Wang, L.[Li],
Peng, J.T.[Jiang-Tao],
Sun, W.W.[Wei-Wei],
Spatial-Spectral Squeeze-and-Excitation Residual Network for
Hyperspectral Image Classification,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Fang, L.Y.[Le-Yuan],
Liu, G.Y.[Guang-Yun],
Li, S.T.[Shu-Tao],
Ghamisi, P.[Pedram],
Benediktsson, J.A.[Jón Atli],
Hyperspectral Image Classification with Squeeze Multibias Network,
GeoRS(57), No. 3, March 2019, pp. 1291-1301.
IEEE DOI
1903
convolutional neural nets, hyperspectral imaging,
image classification, learning (artificial intelligence),
squeeze multibias network (SMBN)
BibRef
He, X.[Xin],
Chen, Y.S.[Yu-Shi],
Ghamisi, P.[Pedram],
Dual Graph Convolutional Network for Hyperspectral Image
Classification With Limited Training Samples,
GeoRS(60), 2022, pp. 1-18.
IEEE DOI
2112
Feature extraction, Training, Kernel, Hyperspectral imaging,
Data mining, Task analysis, Shape, Classification,
label distribution learning
BibRef
Xie, J.,
He, N.,
Fang, L.,
Ghamisi, P.,
Multiscale Densely-Connected Fusion Networks for Hyperspectral Images
Classification,
CirSysVideo(31), No. 1, January 2021, pp. 246-259.
IEEE DOI
2101
Feature extraction, Training, Testing, Kernel, Hyperspectral imaging,
Task analysis, Fuses, Hyperspectral images (HSIs) classification,
densebolck
BibRef
Roy, A.G.[Abhijit Guha],
Navab, N.[Nassir],
Wachinger, C.[Christian],
Recalibrating Fully Convolutional Networks With Spatial and Channel
'Squeeze and Excitation' Blocks,
MedImg(38), No. 2, February 2019, pp. 540-549.
IEEE DOI
1902
Image segmentation, Biomedical imaging, Decoding, Task analysis,
Encoding, Retina,
squeeze and excitation
BibRef
Wang, H.R.[Hao-Ran],
Ji, Z.[Zhong],
Lin, Z.G.[Zhi-Gang],
Pang, Y.W.[Yan-Wei],
Li, X.L.[Xue-Long],
Stacked squeeze-and-excitation recurrent residual network for
visual-semantic matching,
PR(105), 2020, pp. 107359.
Elsevier DOI
2006
Vision and language, Cross-modal retrieval, Visual-Semantic embedding
BibRef
Roy, S.K.,
Chatterjee, S.,
Bhattacharyya, S.,
Chaudhuri, B.B.,
Platoš, J.,
Lightweight Spectral-Spatial Squeeze-and-Excitation Residual
Bag-of-Features Learning for Hyperspectral Classification,
GeoRS(58), No. 8, August 2020, pp. 5277-5290.
IEEE DOI
2007
Feature extraction, Hyperspectral imaging,
Principal component analysis, Data mining, Training,
residual network (ResNet)
BibRef
Li, X.[Xian],
Ding, M.L.[Ming-Li],
Pižurica, A.[Aleksandra],
Deep Feature Fusion via Two-Stream Convolutional Neural Network for
Hyperspectral Image Classification,
GeoRS(58), No. 4, April 2020, pp. 2615-2629.
IEEE DOI
2004
BibRef
Earlier:
Group Convolutional Neural Networks for Hyperspectral Image
Classification,
ICIP19(639-643)
IEEE DOI
1910
Feature extraction, Training, Streaming media, Machine learning,
Hyperspectral imaging, Convolutional neural networks,
squeeze-and-excitation (SE).
Group convolutional neural networks,
multi-scale spectral feature extraction.
BibRef
Roy, S.K.[Swalpa Kumar],
Dubey, S.R.[Shiv Ram],
Chatterjee, S.[Subhrasankar],
Chaudhuri, B.B.[Bidyut Baran],
FuSENet: Fused Squeeze-and-Excitation Network for Spectral-Spatial
Hyperspectral Image Classification,
IET-IPR(14), No. 8, 19 June 2020, pp. 1653-1661.
DOI Link
2005
BibRef
Wei, S.J.[Shun-Jun],
Qu, Q.Z.[Qi-Zhe],
Su, H.[Hao],
Shi, J.[Jun],
Zeng, X.F.[Xiang-Feng],
Hao, X.J.[Xiao-Jun],
Intra-pulse modulation radar signal recognition based on
Squeeze-and-Excitation networks,
SIViP(14), No. 6, September 2020, pp. 1133-1141.
Springer DOI
2008
BibRef
Tan, H.L.[Han-Lin],
Xiao, H.X.[Hua-Xin],
Lai, S.M.[Shi-Ming],
Liu, Y.[Yu],
Zhang, M.J.[Mao-Jun],
Denoising real bursts with squeeze-and-excitation residual network,
IET-IPR(14), No. 13, November 2020, pp. 3095-3104.
DOI Link
2012
BibRef
Hu, J.[Jie],
Shen, L.[Li],
Albanie, S.[Samuel],
Sun, G.[Gang],
Wu, E.[Enhua],
Squeeze-and-Excitation Networks,
PAMI(42), No. 8, August 2020, pp. 2011-2023.
IEEE DOI
2007
Computational modeling, Convolution,
Task analysis, Correlation, Optimization,
convolutional neural networks
BibRef
Jin, X.[Xin],
Xie, Y.P.[Yan-Ping],
Wei, X.S.[Xiu-Shen],
Zhao, B.R.[Bo-Rui],
Chen, Z.M.[Zhao-Min],
Tan, X.Y.[Xiao-Yang],
Delving deep into spatial pooling for squeeze-and-excitation networks,
PR(121), 2022, pp. 108159.
Elsevier DOI
2109
Convolutional neural networks, Squeeze-and-excitation,
Spatial pooling, Base model
BibRef
Kwon, H.[Heeseung],
Kim, M.[Manjin],
Kwak, S.[Suha],
Cho, M.[Minsu],
Motionsqueeze: Neural Motion Feature Learning for Video Understanding,
ECCV20(XVI: 345-362).
Springer DOI
2010
BibRef
Song, Z.,
Yuan, Z.,
Liu, T.,
Residual Squeeze-and-Excitation Network for Battery Cell Surface
Inspection,
MVA19(1-5)
DOI Link
1911
feature extraction, inspection,
learning (artificial intelligence), object detection,
Anomaly detection
BibRef
Cao, Y.,
Xu, J.,
Lin, S.,
Wei, F.,
Hu, H.,
GCNet: Non-Local Networks Meet Squeeze-Excitation Networks and Beyond,
NeruArch19(1971-1980)
IEEE DOI
2004
convolutional neural nets, image retrieval, object detection,
query processing, global context network, network archietcture
BibRef
Zhong, X.[Xian],
Gong, O.[Oubo],
Huang, W.X.[Wen-Xin],
Li, L.[Lin],
Xia, H.X.[Hong-Xia],
Squeeze-and-Excitation Wide Residual Networks in Image Classification,
ICIP19(395-399)
IEEE DOI
1910
wide residual networks, global pooling, channel,
squeeze-and-excitation block, CIFAR
BibRef
Hu, J.[Jie],
Shen, L.[Li],
Sun, G.[Gang],
Squeeze-and-Excitation Networks,
CVPR18(7132-7141)
IEEE DOI
1812
Computational modeling, Convolution,
Task analysis, Convolutional codes, Adaptation models, Stacking
BibRef
Liu, J.,
Du, A.,
Wang, C.,
Zheng, H.,
Wang, N.,
Zheng, B.,
Teaching Squeeze-and-Excitation PyramidNet for Imbalanced Image
Classification with GAN-based Curriculum Learning,
ICPR18(2444-2449)
IEEE DOI
1812
Training, Network architecture,
Task analysis, Measurement
BibRef
Gholami, A.,
Kwon, K.,
Wu, B.,
Tai, Z.,
Yue, X.,
Jin, P.,
Zhao, S.,
Keutzer, K.,
SqueezeNext: Hardware-Aware Neural Network Design,
EfficientDeep18(1719-171909)
IEEE DOI
1812
Neural networks, Hardware,
Semiconductor process modeling, Embedded systems, Power demand,
Computational modeling
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Training Issues for Convolutional Neural Networks .