Rosales-Méndez, H.[Henry],
Ramírez-Cruz, Y.[Yunior],
A new micro-objects-based evaluation measure for co-clustering
algorithms,
PRL(84), No. 1, 2016, pp. 142-148.
Elsevier DOI
1612
Clustering algorithm evaluation
BibRef
Ailem, M.[Melissa],
Role, F.[François],
Nadif, M.[Mohamed],
Model-based co-clustering for the effective handling of sparse data,
PR(72), No. 1, 2017, pp. 108-122.
Elsevier DOI
1708
Mixture, models
BibRef
Allab, K.[Kais],
Labiod, L.[Lazhar],
Nadif, M.[Mohamed],
Multi-manifold matrix decomposition for data co-clustering,
PR(64), No. 1, 2017, pp. 386-398.
Elsevier DOI
1701
BibRef
And:
Erratum:
PR(69), No. 1, 2017, pp. 352-353.
Elsevier DOI
1706
Co-clustering
BibRef
Yao, X.,
Han, J.,
Zhang, D.,
Nie, F.,
Revisiting Co-Saliency Detection: A Novel Approach Based on Two-Stage
Multi-View Spectral Rotation Co-clustering,
IP(26), No. 7, July 2017, pp. 3196-3209.
IEEE DOI
1706
Algorithm design and analysis, Benchmark testing,
Clustering algorithms, Internet, Object detection, Proposals,
Visualization, Co-clustering, multi-class, salient, object, detection
BibRef
Jiang, W.H.[Wen-Hao],
Liu, W.[Wei],
Chung, F.L.[Fu-Lai],
Knowledge transfer for spectral clustering,
PR(81), 2018, pp. 484-496.
Elsevier DOI
1806
Transfer learning, Spectral clustering, Co-clustering, Multi-task learning
BibRef
Ventura, C.[Carles],
Varas, D.[David],
Vilaplana, V.[Veronica],
Giro-i-Nieto, X.[Xavier],
Marques, F.[Ferran],
Multiresolution co-clustering for uncalibrated multiview segmentation,
SP:IC(76), 2019, pp. 151-166.
Elsevier DOI
1906
Image segmentation, Object segmentation,
Multiview segmentation, Co-clustering techniques
BibRef
Hu, S.Z.[Shi-Zhe],
Yan, X.Q.[Xiao-Qiang],
Ye, Y.D.[Yang-Dong],
Dynamic auto-weighted multi-view co-clustering,
PR(99), 2020, pp. 107101.
Elsevier DOI
1912
Multi-view co-clustering, Information bottleneck, Weighting
BibRef
Nie, F.P.[Fei-Ping],
Shi, S.J.[Shao-Jun],
Li, X.L.[Xue-Long],
Auto-weighted multi-view co-clustering via fast matrix factorization,
PR(102), 2020, pp. 107207.
Elsevier DOI
2003
Co-clustering, Multi-view data, Matrix factorization, Auto-weighted
BibRef
Liu, T.H.[Tai-Heng],
Deng, X.Q.[Xiu-Qin],
He, Z.S.[Zhao-Shui],
Long, Y.H.[Yong-Hong],
TCD-CF: Triple cross-domain collaborative filtering recommendation,
PRL(149), 2021, pp. 185-192.
Elsevier DOI
2108
Cross-domain collaborative filtering, Transfer learning,
Data sparsity, Co-clustering
BibRef
Song, K.[Kun],
Yao, X.[Xiwen],
Nie, F.P.[Fei-Ping],
Li, X.L.[Xue-Long],
Xu, M.L.[Ming-Liang],
Weighted bilateral K-means algorithm for fast co-clustering and fast
spectral clustering,
PR(109), 2021, pp. 107560.
Elsevier DOI
2009
Fast co-clustering, Clustering, Normalized cuts, Weighted bilateral -means
BibRef
Lin, S.Y.[Shu-Yuan],
Luo, H.L.[Hai-Ling],
Yan, Y.[Yan],
Xiao, G.B.[Guo-Bao],
Wang, H.Z.[Han-Zi],
Co-Clustering on Bipartite Graphs for Robust Model Fitting,
IP(31), 2022, pp. 6605-6620.
IEEE DOI
2211
Data models, Bipartite graph, Computational modeling,
Partitioning algorithms, Clustering methods, Analytical models,
multiple-structure data
BibRef
Lu, Z.M.[Zhou-Min],
Wang, S.P.[Shi-Ping],
Liu, G.G.[Geng-Geng],
Nie, F.P.[Fei-Ping],
Robust weighted co-clustering with global and local discrimination,
PR(138), 2023, pp. 109405.
Elsevier DOI
2303
Machine learning, Co-clustering, Nonnegative matrix factorization,
Global discrimination, Local discrimination
BibRef
Sugahara, K.[Kai],
Okamoto, K.[Kazushi],
Hierarchical co-clustering with augmented matrices from external
domains,
PR(142), 2023, pp. 109657.
Elsevier DOI
2307
Hierarchical co-clustering, Transfer learning,
Relational data analysis, Unsupervised machine learning,
Mutual information
BibRef
Liu, B.Q.[Bing-Qing],
Jia, B.B.[Bin-Bin],
Zhang, M.L.[Min-Ling],
Towards Enabling Binary Decomposition for Partial Multi-Label
Learning,
PAMI(45), No. 11, November 2023, pp. 13203-13217.
IEEE DOI
2310
BibRef
Deng, X.[Xiang],
Feng, S.[Songhe],
Lyu, G.[Gengyu],
Wang, T.[Tao],
Lang, C.[Congyan],
Beyond Word Embeddings: Heterogeneous Prior Knowledge Driven
Multi-Label Image Classification,
MultMed(25), 2023, pp. 4013-4025.
IEEE DOI
2310
BibRef
Wu, Y.[Yanan],
Feng, S.[Songhe],
Zhao, G.P.[Gong-Pei],
Jin, Y.[Yi],
Transformer Driven Matching Selection Mechanism for Multi-Label Image
Classification,
CirSysVideo(34), No. 2, February 2024, pp. 924-937.
IEEE DOI
2402
Transformers, Semantics, Correlation, Image classification,
Task analysis, Visualization, Computational modeling, attention mechanism
BibRef
You, H.H.[Hai-Hui],
Gu, J.T.[Jun-Tao],
Jing, W.P.[Wei-Peng],
Multi-Label Remote Sensing Image Land Cover Classification Based on a
Multi-Dimensional Attention Mechanism,
RS(15), No. 20, 2023, pp. 4979.
DOI Link
2310
BibRef
Chen, C.[Cheng],
Zhao, Y.F.[Yi-Fan],
Li, J.[Jia],
Semantic Contrastive Bootstrapping for Single-Positive Multi-label
Recognition,
IJCV(131), No. 12, December 2023, pp. 3289-3306.
Springer DOI
2311
BibRef
Liu, Z.M.[Zi-Ming],
Guo, S.[Song],
Guo, J.[Jingcai],
Xu, Y.Y.[Yuan-Yuan],
Huo, F.[Fushuo],
Towards Unbiased Multi-Label Zero-Shot Learning With Pyramid and
Semantic Attention,
MultMed(25), 2023, pp. 7441-7455.
IEEE DOI
2311
BibRef
Zhao, D.W.[Da-Wei],
Gao, Q.W.[Qing-Wei],
Lu, Y.X.[Yi-Xiang],
Sun, D.[Dong],
Non-Aligned Multi-View Multi-Label Classification via Learning
View-Specific Labels,
MultMed(25), 2023, pp. 7235-7247.
IEEE DOI
2311
BibRef
Wu, Y.[Yanan],
Feng, S.[Songhe],
Wang, Y.[Yang],
Semantic-Aware Graph Matching Mechanism for Multi-Label Image
Recognition,
CirSysVideo(33), No. 11, November 2023, pp. 6788-6803.
IEEE DOI Code:
WWW Link.
2311
BibRef
Qiang, Q.[Qianyao],
Zhang, B.[Bin],
Wang, F.[Fei],
Nie, F.P.[Fei-Ping],
Multi-View Discrete Clustering: A Concise Model,
PAMI(45), No. 12, December 2023, pp. 15154-15170.
IEEE DOI
2311
BibRef
Liu, C.L.[Cheng-Liang],
Wu, Z.H.[Zhi-Hao],
Wen, J.[Jie],
Xu, Y.[Yong],
Huang, C.[Chao],
Localized Sparse Incomplete Multi-View Clustering,
MultMed(25), 2023, pp. 5539-5551.
IEEE DOI
2311
BibRef
Yang, Z.Q.[Ze-Qun],
Zhang, H.[Han],
Wei, Y.[Yake],
Wang, Z.[Zheng],
Nie, F.P.[Fei-Ping],
Hu, D.[Di],
Geometric-inspired graph-based Incomplete Multi-view Clustering,
PR(147), 2024, pp. 110082.
Elsevier DOI Code:
WWW Link.
2312
Multi-view clustering, Incomplete view, Weight aggregation,
Geometric analysis, Graph-based clustering
BibRef
Li, L.[Li],
Han, Q.H.[Qi-Hong],
Li, J.Y.[Jia-Yao],
Cui, Z.Q.[Zhan-Qi],
Two-step multi-view data classification based on dynamic Graph-ELM,
PRL(176), 2023, pp. 236-243.
Elsevier DOI
2312
Multi-view data, Classification, Graph learning, GBS
BibRef
Shen, Q.Q.[Qiang-Qiang],
Chen, Y.Y.[Yong-Yong],
Zhang, C.Q.[Chang-Qing],
Tian, Y.H.[Yong-Hong],
Liang, Y.S.[Yong-Sheng],
Pick-and-Place Transform Learning for Fast Multi-View Clustering,
IP(33), 2024, pp. 1272-1284.
IEEE DOI
2402
Transforms, Matrix decomposition, Dictionaries, Clustering methods,
Time complexity, Sparse matrices, Security, Multi-view clustering,
feature selection
BibRef
Gou, J.P.[Jian-Ping],
Xie, N.N.[Nan-Nan],
Yuan, Y.H.[Yun-Hao],
Du, L.[Lan],
Ou, W.H.[Wei-Hua],
Yi, Z.[Zhang],
Reconstructed Graph Constrained Auto-Encoders for Multi-View
Representation Learning,
MultMed(26), 2024, pp. 1319-1332.
IEEE DOI
2402
Representation learning, Laplace equations, Neural networks,
Deep learning, Data models, Manifold learning, Linear programming,
Multi-view representation learning
BibRef
Shen, Q.Q.[Qiang-Qiang],
Xu, T.T.[Ting-Ting],
Liang, Y.S.[Yong-Sheng],
Chen, Y.Y.[Yong-Yong],
He, Z.Y.[Zhen-Yu],
Robust Tensor Recovery for Incomplete Multi-View Clustering,
MultMed(26), 2024, pp. 3856-3870.
IEEE DOI
2402
Tensors, Clustering methods, Noise reduction, Transforms, Kernel,
Robustness, Security, Denoising, incomplete multi-view clustering,
tensor completion
BibRef
Peng, C.[Chong],
Kang, K.[Kehan],
Chen, Y.Y.[Yong-Yong],
Kang, Z.[Zhao],
Chen, C.[Chenglizhao],
Cheng, Q.[Qiang],
Fine-Grained Essential Tensor Learning for Robust Multi-View Spectral
Clustering,
IP(33), 2024, pp. 3145-3160.
IEEE DOI
2405
Tensors, Computer science, Vectors, Task analysis, Standards,
Optimization, Fast Fourier transforms, Multi-view, low-rank
BibRef
Qin, Y.[Yalan],
Pu, N.[Nan],
Wu, H.Z.[Han-Zhou],
EDMC: Efficient Multi-View Clustering via Cluster and Instance Space
Learning,
MultMed(26), 2024, pp. 5273-5283.
IEEE DOI
2404
Clustering algorithms, Tensors, Scalability,
Representation learning, Optimization, Dimensionality reduction,
a unified framework
BibRef
Zhang, F.H.[Feng-Hua],
Che, H.J.[Hang-Jun],
Separable Consistency and Diversity Feature Learning for Multi-View
Clustering,
SPLetters(31), 2024, pp. 1595-1599.
IEEE DOI
2406
Representation learning, Matrix decomposition, Clustering methods,
Optimization, Measurement, Data models, data reconstruction
BibRef
Chen, J.[Jie],
Chen, Y.K.[Ying-Ke],
Wang, Z.[Zhu],
Zhang, H.X.[Hai-Xian],
Peng, X.[Xi],
Spectral Embedding Fusion for Incomplete Multiview Clustering,
IP(33), 2024, pp. 4116-4130.
IEEE DOI
2407
Tensors, Correlation, Sparse matrices, Optimization,
Matrix converters, Filling, Clustering algorithms, spectral rotation
BibRef
Yang, Z.[Zengbiao],
Tan, Y.H.[Yi-Hua],
Yang, T.[Tao],
Large-scale multi-view clustering via matrix factorization of
consensus graph,
PR(155), 2024, pp. 110716.
Elsevier DOI
2408
Multi-view clustering, Consensus graph, Matrix factorization, Anchors
BibRef
Xing, L.[Lei],
Song, Y.W.[Ya-Wen],
Chen, B.D.[Ba-Dong],
Yu, C.[Changyuan],
Qin, J.[Jing],
Incomplete Multi-View Clustering via Correntropy and Complement
Consensus Learning,
MultMed(26), 2024, pp. 8063-8076.
IEEE DOI
2408
Clustering algorithms, Kernel, Self-supervised learning, Matrix decomposition,
Iterative methods, Tensors, Random variables, robustness
BibRef
Cao, J.F.[Jun-Feng],
Dong, W.H.[Wen-Hua],
Chen, J.[Jing],
View-unaligned clustering with graph regularization,
PR(155), 2024, pp. 110706.
Elsevier DOI
2408
Multi-view clustering, View-unaligned problem,
Latent embedding learning, Latent embedding alignment, Matrix factorization
BibRef
Zhao, X.W.[Xing-Wang],
Wang, S.J.[Shu-Jun],
Liu, X.L.[Xiao-Lin],
Liang, J.[Jiye],
Multi-view clustering via dynamic unified bipartite graph learning,
PR(156), 2024, pp. 110715.
Elsevier DOI
2408
Multi-view clustering, Unified bipartite graph,
Multi-granular structural information, Dynamic filter
BibRef
Zhang, C.[Chao],
Chen, H.X.[Hao-Xing],
Li, H.X.[Hua-Xiong],
Chen, C.L.[Chun-Lin],
Learning latent disentangled embeddings and graphs for multi-view
clustering,
PR(156), 2024, pp. 110839.
Elsevier DOI
2408
Multi-view clustering, Embedding disentanglement,
Graph learning, Low-rank tensor
BibRef
Yang, G.[Gui],
Zou, J.[Jiale],
Chen, Y.[Yan],
Du, L.[Liang],
Zhou, P.[Peng],
Heat Kernel Diffusion for Enhanced Late Fusion Multi-View Clustering,
SPLetters(31), 2024, pp. 2310-2314.
IEEE DOI
2410
Kernel, Information filters, Heating systems, Optimization, Noise,
Task analysis, Clustering algorithms, Late fusion, smoothed representation
BibRef
Liu, C.D.[Chun-Dan],
Zhang, Q.[Qian],
Chen, Y.Y.[Yong-Yong],
Dong, J.Y.[Jun-Yu],
Peng, C.[Chong],
Enhancing Inter-Class Separability With High-Order Strangers for
Multi-View Clustering,
SPLetters(31), 2024, pp. 2460-2464.
IEEE DOI
2410
Tensors, Standards, Data models, Computer science,
Technological innovation, Indexes, Vectors,
stranger information
BibRef
Li, Y.P.[Ya-Peng],
Luo, Y.[Yong],
Du, B.[Bo],
UVaT: Uncertainty Incorporated View-Aware Transformer for Robust
Multi-View Classification,
IP(33), 2024, pp. 5129-5143.
IEEE DOI Code:
WWW Link.
2410
Noise measurement, Uncertainty, Transformers, Training, Robustness,
Noise, Data models, Multi-view classification, incomplete view, uncertainty
BibRef
Zhao, L.[Liang],
Xie, Q.J.[Qiong-Jie],
Distribution-Level Multi-View Clustering for Unaligned Data,
SPLetters(31), 2024, pp. 2330-2334.
IEEE DOI
2410
Generators, Attention mechanisms, Training, Loss measurement, Vectors,
Transforms, Standards, Multi-cluster view, unmapping data,
deep clustering module
BibRef
Dong, W.H.[Wen-Hua],
Wu, X.J.[Xiao-Jun],
Feng, Z.H.[Zhen-Hua],
Ahmed, S.A.A.[Sara Atito Ali],
Awais, M.[Muhammad],
Kittler, J.V.[Josef V.],
One-pass View-unaligned Clustering,
MultMed(26), 2024, pp. 9699-9709.
IEEE DOI
2410
Clustering methods, Clustering algorithms, Vectors, Scalability,
Noise robustness, Task analysis, Speech recognition, Multi-view, relaxed k-means
BibRef
Wan, M.H.[Ming-Hua],
Zhu, J.Y.[Jing-Yu],
Sun, C.L.[Chang-Le],
Yang, Z.J.[Zhang-Jing],
Yin, J.[Jun],
Yang, G.[Guowei],
Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete
Multi-View Clustering,
MultMed(26), 2024, pp. 9763-9775.
IEEE DOI
2410
Tensors, Clustering algorithms, Clustering methods, Correlation,
Computer science, Symbols, Sun, Graph embedding,
tensor low-rank constraint
BibRef
Qin, Y.[Yalan],
Qin, C.[Chuan],
Zhang, X.P.[Xin-Peng],
Feng, G.R.[Guo-Rui],
Dual Consensus Anchor Learning for Fast Multi-View Clustering,
IP(33), 2024, pp. 5298-5311.
IEEE DOI
2410
Matrix decomposition, Clustering methods, Clustering algorithms,
Partitioning algorithms, Laplace equations, Periodic structures, efficiency
BibRef
Zhong, G.[Guo],
Wu, J.[Juanchun],
Yan, X.M.[Xue-Ming],
Ma, X.L.[Xuan-Long],
Lin, S.[Shixun],
Nonnegative Tensor Representation With Cross-View Consensus for
Incomplete Multi-View Clustering,
SPLetters(31), 2024, pp. 2605-2609.
IEEE DOI
2410
Tensors, Representation learning, Vectors, Correlation, Transforms,
Stacking, Sparse matrices, Data reconstruction,
low-rank tensor representation
BibRef
Sun, W.J.[Wei-Jun],
Li, C.[Chaoye],
Li, Q.Y.[Qiao-Yun],
Fang, X.Z.[Xiao-Zhao],
He, J.[Jiakai],
Liu, L.[Lei],
Joint Intra-view and Inter-view Enhanced Tensor Low-rank Induced
Affinity Graph Learning,
PR(159), 2025, pp. 111140.
Elsevier DOI
2412
Multi-view clustering, Graph learning, Tensor, Low-rank
BibRef
Battaglia, E.[Elena],
Peiretti, F.[Federico],
Pensa, R.G.[Ruggero Gaetano],
Co-clustering: A Survey of the Main Methods, Recent Trends, and Open
Problems,
Surveys(57), No. 2, November 2024, pp. xx-yy.
DOI Link
2501
Survey, Co-Clustering. Co-Clustering, high-dimensional data clustering, review
BibRef
Deng, Y.H.[Yang-Hao],
Wang, Z.H.[Zeng-Hui],
Du, S.[Songlin],
Contrastive Max-correlation for Multi-view Clustering,
ACCV24(I: 371-384).
Springer DOI
2412
BibRef
Black, S.[Samuel],
Souvenir, R.[Richard],
Multi-view Classification Using Hybrid Fusion and Mutual Distillation,
WACV24(269-279)
IEEE DOI Code:
WWW Link.
2404
Adaptation models, Image analysis, Codes, Forensics,
Computational modeling, Computer architecture, Algorithms
BibRef
Ding, Z.X.[Zi-Xuan],
Wang, A.[Ao],
Chen, H.[Hui],
Zhang, Q.[Qiang],
Liu, P.Z.[Peng-Zhang],
Bao, Y.J.[Yong-Jun],
Yan, W.P.[Wei-Peng],
Han, J.G.[Jun-Gong],
Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels,
CVPR23(3398-3407)
IEEE DOI
2309
BibRef
Kim, Y.[Youngwook],
Kim, J.M.[Jae Myung],
Jeong, J.[Jieun],
Schmid, C.[Cordelia],
Akata, Z.[Zeynep],
Lee, J.[Jungwoo],
Bridging the Gap Between Model Explanations in Partially Annotated
Multi-Label Classification,
CVPR23(3408-3417)
IEEE DOI
2309
BibRef
Kobayashi, T.[Takumi],
Two-Way Multi-Label Loss,
CVPR23(7476-7485)
IEEE DOI
2309
BibRef
Zhang, S.[Shu],
Xu, R.[Ran],
Xiong, C.M.[Cai-Ming],
Ramaiah, C.[Chetan],
Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework,
CVPR22(16639-16648)
IEEE DOI
2210
Representation learning, Codes, Speech recognition, Task analysis,
Standards, Representation learning, Recognition: detection,
Transfer/low-shot/long-tail learning
BibRef
Varas, D.,
Alfaro, M.,
Marques, F.,
Multiresolution Hierarchy Co-Clustering for Semantic Segmentation in
Sequences with Small Variations,
ICCV15(4579-4587)
IEEE DOI
1602
Image resolution
BibRef
Nanda, A.,
Pujari, A.K.,
Weighted Co-clustering Based Clustering Ensemble,
NCVPRIPG11(46-49).
IEEE DOI
1205
BibRef
Liu, J.G.[Jin-Gen],
Shah, M.[Mubarak],
Scene Modeling Using Co-Clustering,
ICCV07(1-7).
IEEE DOI
0710
Bag of Visterms (BOV).
Group by similar concept.
BibRef
Irie, G.[Go],
Liu, D.[Dong],
Li, Z.G.[Zhen-Guo],
Chang, S.F.[Shih-Fu],
A Bayesian Approach to Multimodal Visual Dictionary Learning,
CVPR13(329-336)
IEEE DOI
1309
co-clustering; multimodal; visual dictionary
BibRef
Hanmandlu, M.[Madasu],
Susan, S.[Seba],
Madasu, V.K.[Vamsi Krishna],
Lovell, B.C.,
Fuzzy Co-Clustering of medical images using bacterial foraging,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Multi-Label Classification, Multilabel Classification .