinex-Based Low-Light Image Enhancement,
CVPR23(18125-18134)
IEEE DOI 2309
BibRef

Zhang, J.[Jin], Jin, H.Y.[Hai-Yan], Su, H.N.[Hao-Nan], Zhang, Y.L.[Yuan-Lin], Xiao, Z.L.[Zhao-Lin], Wang, B.[Bin],
A CNN-Transformer Network Based SNR Guided High Frequency Reconstruction for Low Light Image Enhancement,
ICIP24(1649-1655)
IEEE DOI 2411
Visualization, Image edge detection, Noise reduction, Transformers, Image decomposition, Image restoration, High frequency, SNR BibRef

Cai, Y.H.[Yuan-Hao], Bian, H.[Hao], Lin, J.[Jing], Wang, H.Q.[Hao-Qian], Timofte, R.[Radu], Zhang, Y.L.[Yu-Lun],
Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement,
ICCV23(12470-12479)
IEEE DOI Code:
WWW Link. 2401
BibRef

Lecert, A.[Arthur], Fraisse, R.[Renaud], Roumy, A.[Aline], Guillemot, C.[Christine],
A New Regularization for Retinex Decomposition of Low-Light Images,
ICIP22(906-910)
IEEE DOI 2211
Measurement, Lighting, Image restoration, Image enhancement, Light sources, Low light enhancement, Image decomposition, Neural Networks BibRef

Wu, Q.[Qi], Qin, M.L.[Mao-Ling], Song, J.Q.[Jing-Qi], Liu, L.[Li],
An Improved Method of Low Light Image Enhancement Based on Retinex,
ICIVC21(233-241)
IEEE DOI 2112
Lighting, Reflection, Image decomposition, Feeds, Task analysis, Image enhancement, low light, image enhancement, Retinex BibRef

Liu, R.S.[Ri-Sheng], Ma, L.[Long], Zhang, J.[Jiaao], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Retinex-inspired Unrolling with Cooperative Prior Architecture Search for Low-light Image Enhancement,
CVPR21(10556-10565)
IEEE DOI 2111
Deep learning, Architecture, Computational modeling, Lighting, Search problems BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Color Constancy, Recognition, Simon Fraser Univ. (Funt and Finlayson) Papers .


Last update:Nov 2, 2025 at 14:03:07