Shoeleh, F.[Farzaneh],
Asadpour, M.[Masoud],
Graph based skill acquisition and transfer Learning for continuous
reinforcement learning domains,
PRL(87), No. 1, 2017, pp. 104-116.
Elsevier DOI
1703
Reinforcement learning
BibRef
Koo, S.[Sangjun],
Yu, H.[Hwanjo],
Lee, G.G.[Gary Geunbae],
Adversarial approach to domain adaptation for reinforcement learning
on dialog systems,
PRL(128), 2019, pp. 467-473.
Elsevier DOI
1912
Dialog systems, Reinforcement learning, Domain adaptation,
Transfer learning, Deep Q Network, Adversarial networks
BibRef
Agarwal, M.[Mridul],
Aggarwal, V.[Vaneet],
Blind decision making: Reinforcement learning with delayed
observations,
PRL(150), 2021, pp. 176-182.
Elsevier DOI
2109
BibRef
Hwang, R.[Rakhoon],
Lee, H.J.[Han-Jin],
Hwang, H.J.[Hyung Ju],
Option compatible reward inverse reinforcement learning,
PRL(154), 2022, pp. 83-89.
Elsevier DOI
2202
Reinforcement learning, Inverse reinforcement learning,
Transfer learning, Machine learning
BibRef
Nicholaus, I.T.[Isack Thomas],
Kang, D.K.[Dae-Ki],
Robust experience replay sampling for multi-agent reinforcement
learning,
PRL(155), 2022, pp. 135-142.
Elsevier DOI
2203
Reinforcement learning, Multi-agent, Sampling, Experience replay
BibRef
Wang, J.[Jiao],
Zhang, L.[Lemin],
He, Z.Q.[Zhi-Qiang],
Zhu, C.[Can],
Zhao, Z.H.[Zi-Hui],
Erlang planning network: An iterative model-based reinforcement
learning with multi-perspective,
PR(128), 2022, pp. 108668.
Elsevier DOI
2205
Model-based reinforcement learning, Multi-perspective,
Bi-level, Planning, Trajectory imagination
BibRef
Li, M.[Min],
Huang, T.Y.[Tian-Yi],
Zhu, W.[William],
Clustering experience replay for the effective exploitation in
reinforcement learning,
PR(131), 2022, pp. 108875.
Elsevier DOI
2208
Reinforcement learning, Clustering, Experience replay,
Exploitation efficiency, Time division
BibRef
Tosatto, S.[Samuele],
Carvalho, J.[Joăo],
Peters, J.[Jan],
Batch Reinforcement Learning With a Nonparametric Off-Policy Policy
Gradient,
PAMI(44), No. 10, October 2022, pp. 5996-6010.
IEEE DOI
2209
Mathematical model, Estimation, Kernel, Reinforcement learning,
Monte Carlo methods, Task analysis, Closed-form solutions,
nonparametric estimation
BibRef
Guo, S.Q.[Shang-Qi],
Yan, Q.[Qi],
Su, X.[Xin],
Hu, X.L.[Xiao-Lin],
Chen, F.[Feng],
State-Temporal Compression in Reinforcement Learning With the
Reward-Restricted Geodesic Metric,
PAMI(44), No. 9, September 2022, pp. 5572-5589.
IEEE DOI
2208
Measurement, Task analysis, Reinforcement learning,
Neural networks, Time-domain analysis,
reinforcement learning (RL)
BibRef
Xu, T.[Tian],
Li, Z.N.[Zi-Niu],
Yu, Y.[Yang],
Error Bounds of Imitating Policies and Environments for Reinforcement
Learning,
PAMI(44), No. 10, October 2022, pp. 6968-6980.
IEEE DOI
2209
Planning, Reinforcement learning, Cloning, Complexity theory,
Supervised learning, Decision making, Upper bound,
model-based reinforcement learning
BibRef
Li, Y.[Yun],
Liu, Z.[Zhe],
Yao, L.[Lina],
Wang, X.Z.[Xian-Zhi],
McAuley, J.[Julian],
Chang, X.J.[Xiao-Jun],
An Entropy-Guided Reinforced Partial Convolutional Network for
Zero-Shot Learning,
CirSysVideo(32), No. 8, August 2022, pp. 5175-5186.
IEEE DOI
2208
Convolution, Feature extraction, Semantics, Visualization, Training,
Optimization, Kernel, Zero-shot learning, reinforcement learning,
image representation
BibRef
Feng, J.[Jie],
Li, D.[Di],
Gu, J.[Jing],
Cao, X.H.[Xiang-Hai],
Shang, R.H.[Rong-Hua],
Zhang, X.R.[Xiang-Rong],
Jiao, L.C.[Li-Cheng],
Deep Reinforcement Learning for Semisupervised Hyperspectral Band
Selection,
GeoRS(60), 2022, pp. 1-19.
IEEE DOI
2112
Hyperspectral imaging, Reinforcement learning, Optimization,
Deep learning, Task analysis, Neural networks,
semisupervised learning
BibRef
Akrour, R.[Riad],
Tateo, D.[Davide],
Peters, J.[Jan],
Continuous Action Reinforcement Learning From a Mixture of
Interpretable Experts,
PAMI(44), No. 10, October 2022, pp. 6795-6806.
IEEE DOI
2209
Task analysis, Complexity theory, Approximation algorithms,
Neural networks, Trajectory, Reinforcement learning,
robotics
BibRef
Zhang, M.Y.[Meng-Yang],
Tian, G.H.[Guo-Hui],
Gao, H.B.[Huan-Bing],
Zhang, Y.[Ying],
Autonomous Generation of Service Strategy for Household Tasks:
A Progressive Learning Method With A Priori Knowledge and Reinforcement
Learning,
CirSysVideo(32), No. 11, November 2022, pp. 7473-7488.
IEEE DOI
2211
Correlation, Task analysis, Reinforcement learning,
Artificial neural networks.
BibRef
Li, W.H.[Wen-Hao],
Wang, X.F.[Xiang-Feng],
Jin, B.[Bo],
Luo, D.[Dijun],
Zha, H.Y.[Hong-Yuan],
Structured Cooperative Reinforcement Learning With Time-Varying
Composite Action Space,
PAMI(44), No. 11, November 2022, pp. 8618-8634.
IEEE DOI
2210
Agriculture, Aerospace electronics, Task analysis,
Reinforcement learning, Games, Carbon dioxide, Robustness,
time-varying action space
BibRef
Zhu, R.[Rongbo],
Li, M.Y.[Meng-Yao],
Liu, H.[Hao],
Liu, L.[Lu],
Ma, M.[Maode],
Federated Deep Reinforcement Learning-Based Spectrum Access Algorithm
With Warranty Contract in Intelligent Transportation Systems,
ITS(24), No. 1, January 2023, pp. 1178-1190.
IEEE DOI
2301
Contracts, Warranties, Resource management, Quality of service,
Real-time systems, Heuristic algorithms, Vehicle dynamics, quality of service
BibRef
Hu, T.M.[Tian-Meng],
Luo, B.[Biao],
Yang, C.H.[Chun-Hua],
Huang, T.W.[Ting-Wen],
MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With
Deep Reinforcement Learning,
PAMI(45), No. 10, October 2023, pp. 12098-12112.
IEEE DOI
2310
BibRef
Zhao, L.Y.[Lin-Ya],
Tan, K.[Kun],
Wang, X.[Xue],
Ding, J.W.[Jian-Wei],
Liu, Z.X.[Zhao-Xian],
Ma, H.L.[Hui-Lin],
Han, B.[Bo],
Hyperspectral Feature Selection for SOM Prediction Using Deep
Reinforcement Learning and Multiple Subset Evaluation Strategies,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Huang, F.X.[Fu-Xian],
Ji, N.[Naye],
Ni, H.J.[Hua-Jian],
Li, S.J.[Shi-Jian],
Li, X.[Xi],
Adaptive cooperative exploration for reinforcement learning from
imperfect demonstrations,
PRL(165), 2023, pp. 176-182.
Elsevier DOI
2301
Reinforcement learning, Imitation learning,
Cooperative exploration, Imperfect demonstrations,
BibRef
Huang, F.X.[Fu-Xian],
Li, W.C.[Wei-Chao],
Cui, J.B.[Jia-Bao],
Fu, Y.J.[Yong-Jian],
Li, X.[Xi],
Unified curiosity-Driven learning with smoothed intrinsic reward
estimation,
PR(123), 2022, pp. 108352.
Elsevier DOI
2112
Reinforcement learning, Unified curiosity-driven exploration,
Robust intrinsic reward, Task-relevant feature
BibRef
Gomez, D.[Diego],
Quijano, N.[Nicanor],
Giraldo, L.F.[Luis Felipe],
Information Optimization and Transferable State Abstractions in Deep
Reinforcement Learning,
PAMI(45), No. 4, April 2023, pp. 4782-4793.
IEEE DOI
2303
Task analysis, Reinforcement learning, Multitasking,
Transfer learning, Optimization, Standards, Behavioral sciences,
information theory
BibRef
Zhu, Z.D.[Zhuang-Di],
Lin, K.X.[Kai-Xiang],
Jain, A.K.[Anil K.],
Zhou, J.[Jiayu],
Transfer Learning in Deep Reinforcement Learning: A Survey,
PAMI(45), No. 11, November 2023, pp. 13344-13362.
IEEE DOI
2310
Survey, Transfer Learning.
BibRef
Saengkyongam, S.[Sorawit],
Thams, N.[Nikolaj],
Peters, J.[Jonas],
Pfister, N.[Niklas],
Invariant Policy Learning: A Causal Perspective,
PAMI(45), No. 7, July 2023, pp. 8606-8620.
IEEE DOI
2306
Training, Visualization, Reinforcement learning, Random variables,
Particle measurements, Heuristic algorithms, off-policy learning
BibRef
Huang, H.C.[Han-Chi],
Ye, D.H.[De-Heng],
Shen, L.[Li],
Liu, W.[Wei],
Curriculum-Based Asymmetric Multi-Task Reinforcement Learning,
PAMI(45), No. 6, June 2023, pp. 7258-7269.
IEEE DOI
2305
Task analysis, Training, Multitasking, Reinforcement learning,
Optimization, Interference, Supervised learning,
asymmetric multi-task learning
BibRef
Zhang, T.R.[Tian-Ren],
Guo, S.Q.[Shang-Qi],
Tan, T.[Tian],
Hu, X.L.[Xiao-Lin],
Chen, F.[Feng],
Adjacency Constraint for Efficient Hierarchical Reinforcement
Learning,
PAMI(45), No. 4, April 2023, pp. 4152-4166.
IEEE DOI
2303
Task analysis, Reinforcement learning, Training, Random variables,
Postal services, Markov processes, Games, adjacency constraint
BibRef
Deng, Z.H.[Zhi-Hong],
Fu, Z.[Zuyue],
Wang, L.X.[Ling-Xiao],
Yang, Z.R.[Zhuo-Ran],
Bai, C.J.[Chen-Jia],
Zhou, T.Y.[Tian-Yi],
Wang, Z.R.[Zhao-Ran],
Jiang, J.[Jing],
False Correlation Reduction for Offline Reinforcement Learning,
PAMI(46), No. 2, February 2024, pp. 1199-1211.
IEEE DOI
2401
False correlation, offline reinforcement learning, uncertainty estimation
BibRef
Zhang, L.Y.[Liang-Yu],
Peng, Y.[Yang],
Yang, W.H.[Wen-Hao],
Zhang, Z.H.[Zhi-Hua],
Semi-Infinitely Constrained Markov Decision Processes and Provably
Efficient Reinforcement Learning,
PAMI(46), No. 5, May 2024, pp. 3722-3735.
IEEE DOI
2404
Generalization of constrained Markov decision processes.
Reinforcement learning, Complexity theory, Programming,
Markov processes, Approximation algorithms, Marine vehicles, Costs,
semi-infinitely programming
BibRef
Rodrigues-da Silva, J.A.[Júnior Anderson],
Grassi, V.[Valdir],
Wolf, D.F.[Denis Fernando],
Maximum Entropy Inverse Reinforcement Learning Using Monte Carlo Tree
Search for Autonomous Driving,
ITS(25), No. 9, September 2024, pp. 11552-11562.
IEEE DOI
2409
Trajectory, Behavioral sciences, Entropy, Autonomous vehicles,
Vehicles, Cost function, Task analysis, Autonomous vehicles, merging, IRL
BibRef
Pang, T.[Teng],
Wu, G.Q.[Guo-Qiang],
Zhang, Y.[Yan],
Wang, B.Z.[Bing-Zheng],
Yin, Y.L.[Yi-Long],
QFAE: Q-Function guided Action Exploration for offline deep
reinforcement learning,
PR(158), 2025, pp. 111032.
Elsevier DOI
2411
Deep reinforcement learning, Offline reinforcement learning,
Policy constraints, Action exploration, D4RL
BibRef
Zheng, W.Q.[Wen-Qing],
Sharan, S.P.,
Fan, Z.W.[Zhi-Wen],
Wang, K.[Kevin],
Xi, Y.[Yihan],
Wang, Z.Y.[Zhang-Yang],
Symbolic Visual Reinforcement Learning: A Scalable Framework With
Object-Level Abstraction and Differentiable Expression Search,
PAMI(47), No. 1, January 2025, pp. 400-412.
IEEE DOI
2412
Visualization, Optimization, Reinforcement learning,
Representation learning, Neural networks, Vegetation, Planning,
visual reinforcement learning (RL)
BibRef
Liu, Y.Q.[Ya-Qiong],
Zhao, T.Y.[Tong-Yu],
Shou, G.[Guochu],
Zhang, Y.[Yan],
Joint Optimization of Latency and Energy Consumption via Deep
Reinforcement Learning for Proximity Detection in Road Networks,
ITS(25), No. 12, December 2024, pp. 19457-19468.
IEEE DOI
2412
Optimization, Servers, Energy consumption, Computer architecture,
Roads, Costs, Heuristic algorithms, Computational modeling,
Internet of Vehicles (IoV)
BibRef
Lee, S.H.[Sang-Hyun],
Jung, Y.[Yoonjae],
Seo, S.W.[Seung-Woo],
Imagination-Augmented Hierarchical Reinforcement Learning for Safe
and Interactive Autonomous Driving in Urban Environments,
ITS(25), No. 12, December 2024, pp. 19522-19535.
IEEE DOI
2412
Autonomous Vehicles. Navigation, Attention mechanisms, Autonomous vehicles,
Reinforcement learning, Heuristic algorithms, Standards, navigation
BibRef
Li, Q.F.[Qi-Feng],
Jia, X.S.[Xiao-Song],
Wang, S.B.[Shao-Bo],
Yan, J.C.[Jun-Chi],
Think2drive: Efficient Reinforcement Learning by Thinking with Latent
World Model for Autonomous Driving (in Carla-v2),
ECCV24(XLV: 142-158).
Springer DOI
2412
BibRef
Zhang, Y.[Yinan],
Tzeng, E.[Eric],
Du, Y.L.[Yi-Lun],
Kislyuk, D.[Dmitry],
Large-scale Reinforcement Learning for Diffusion Models,
ECCV24(LXIII: 1-17).
Springer DOI
2412
BibRef
Guo, T.[Taian],
Zhang, T.[Taolin],
Wu, H.Q.[Hao-Qian],
Li, H.[Hanjun],
Qiao, R.Z.[Rui-Zhi],
Sun, X.[Xing],
Multimodal Label Relevance Ranking via Reinforcement Learning,
ECCV24(LXVI: 391-408).
Springer DOI
2412
BibRef
Tran, T.[Tung],
Than, K.[Khoat],
Vargas, D.[Danilo],
Robust Visual Reinforcement Learning by Prompt Tuning,
ACCV24(IX: 387-401).
Springer DOI
2412
BibRef
Zhang, Y.X.[Yuan-Xin],
Ma, H.M.[Hui-Min],
Wang, Y.[Yu],
AVD-Net: Attention Value Decomposition Network For Deep Multi-Agent
Reinforcement Learning,
ICPR21(7810-7816)
IEEE DOI
2105
Training, Scalability, Reinforcement learning, Games,
Markov processes, Machine translation
BibRef
Choi, H.[Hyesong],
Lee, H.[Hunsang],
Song, W.[Wonil],
Jeon, S.[Sangryul],
Sohn, K.H.[Kwang-Hoon],
Min, D.B.[Dong-Bo],
Local-Guided Global: Paired Similarity Representation for Visual
Reinforcement Learning,
CVPR23(15072-15082)
IEEE DOI
2309
BibRef
Huang, Y.R.[Yang-Ru],
Peng, P.X.[Pei-Xi],
Zhao, Y.F.[Yi-Fan],
Zhai, Y.P.[Yun-Peng],
Xu, H.R.[Hao-Ran],
Tian, Y.H.[Yong-Hong],
Simoun: Synergizing Interactive Motion-appearance Understanding for
Vision-based Reinforcement Learning,
ICCV23(176-185)
IEEE DOI
2401
BibRef
Zhai, Y.P.[Yun-Peng],
Peng, P.X.[Pei-Xi],
Zhao, Y.F.[Yi-Fan],
Huang, Y.R.[Yang-Ru],
Tian, Y.H.[Yong-Hong],
Stabilizing Visual Reinforcement Learning via Asymmetric Interactive
Cooperation,
ICCV23(207-216)
IEEE DOI
2401
BibRef
Choi, H.[Hyesong],
Lee, H.[Hunsang],
Jeong, S.W.[Seong-Won],
Min, D.B.[Dong-Bo],
Environment Agnostic Representation for Visual Reinforcement learning,
ICCV23(263-273)
IEEE DOI Code:
WWW Link.
2401
BibRef
Liu, H.Z.[Hao-Zhe],
Zhuge, M.C.[Ming-Chen],
Li, B.[Bing],
Wang, Y.H.[Yu-Hui],
Faccio, F.[Francesco],
Ghanem, B.[Bernard],
Schmidhuber, J.[Jürgen],
Learning to Identify Critical States for Reinforcement Learning from
Videos,
ICCV23(1955-1965)
IEEE DOI Code:
WWW Link.
2401
BibRef
Nie, C.[Chang],
Wang, G.M.[Guang-Ming],
Liu, Z.[Zhe],
Cavalli, L.[Luca],
Pollefeys, M.[Marc],
Wang, H.S.[He-Sheng],
RLSAC: Reinforcement Learning enhanced Sample Consensus for
End-to-End Robust Estimation,
ICCV23(9857-9866)
IEEE DOI Code:
WWW Link.
2401
BibRef
Liu, S.[Siao],
Chen, Z.Y.[Zhao-Yu],
Liu, Y.[Yang],
Wang, Y.Z.[Yu-Zheng],
Yang, D.K.[Ding-Kang],
Zhao, Z.[Zhile],
Zhou, Z.Q.[Zi-Qing],
Yi, X.[Xie],
Li, W.[Wei],
Zhang, W.Q.[Wen-Qiang],
Gan, Z.X.[Zhong-Xue],
Improving Generalization in Visual Reinforcement Learning via
Conflict-aware Gradient Agreement Augmentation,
ICCV23(23379-23389)
IEEE DOI
2401
BibRef
Klinghoffer, T.[Tzofi],
Tiwary, K.[Kushagra],
Behari, N.[Nikhil],
Agrawalla, B.[Bhavya],
Raskar, R.[Ramesh],
DISeR: Designing Imaging Systems with Reinforcement Learning,
ICCV23(23575-23585)
IEEE DOI Code:
WWW Link.
2401
BibRef
Fang, F.[Fen],
Liang, W.Y.[Wen-Yu],
Wu, Y.[Yan],
Xu, Q.L.[Qian-Li],
Lim, J.H.[Joo-Hwee],
Improving Generalization of Reinforcement Learning Using a Bilinear
Policy Network,
ICIP22(991-995)
IEEE DOI
2211
Representation learning, Visualization, Reinforcement learning,
Object detection, Games, Feature extraction, Path planning, Generalization
BibRef
Lucchesi, N.[Nicoló],
Carta, A.[Antonio],
Lomonaco, V.[Vincenzo],
Bacciu, D.[Davide],
Avalanche RL: A Continual Reinforcement Learning Library,
CIAP22(I:524-535).
Springer DOI
2205
BibRef
Wang, X.D.[Xu-Dong],
Lian, L.[Long],
Yu, S.X.[Stella X.],
Unsupervised Visual Attention and Invariance for Reinforcement
Learning,
CVPR21(6673-6683)
IEEE DOI
2111
Training, Visualization, Annotations,
Reinforcement learning, Manuals, Benchmark testing
BibRef
García-Ramírez, J.[Jesús],
Morales, E.[Eduardo],
Escalante, H.J.[Hugo Jair],
Multi-source Transfer Learning for Deep Reinforcement Learning,
MCPR21(131-140).
Springer DOI
2108
BibRef
Zhang, Z.Z.[Zi-Zhao],
Pfister, T.[Tomas],
Learning Fast Sample Re-weighting Without Reward Data,
ICCV21(705-714)
IEEE DOI
2203
Training, Costs, Limiting, Computational modeling,
Reinforcement learning, Noise robustness, Noise measurement,
Machine learning architectures and formulations
BibRef
Hong, J.[Jie],
Fang, P.F.[Peng-Fei],
Li, W.H.[Wei-Hao],
Zhang, T.[Tong],
Simon, C.[Christian],
Harandi, M.[Mehrtash],
Petersson, L.[Lars],
Reinforced Attention for Few-Shot Learning and Beyond,
CVPR21(913-923)
IEEE DOI
2111
Image recognition, Computational modeling,
Reinforcement learning, Prediction algorithms, Data models
BibRef
Zhang, Y.S.[You-Shan],
Ye, H.[Hui],
Davison, B.D.[Brian D.],
Adversarial Reinforcement Learning for Unsupervised Domain Adaptation,
WACV21(635-644)
IEEE DOI
2106
BibRef
Earlier: A1, A3, Only:
Adversarial Continuous Learning in Unsupervised Domain Adaptation,
DLPR20(672-687).
Springer DOI
2103
Adaptation models,
Computational modeling, Neural networks, Reinforcement learning,
Feature extraction.
BibRef
Lomonaco, V.,
Desai, K.,
Culurciello, E.,
Maltoni, D.,
Continual Reinforcement Learning in 3D Non-stationary Environments,
CLVision20(999-1008)
IEEE DOI
2008
Task analysis, Learning (artificial intelligence),
Benchmark testing, Color, Training, Complexity theory
BibRef
Zhu, L.C.[Lin-Chao],
Arik, S.Ö.[Sercan Ö.],
Yang, Y.[Yi],
Pfister, T.[Tomas],
Learning to Transfer Learn:
Reinforcement Learning-based Selection for Adaptive Transfer Learning,
ECCV20(XXVII:342-358).
Springer DOI
2011
BibRef
Manteghi, S.[Sajad],
Parvin, H.[Hamid],
Heidarzadegan, A.[Ali],
Nemati, Y.[Yasser],
Multitask Reinforcement Learning in Nondeterministic Environments:
Maze Problem Case,
MCPR15(64-73).
Springer DOI
1506
BibRef
Garcia, E.O.[Esteban O.],
de Cote, E.M.[Enrique Munoz],
Morales, E.F.[Eduardo F.],
Qualitative Transfer for Reinforcement Learning with Continuous State
and Action Spaces,
CIARP13(I:198-205).
Springer DOI
1311
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Subspace Clustering, Subspace Learning .