13.6.4.1 Knowledge Distillation for Object Detection

Chapter Contents (Back)
Knowledge Distillation. Object Detection. Distillation. Knowledge-Based Vision.
See also Knowledge Distillation.

Chen, J.Z.[Jing-Zhou], Wang, S.H.[Shi-Hao], Chen, L.[Ling], Cai, H.B.[Hai-Bin], Qian, Y.T.[Yun-Tao],
Incremental Detection of Remote Sensing Objects With Feature Pyramid and Knowledge Distillation,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI 2112
Feature extraction, Remote sensing, Training, Object detection, Adaptation models, Proposals, Detectors, Deep learning, remote sensing BibRef

Yang, D.B.[Dong-Bao], Zhou, Y.[Yu], Zhang, A.[Aoting], Sun, X.R.[Xu-Rui], Wu, D.[Dayan], Wang, W.P.[Wei-Ping], Ye, Q.X.[Qi-Xiang],
Multi-View correlation distillation for incremental object detection,
PR(131), 2022, pp. 108863.
Elsevier DOI 2208
Object detection, Incremental learning, Catastrophic forgetting, Knowledge distillation BibRef

Wang, G.H.[Guo-Hua], Ge, Y.F.[Yi-Fan], Wu, J.X.[Jian-Xin],
Distilling Knowledge by Mimicking Features,
PAMI(44), No. 11, November 2022, pp. 8183-8195.
IEEE DOI 2210
Hash functions, Training, Standards, Residual neural networks, Radio frequency, Numerical models, Convolutional neural networks, object detection BibRef

He, Y.Y.[Yin-Yin], Wu, J.X.[Jian-Xin], Wei, X.S.[Xiu-Shen],
Distilling Virtual Examples for Long-tailed Recognition,
ICCV21(235-244)
IEEE DOI 2203
Visualization, Predictive models, Benchmark testing, Recognition and classification, BibRef

Zhang, L.[Li], Wu, X.Q.[Xiang-Qian],
Latent Space Semantic Supervision Based on Knowledge Distillation for Cross-Modal Retrieval,
IP(31), 2022, pp. 7154-7164.
IEEE DOI 2212
Feature extraction, Semantics, Object detection, Correlation, Context modeling, Recurrent neural networks, Multitasking, knowledge distillation BibRef

Tang, R.N.[Rui-Ning], Liu, Z.Y.[Zhen-Yu], Li, Y.G.[Yang-Guang], Song, Y.[Yiguo], Liu, H.[Hui], Wang, Q.[Qide], Shao, J.[Jing], Duan, G.F.[Gui-Fang], Tan, J.R.[Jiang-Rong],
Task-balanced distillation for object detection,
PR(137), 2023, pp. 109320.
Elsevier DOI 2302
Object detection, Knowledge distillation BibRef

Liu, Y.F.[Yi-Fan], Shu, C.Y.[Chang-Yong], Wang, J.D.[Jing-Dong], Shen, C.H.[Chun-Hua],
Structured Knowledge Distillation for Dense Prediction,
PAMI(45), No. 6, June 2023, pp. 7035-7049.
IEEE DOI 2305
Task analysis, Semantics, Training, Object detection, Image segmentation, Estimation, Knowledge engineering, dense prediction BibRef

Zhou, W.[Wujie], Sun, F.[Fan], Jiang, Q.P.[Qiu-Ping], Cong, R.[Runmin], Hwang, J.N.[Jenq-Neng],
WaveNet: Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection,
IP(32), 2023, pp. 3027-3039.
IEEE DOI 2306
Transformers, Feature extraction, Discrete wavelet transforms, Training, Knowledge engineering, Cross layer design, edge-aware module BibRef

Li, Z.H.[Zhi-Hui], Xu, P.F.[Peng-Fei], Chang, X.J.[Xiao-Jun], Yang, L.[Luyao], Zhang, Y.Y.[Yuan-Yuan], Yao, L.[Lina], Chen, X.J.[Xiao-Jiang],
When Object Detection Meets Knowledge Distillation: A Survey,
PAMI(45), No. 8, August 2023, pp. 10555-10579.
IEEE DOI 2307
Survey, Knowledge Distillation. Task analysis, Computational modeling, Analytical models, Image coding, Solid modeling, Object detection, weakly supervised object detection BibRef

Yang, A.[Aijia], Lin, S.[Sihao], Yeh, C.H.[Chung-Hsing], Shu, M.[Minglei], Yang, Y.[Yi], Chang, X.J.[Xiao-Jun],
Context Matters: Distilling Knowledge Graph for Enhanced Object Detection,
MultMed(26), 2024, pp. 487-500.
IEEE DOI 2402
Detectors, Knowledge graphs, Semantics, Object detection, Transformers, Visualization, Image edge detection, knowledge graph BibRef

Pei, S.[Shaotong], Zhang, H.[Hangyuan], Zhu, Y.X.[Yu-Xin], Hu, C.[Chenlong],
Lightweight transmission line defect identification method based on OFN network and distillation method,
IET-IPR(18), No. 12, 2024, pp. 3518-3529.
DOI Link 2411
convolutional neural nets, image recognition, insulators, object detection BibRef


Pham, C.[Cuong], Nguyen, V.A.[Van-Anh], Le, T.[Trung], Phung, D.[Dinh], Carneiro, G.[Gustavo], Do, T.T.[Thanh-Toan],
Frequency Attention for Knowledge Distillation,
WACV24(2266-2275)
IEEE DOI 2404
Knowledge engineering, Frequency-domain analysis, Computational modeling, Object detection, Computer architecture, Embedded sensing / real-time techniques BibRef

Lan, Q.Z.[Qi-Zhen], Tian, Q.[Qing],
Gradient-Guided Knowledge Distillation for Object Detectors,
WACV24(423-432)
IEEE DOI Code:
WWW Link. 2404
Deep learning, Codes, Computational modeling, Object detection, Detectors, Feature extraction, Algorithms BibRef

Yang, L.[Longrong], Zhou, X.[Xianpan], Li, X.[Xuewei], Qiao, L.[Liang], Li, Z.[Zheyang], Yang, Z.W.[Zi-Wei], Wang, G.[Gaoang], Li, X.[Xi],
Bridging Cross-task Protocol Inconsistency for Distillation in Dense Object Detection,
ICCV23(17129-17138)
IEEE DOI Code:
WWW Link. 2401
BibRef

Lao, S.S.[Shan-Shan], Song, G.L.[Guang-Lu], Liu, B.X.[Bo-Xiao], Liu, Y.[Yu], Yang, Y.J.[Yu-Jiu],
UniKD: Universal Knowledge Distillation for Mimicking Homogeneous or Heterogeneous Object Detectors,
ICCV23(6339-6349)
IEEE DOI 2401
BibRef

Du, X.[Xuanyi], Wan, W.T.[Wei-Tao], Sun, C.[Chong], Li, C.[Chen],
Weak-shot Object Detection through Mutual Knowledge Transfer,
CVPR23(19671-19680)
IEEE DOI 2309
BibRef

Tang, S.[Sanli], Zhang, Z.Y.[Zhong-Yu], Cheng, Z.Z.[Zhan-Zhan], Lu, J.[Jing], Xu, Y.L.[Yun-Lu], Niu, Y.[Yi], He, F.[Fan],
Distilling Object Detectors with Global Knowledge,
ECCV22(IX:422-438).
Springer DOI 2211
BibRef

Liu, L.Z.[Lyu-Zhuang], Hirakawa, T.[Tsubasa], Yamashita, T.[Takayoshi], Fujiyoshi, H.[Hironobu],
Class-Wise FM-NMS for Knowledge Distillation of Object Detection,
ICIP22(1641-1645)
IEEE DOI 2211
Computational modeling, Object detection, Feature extraction, Computational efficiency, Object detection, Feature map non-maximum suppression BibRef

Pei, W.J.[Wen-Jie], Wu, S.[Shuang], Mei, D.[Dianwen], Chen, F.L.[Fang-Lin], Tian, J.[Jiandong], Lu, G.M.[Guang-Ming],
Few-Shot Object Detection by Knowledge Distillation Using Bag-of-Visual-Words Representations,
ECCV22(X:283-299).
Springer DOI 2211
BibRef

Zhao, B.[Borui], Cui, Q.[Quan], Song, R.J.[Ren-Jie], Qiu, Y.[Yiyu], Liang, J.J.[Jia-Jun],
Decoupled Knowledge Distillation,
CVPR22(11943-11952)
IEEE DOI 2210
Training, Deep learning, Codes, Object detection, Computer architecture, Feature extraction, retrieval BibRef

Yang, Z.D.[Zhen-Dong], Li, Z.[Zhe], Jiang, X.H.[Xiao-Hu], Gong, Y.[Yuan], Yuan, Z.H.[Ze-Huan], Zhao, D.[Danpei], Yuan, C.[Chun],
Focal and Global Knowledge Distillation for Detectors,
CVPR22(4633-4642)
IEEE DOI 2210
Codes, Detectors, Object detection, Feature extraction, Image classification, Efficient learning and inferences BibRef

Mal, Z.Y.[Zong-Yang], Luo, G.[Guan], Gao, J.[Jin], Li, L.[Liang], Chen, Y.X.[Yu-Xin], Wang, S.[Shaoru], Zhang, C.X.[Cong-Xuan], Hu, W.M.[Wei-Ming],
Open-Vocabulary One-Stage Detection with Hierarchical Visual-Language Knowledge Distillation,
CVPR22(14054-14063)
IEEE DOI 2210
Training, Degradation, Vocabulary, Visualization, Semantics, Detectors, Object detection, Recognition: detection, categorization, Vision + language BibRef

Yao, L.W.[Le-Wei], Pi, R.J.[Ren-Jie], Xu, H.[Hang], Zhang, W.[Wei], Li, Z.G.[Zhen-Guo], Zhang, T.[Tong],
G-DetKD: Towards General Distillation Framework for Object Detectors via Contrastive and Semantic-Guided Feature Imitation,
ICCV21(3571-3580)
IEEE DOI 2203
Semantics, Pipelines, Detectors, Object detection, Benchmark testing, Feature extraction, Detection and localization in 2D and 3D, BibRef

Chen, Y.X.[Yi-Xin], Chen, P.G.[Peng-Guang], Liu, S.[Shu], Wang, L.W.[Li-Wei], Jia, J.Y.[Jia-Ya],
Deep Structured Instance Graph for Distilling Object Detectors,
ICCV21(4339-4348)
IEEE DOI 2203
Codes, Image edge detection, Semantics, Detectors, Object detection, Knowledge representation, Detection and localization in 2D and 3D BibRef

Kim, Y.[Youmin], Park, J.[Jinbae], Jang, Y.[YounHo], Ali, M.[Muhammad], Oh, T.H.[Tae-Hyun], Bae, S.H.[Sung-Ho],
Distilling Global and Local Logits with Densely Connected Relations,
ICCV21(6270-6280)
IEEE DOI 2203
Image segmentation, Image recognition, Computational modeling, Semantics, Object detection, Task analysis, BibRef

Kim, K.[Kyungyul], Ji, B.[ByeongMoon], Yoon, D.[Doyoung], Hwang, S.[Sangheum],
Self-Knowledge Distillation with Progressive Refinement of Targets,
ICCV21(6547-6556)
IEEE DOI 2203
Training, Knowledge engineering, Adaptation models, Supervised learning, Neural networks, Object detection, Recognition and classification BibRef

Kobayashi, T.[Takumi],
Extractive Knowledge Distillation,
WACV22(1350-1359)
IEEE DOI 2202
Temperature distribution, Analytical models, Annotations, Transfer learning, Feature extraction, Task analysis, Deep Learning Object Detection/Recognition/Categorization BibRef

Nguyen, C.H.[Chuong H.], Nguyen, T.C.[Thuy C.], Tang, T.N.[Tuan N.], Phan, N.L.H.[Nam L. H.],
Improving Object Detection by Label Assignment Distillation,
WACV22(1322-1331)
IEEE DOI 2202
Training, Schedules, Costs, Force, Object detection, Detectors, Switches, Object Detection/Recognition/Categorization BibRef

Banitalebi-Dehkordi, A.[Amin],
Knowledge Distillation for Low-Power Object Detection: A Simple Technique and Its Extensions for Training Compact Models Using Unlabeled Data,
LPCV21(769-778)
IEEE DOI 2112
Training, Adaptation models, Computational modeling, Object detection, Computer architecture BibRef

Chen, P.G.[Peng-Guang], Liu, S.[Shu], Zhao, H.S.[Heng-Shuang], Jia, J.Y.[Jia-Ya],
Distilling Knowledge via Knowledge Review,
CVPR21(5006-5015)
IEEE DOI 2111
Knowledge engineering, Object detection, Task analysis BibRef

Ji, M.[Mingi], Shin, S.J.[Seung-Jae], Hwang, S.H.[Seung-Hyun], Park, G.[Gibeom], Moon, I.C.[Il-Chul],
Refine Myself by Teaching Myself: Feature Refinement via Self-Knowledge Distillation,
CVPR21(10659-10668)
IEEE DOI 2111
Knowledge engineering, Training, Codes, Semantics, Neural networks, Object detection BibRef

Okuno, T.[Tomoyuki], Nakata, Y.[Yohei], Ishii, Y.[Yasunori], Tsukizawa, S.[Sotaro],
Lossless AI: Toward Guaranteeing Consistency between Inferences Before and After Quantization via Knowledge Distillation,
MVA21(1-5)
DOI Link 2109
Training, Quality assurance, Quantization (signal), Object detection, Network architecture, Real-time systems BibRef

Chawla, A.[Akshay], Yin, H.X.[Hong-Xu], Molchanov, P.[Pavlo], Alvarez, J.[Jose],
Data-free Knowledge Distillation for Object Detection,
WACV21(3288-3297)
IEEE DOI 2106
Knowledge engineering, Training, Image synthesis, Neural networks, Object detection BibRef

Finogeev, E., Gorbatsevich, V., Moiseenko, A., Vizilter, Y., Vygolov, O.,
Knowledge Distillation Using GANs for Fast Object Detection,
ISPRS20(B2:583-588).
DOI Link 2012
BibRef

Itsumi, H., Beye, F., Shinohara, Y., Iwai, T.,
Training With Cache: Specializing Object Detectors From Live Streams Without Overfitting,
ICIP20(1976-1980)
IEEE DOI 2011
Training, Data models, Solid modeling, Adaptation models, Training data, Streaming media, Legged locomotion, Online training, Knowledge distillation BibRef

Farhadi, M.[Mohammad], Yang, Y.Z.[Ye-Zhou],
TKD: Temporal Knowledge Distillation for Active Perception,
WACV20(942-951)
IEEE DOI 2006
Code, Object Detection.
WWW Link. Temporal knowledge over NN applied over multiple frames. Adaptation models, Object detection, Visualization, Computational modeling, Task analysis, Training, Feature extraction BibRef

Yoshioka, K., Lee, E., Wong, S., Horowitz, M.,
Dataset Culling: Towards Efficient Training of Distillation-Based Domain Specific Models,
ICIP19(3237-3241)
IEEE DOI 1910
Object Detection, Training Efficiency, Distillation, Dataset Culling, Deep Learning BibRef

Kundu, J.N., Lakkakula, N., Radhakrishnan, V.B.,
UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation,
ICCV19(1436-1445)
IEEE DOI 2004
generalisation (artificial intelligence), image classification, object detection, unsupervised learning, task-transferability, Adaptation models BibRef

Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Student-Teacher, Teacher-Student, Knowledge Distillation .


Last update:Jan 15, 2025 at 14:36:47