Song, Y.,
Ou, Z.,
Semi-Supervised Seq2seq Joint-Stochastic-Approximation Autoencoders
With Applications to Semantic Parsing,
SPLetters(27), 2020, pp. 31-35.
IEEE DOI
2001
Semi-supervised learning, seq2seq, semantic parsing,
joint stochastic approximation, variational auto-encoder
BibRef
Liang, C.B.[Chen-Bin],
Cheng, B.[Bo],
Xiao, B.H.[Bai-Hua],
He, C.Q.[Chenlin-Qiu],
Liu, X.N.[Xu-Nan],
Jia, N.[Ning],
Chen, J.F.[Jin-Fen],
Semi-/Weakly-Supervised Semantic Segmentation Method and Its
Application for Coastal Aquaculture Areas Based on Multi-Source
Remote Sensing Images: Taking the Fujian Coastal Area (Mainly Sanduo)
as an Example,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Hu, P.[Ping],
Sclaroff, S.[Stan],
Saenko, K.[Kate],
Leveraging Geometric Structure for Label-Efficient Semi-Supervised
Scene Segmentation,
IP(31), 2022, pp. 6320-6330.
IEEE DOI
2210
Annotations, Training, Labeling, Solid modeling, Task analysis,
Semantics, Semantic segmentation,
geometric structure
BibRef
Guo, X.Q.[Xiao-Qing],
Liu, J.[Jie],
Yuan, Y.X.[Yi-Xuan],
Semantic-Oriented Labeled-to-Unlabeled Distribution Translation for
Image Segmentation,
MedImg(41), No. 2, February 2022, pp. 434-445.
IEEE DOI
2202
Code, Segmentation.
WWW Link. Image segmentation, Semantics, Feature extraction, Data models,
Task analysis, Semisupervised learning, few sample segmentation
BibRef
Guo, X.Q.[Xiao-Qing],
Yang, C.[Chen],
Li, B.[Baopu],
Yuan, Y.X.[Yi-Xuan],
MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised
Domain Adaptation in Semantic Segmentation,
CVPR21(3926-3935)
IEEE DOI
2111
Bridges, Adaptation models,
Computational modeling, Semantics, Estimation, Metadata
BibRef
Cao, C.[Cong],
Lin, T.W.[Tian-Wei],
He, D.L.[Dong-Liang],
Li, F.[Fu],
Yue, H.J.[Huan-Jing],
Yang, J.Y.[Jing-Yu],
Ding, E.[Errui],
Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation,
CirSysVideo(33), No. 2, February 2023, pp. 793-803.
IEEE DOI
2302
Semantics, Image segmentation, Training, Perturbation methods,
Data models, Context modeling, Task analysis, differentiable spatial warping
BibRef
Kim, S.[Soopil],
Chikontwe, P.[Philip],
An, S.[Sion],
Park, S.H.[Sang Hyun],
Uncertainty-aware semi-supervised few shot segmentation,
PR(137), 2023, pp. 109292.
Elsevier DOI
2302
Few shot segmentation, Meta learning, Uncertainty estimation,
Semi-supervised learning, Prototype
BibRef
Zang, Y.H.[Yu-Hang],
Zhou, K.Y.[Kai-Yang],
Huang, C.[Chen],
Loy, C.C.[Chen Change],
Semi-Supervised and Long-Tailed Object Detection with CascadeMatch,
IJCV(131), No. 1, January 2023, pp. 987-1001.
Springer DOI
2303
BibRef
Chen, J.K.[Jing-Kun],
Zhang, J.G.[Jian-Guo],
Debattista, K.[Kurt],
Han, J.G.[Jun-Gong],
Semi-Supervised Unpaired Medical Image Segmentation Through
Task-Affinity Consistency,
MedImg(42), No. 3, March 2023, pp. 594-605.
IEEE DOI
2303
Image segmentation, Task analysis, Feature extraction, Training,
Semisupervised learning, Medical diagnostic imaging, consistency
BibRef
Wu, F.P.[Fu-Ping],
Zhuang, X.H.[Xia-Hai],
Minimizing Estimated Risks on Unlabeled Data: A New Formulation for
Semi-Supervised Medical Image Segmentation,
PAMI(45), No. 5, May 2023, pp. 6021-6036.
IEEE DOI
2304
Image segmentation, Training, Biomedical imaging, Task analysis,
Data models, Minimization, Risk management,
Semi-supervised learning
BibRef
Wu, L.S.[Lin-Shan],
Fang, L.Y.[Le-Yuan],
He, X.X.[Xing-Xin],
He, M.[Min],
Ma, J.Y.[Jia-Yi],
Zhong, Z.[Zhun],
Querying Labeled for Unlabeled: Cross-Image Semantic Consistency
Guided Semi-Supervised Semantic Segmentation,
PAMI(45), No. 7, July 2023, pp. 8827-8844.
IEEE DOI
2306
Semantics, Semantic segmentation, Reliability, Training,
Task analysis, Annotations, Deep learning, semi-supervised learning
BibRef
Gu, R.[Ran],
Zhang, J.Y.[Jing-Yang],
Wang, G.[Guotai],
Lei, W.H.[Wen-Hui],
Song, T.[Tao],
Zhang, X.F.[Xiao-Fan],
Li, K.[Kang],
Zhang, S.T.[Shao-Ting],
Contrastive Semi-Supervised Learning for Domain Adaptive Segmentation
Across Similar Anatomical Structures,
MedImg(42), No. 1, January 2023, pp. 245-256.
IEEE DOI
2301
Image segmentation, Annotations, Adaptation models, Training,
Biomedical imaging, Anatomical structure, Task analysis, contrastive learning
BibRef
Dang, B.[Bo],
Li, Y.S.[Yan-Sheng],
Zhang, Y.J.[Yong-Jun],
Ma, J.Y.[Jia-Yi],
Progressive Learning With Cross-Window Consistency for
Semi-Supervised Semantic Segmentation,
IP(33), 2024, pp. 5219-5231.
IEEE DOI Code:
HTML Version.
2410
Semantic segmentation, Semantics, Data models, Pipelines, Visualization,
Remote sensing, Medical diagnostic imaging, pseudo-label supervision
BibRef
Wang, Y.[Ying],
Xuan, Z.W.[Zi-Wei],
Ho, C.[Chiuman],
Qi, G.J.[Guo-Jun],
Adversarial Dense Contrastive Learning for Semi-Supervised Semantic
Segmentation,
IP(32), 2023, pp. 4459-4471.
IEEE DOI
2309
BibRef
Lee, M.[Minhyun],
Lee, S.[Seungho],
Lee, J.[Jongwuk],
Shim, H.J.[Hyun-Jung],
Saliency as Pseudo-Pixel Supervision for Weakly and Semi-Supervised
Semantic Segmentation,
PAMI(45), No. 10, October 2023, pp. 12341-12357.
IEEE DOI
2310
BibRef
Lee, S.[Seungho],
Lee, M.[Minhyun],
Lee, J.[Jongwuk],
Shim, H.J.[Hyun-Jung],
Railroad is not a Train: Saliency as Pseudo-pixel Supervision for
Weakly Supervised Semantic Segmentation,
CVPR21(5491-5501)
IEEE DOI
2111
Location awareness, Training, Image segmentation,
Codes, Semantics, Pattern recognition
BibRef
Hou, Y.Z.[Yun-Zhong],
Gould, S.[Stephen],
Zheng, L.[Liang],
View-coherent correlation consistency for semi-supervised semantic
segmentation,
PR(147), 2024, pp. 110089.
Elsevier DOI
2312
Semi-supervised learning, Semantic segmentation,
Contrastive learning, Data augmentation
BibRef
Chen, Z.J.[Ze-Jian],
Zhuo, W.[Wei],
Wang, T.F.[Tian-Fu],
Cheng, J.[Jun],
Xue, W.F.[Wu-Feng],
Ni, D.[Dong],
Semi-Supervised Representation Learning for Segmentation on Medical
Volumes and Sequences,
MedImg(42), No. 12, December 2023, pp. 3972-3986.
IEEE DOI Code:
WWW Link.
2312
BibRef
Wu, J.W.[Jia-Wei],
Fan, H.Y.[Hao-Yi],
Li, Z.Y.[Zuo-Yong],
Liu, G.H.[Guang-Hai],
Lin, S.[Shouying],
Information Transfer in Semi-Supervised Semantic Segmentation,
CirSysVideo(34), No. 2, February 2024, pp. 1174-1185.
IEEE DOI
2402
Semantic segmentation, Training, Task analysis, Semantics, Bars,
Semisupervised learning, Entropy, Semi-supervised learning,
information transfer
BibRef
Wang, Y.S.[Yoo-Seung],
Jang, J.[Jaehyuk],
Kim, C.[Changick],
Subdivided Mask Dispersion Framework for Semi-Supervised Semantic
Segmentation,
PRL(179), 2024, pp. 58-64.
Elsevier DOI
2403
Semi-supervised semantic segmentation,
Semi-supervised learning, Cutmix, Transformer
BibRef
Miao, J.Z.[Ju-Zheng],
Zhou, S.P.[Si-Ping],
Zhou, G.Q.[Guang-Quan],
Wang, K.N.[Kai-Ni],
Yang, M.[Meng],
Zhou, S.[Shoujun],
Chen, Y.[Yang],
SC-SSL: Self-Correcting Collaborative and Contrastive Co-Training
Model for Semi-Supervised Medical Image Segmentation,
MedImg(43), No. 4, April 2024, pp. 1347-1364.
IEEE DOI
2404
Image segmentation, Biomedical imaging, Reliability, Task analysis,
Training, Semisupervised learning, Semantics, Self-correcting,
structure constraint
BibRef
Zhang, F.[Fan],
Liu, H.Y.[Hui-Ying],
Wang, J.J.[Jin-Jiang],
Lyu, J.[Jun],
Cai, Q.[Qing],
Li, H.F.[Hua-Feng],
Dong, J.Y.[Jun-Yu],
Zhang, D.[David],
Cross Co-Teaching for Semi-Supervised Medical Image Segmentation,
PR(152), 2024, pp. 110426.
Elsevier DOI
2405
Semi-supervised medical image segmentation,
Signed distance function, Interactive lateral fusion mechanism
BibRef
Wu, Q.H.[Qian-Hao],
Jiang, X.X.[Xi-Xi],
Zhang, D.[Dong],
Feng, Y.F.[Yi-Fei],
Tang, J.H.[Jin-Hui],
Cross-Set Data Augmentation for Semi-Supervised Medical Image
Segmentation,
IVC(154), 2025, pp. 105407.
Elsevier DOI
2502
Semi-supervised learning, Medical image segmentation,
Cross-set data augmentation, Distribution alignment
BibRef
Zhang, R.T.[Run-Tong],
Zhu, H.Y.[Hong-Yuan],
Zhang, H.W.[Han-Wang],
Gong, C.[Chen],
Zhou, J.T.Y.[Joey Tian-Yi],
Meng, F.M.[Fan-Man],
Blessing few-shot segmentation via semi-supervised learning with
noisy support images,
PR(154), 2024, pp. 110503.
Elsevier DOI
2406
Few-shot segmentation, Semi-supervised learning, Noisy images, Causal inference
BibRef
Zhang, R.T.[Run-Tong],
Zhu, H.Y.[Hong-Yuan],
Zhang, H.W.[Han-Wang],
Gong, C.[Chen],
Zhou, J.T.Y.[Joey Tian-Yi],
Meng, F.M.[Fan-Man],
Semi-Supervised Few-Shot Segmentation with Noisy Support Images,
ICIP23(1550-1554)
IEEE DOI
2312
BibRef
Xiao, H.[Hui],
Hong, Y.T.[Yu-Ting],
Dong, L.[Li],
Yan, D.[Diqun],
Xiong, J.J.[Jun-Jie],
Zhuang, J.Y.[Jia-Yan],
Liang, D.[Dongtai],
Peng, C.B.[Cheng-Bin],
Multi-Level Label Correction by Distilling Proximate Patterns for
Semi-Supervised Semantic Segmentation,
MultMed(26), 2024, pp. 8077-8087.
IEEE DOI
2408
Semantic segmentation, Noise measurement, Semantics, Data models,
Training, Semisupervised learning, Predictive models, graph convolution
BibRef
Xie, H.Y.[Hao-Yu],
Wang, C.Q.[Chang-Qi],
Zhao, J.[Jian],
Liu, Y.[Yang],
Dan, J.[Jun],
Fu, C.[Chong],
Sun, B.G.[Bai-Gui],
PRCL: Probabilistic Representation Contrastive Learning for
Semi-Supervised Semantic Segmentation,
IJCV(132), No. 10, October 2024, pp. 4343-4361.
Springer DOI
2410
BibRef
Yin, J.J.[Jian-Jian],
Yan, S.[Shuai],
Chen, T.[Tao],
Chen, Y.[Yi],
Yao, Y.Z.[Ya-Zhou],
Class Probability Space Regularization for semi-supervised semantic
segmentation,
CVIU(249), 2024, pp. 104146.
Elsevier DOI Code:
WWW Link.
2412
Human visual attention mechanisms,
Semi-supervised semantic segmentation, Tail probability suppression
BibRef
Wang, J.H.[Jia-Hui],
Ruan, D.S.[Dong-Sheng],
Li, Y.[Yang],
Wang, Z.F.[Ze-Feng],
Wu, Y.Q.[Yong-Quan],
Tan, T.[Tao],
Yang, G.[Guang],
Jiang, M.F.[Ming-Feng],
Data augmentation strategies for semi-supervised medical image
segmentation,
PR(159), 2025, pp. 111116.
Elsevier DOI Code:
WWW Link.
2412
Semi-supervised segmentation, Cropping and stitching,
Laplace pyramid fusion, Mutual consistency
BibRef
Yang, X.[Xi],
Zhou, Q.[Qiubai],
Wei, Z.Y.[Zi-Yu],
Liu, H.[Hong],
Wang, N.N.[Nan-Nan],
Gao, X.B.[Xin-Bo],
Elaborate Teacher: Improved Semi-Supervised Object Detection With
Rich Image Exploiting,
MultMed(26), 2024, pp. 11345-11357.
IEEE DOI
2412
Object detection, Data augmentation, Data models, Semantics,
Task analysis, Predictive models, Semisupervised learning,
teacher-student framework
BibRef
Zeng, Q.J.[Qing-Jie],
Xie, Y.T.[Yu-Tong],
Lu, Z.[Zilin],
Lu, M.K.[Meng-Kang],
Zhang, J.F.[Jing-Feng],
Xia, Y.[Yong],
Consistency-Guided Differential Decoding for Enhancing
Semi-Supervised Medical Image Segmentation,
MedImg(44), No. 1, January 2025, pp. 44-56.
IEEE DOI Code:
WWW Link.
2501
Decoding, Image segmentation, Training, Semisupervised learning,
Task analysis, Medical diagnostic imaging, Labeling,
differential feature learning
BibRef
Zeng, Q.J.[Qing-Jie],
Xie, Y.T.[Yu-Tong],
Lu, Z.[Zilin],
Lu, M.K.[Meng-Kang],
Wu, Y.C.[Yi-Cheng],
Xia, Y.[Yong],
Segment Together: A Versatile Paradigm for Semi-Supervised Medical
Image Segmentation,
MedImg(44), No. 7, July 2025, pp. 2948-2959.
IEEE DOI Code:
WWW Link.
2507
Data models, Training, Image segmentation, Biomedical imaging, Head,
Spleen, Data mining, Annotations, Adaptation models, unified learning
BibRef
Zeng, Q.J.[Qing-Jie],
Lu, Z.L.[Zi-Lin],
Xie, Y.T.[Yu-Tong],
Xia, Y.[Yong],
PICK: Predict and Mask for Semi-supervised Medical Image Segmentation,
IJCV(133), No. 6, June 2025, pp. Psges 3296-3311.
Springer DOI
2505
BibRef
Han, W.Q.[Wen-Qi],
Jiang, W.[Wen],
Geng, J.[Jie],
Miao, W.[Wang],
Difference-Complementary Learning and Label Reassignment for Multimodal
Semi-Supervised Semantic Segmentation of Remote Sensing Images,
IP(34), 2025, pp. 566-580.
IEEE DOI
2501
Remote sensing, Optical sensors, Semantic segmentation,
Optical imaging, Radar polarimetry, Adaptive optics, remote sensing
BibRef
Hu, K.[Kai],
Chen, X.B.[Xiao-Bo],
Chen, Z.N.[Zhi-Neng],
Zhang, Y.[Yuan],
Gao, X.[Xieping],
Multi-Perspective Pseudo-Label Generation and Confidence-Weighted
Training for Semi-Supervised Semantic Segmentation,
MultMed(27), 2025, pp. 300-311.
IEEE DOI
2501
Training, Semantic segmentation, Predictive models, Data models,
Perturbation methods, Semantics, Semisupervised learning,
semantic segmentation
BibRef
Liu, Y.Y.[Yu-Yuan],
Tian, Y.[Yu],
Wang, C.[Chong],
Chen, Y.H.[Yuan-Hong],
Liu, F.B.[Feng-Bei],
Belagiannis, V.[Vasileios],
Carneiro, G.[Gustavo],
Translation Consistent Semi-Supervised Segmentation for 3D Medical
Images,
MedImg(44), No. 2, February 2025, pp. 952-968.
IEEE DOI Code:
WWW Link.
2502
Training, Image segmentation, Perturbation methods, Data models,
Computational modeling, Predictive models, Benchmark testing,
semi-supervised learning
BibRef
Qiao, P.C.[Peng-Chong],
Wang, Y.[Yu],
Liu, C.[Chang],
Shang, L.[Lei],
Sun, B.G.[Bai-Gui],
Wang, Z.N.[Zhen-Nan],
Zheng, X.W.[Xia-Wu],
Ji, R.R.[Rong-Rong],
Chen, J.[Jie],
Adaptive Fuzzy Positive Learning for Annotation-Scarce Semantic
Segmentation,
IJCV(133), No. 3, March 2025, pp. 1048-1066.
Springer DOI
2502
BibRef
Qiao, P.C.[Peng-Chong],
Wei, Z.D.[Zhi-Dan],
Wang, Y.[Yu],
Wang, Z.N.[Zhen-Nan],
Song, G.[Guoli],
Xu, F.[Fan],
Ji, X.Y.[Xiang-Yang],
Liu, C.[Chang],
Chen, J.[Jie],
Fuzzy Positive Learning for Semi-Supervised Semantic Segmentation,
CVPR23(15465-15474)
IEEE DOI
2309
BibRef
Zhang, R.X.[Rui-Xiang],
Xu, C.[Chang],
Xu, F.[Fang],
Yang, W.[Wen],
He, G.J.[Guang-Jun],
Yu, H.[Huai],
Xia, G.S.[Gui-Song],
S3OD: Size-unbiased semi-supervised object detection in aerial images,
PandRS(221), 2025, pp. 179-192.
Elsevier DOI Code:
WWW Link.
2503
Aerial images, Semi-supervised learning, Object detection
BibRef
Yang, L.[Lihe],
Zhao, Z.[Zhen],
Zhao, H.S.[Heng-Shuang],
UniMatch V2: Pushing the Limit of Semi-Supervised Semantic
Segmentation,
PAMI(47), No. 4, April 2025, pp. 3031-3048.
IEEE DOI
2503
Training, Semantic segmentation, Pipelines, Predictive models,
Benchmark testing, Annotations, Visualization, Transformers,
vision transformer
BibRef
Wang, H.C.[Hao-Chen],
Wang, Y.C.[Yu-Chao],
Shen, Y.J.[Yu-Jun],
Fan, J.S.[Jun-Song],
Wang, Y.X.[Yu-Xi],
Zhang, Z.X.[Zhao-Xiang],
Using Unreliable Pseudo-Labels for Label-Efficient Semantic
Segmentation,
IJCV(133), No. 4, April 2025, pp. 1476-1498.
Springer DOI
2504
BibRef
Wang, Y.C.[Yu-Chao],
Wang, H.C.[Hao-Chen],
Shen, Y.J.[Yu-Jun],
Fei, J.J.[Jing-Jing],
Li, W.[Wei],
Jin, G.Q.[Guo-Qiang],
Wu, L.W.[Li-Wei],
Zhao, R.[Rui],
Le, X.[Xinyi],
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels,
CVPR22(4238-4247)
IEEE DOI
2210
Training, Visualization, Shape, Semantics, Predictive models,
Semisupervised learning, Solids, Segmentation,
Self- semi- meta- unsupervised learning
BibRef
Ran, L.Y.[Ling-Yan],
Li, Y.[Yali],
Liang, G.Q.[Guo-Qiang],
Zhang, Y.N.[Yan-Ning],
Pseudo Labeling Methods for Semi-Supervised Semantic Segmentation:
A Review and Future Perspectives,
CirSysVideo(35), No. 4, April 2025, pp. 3054-3080.
IEEE DOI
2504
Training, Data models, Semantic segmentation, Reviews,
Deep learning, Computational modeling, semi-supervised learning
BibRef
Zhang, D.K.[Deng-Ke],
Tang, Q.[Quan],
Liu, F.G.[Fa-Gui],
Mei, H.Q.[Hai-Qing],
Chen, C.L.P.[C. L. Philip],
Exploring Token-Level Augmentation in Vision Transformer for
Semi-Supervised Semantic Segmentation,
SPLetters(32), 2025, pp. 1885-1889.
IEEE DOI
2505
Training, Decoding, Computational modeling, Data models,
Semantic segmentation, Transformers, Predictive models, vision transformer
BibRef
Ma, Q.K.[Qian-Kun],
Zhang, Z.[Ziyao],
Qiao, P.C.[Peng-Chong],
Wang, Y.[Yu],
Ji, R.R.[Rong-Rong],
Liu, C.[Chang],
Chen, J.[Jie],
Dual-Level Masked Semantic Inference for Semi-Supervised Semantic
Segmentation,
MultMed(27), 2025, pp. 4029-4042.
IEEE DOI
2507
Semantics, Semantic segmentation, Context modeling, Data models,
Training, Perturbation methods, Computational modeling,
semi-supervised learning
BibRef
Du, G.X.[Guang-Xing],
Wu, R.[Rui],
Xu, J.M.[Jin-Ming],
Zeng, X.[Xiang],
Xiong, S.W.[Sheng-Wu],
Dual Diversity and Pseudo-Label Correction Learning for
Semi-Supervised Medical Image Segmentation,
IJIST(35), No. 5, 2025, pp. e70194.
DOI Link Code:
WWW Link.
2509
co-training, medical image segmentation, pseudo-labeling,
semi-supervised learning
BibRef
Zeng, X.[Xiang],
Xiong, S.W.[Sheng-Wu],
Xu, J.M.[Jin-Ming],
Du, G.X.[Guang-Xing],
Rong, Y.[Yi],
Uncertainty Co-Estimator for Improving Semi-Supervised Medical Image
Segmentation,
MedImg(44), No. 9, September 2025, pp. 3870-3881.
IEEE DOI Code:
WWW Link.
2510
Uncertainty, Image segmentation, Predictive models, Estimation,
Training, Perturbation methods, Artificial intelligence, Noise,
uncertainty estimation
BibRef
Guo, X.R.[Xiu-Rui],
Lu, Y.[Yu],
Zuo, Y.[Yang],
Wang, J.X.[Jun-Xia],
Zheng, Y.J.[Yuan-Jie],
IEDC-Net: Internal-External Dual Correction Mechanisms for
Semi-Supervised Medical Image Segmentation,
IJIST(35), No. 5, 2025, pp. e70163.
DOI Link
2509
medical image segmentation, multi-model architecture,
mutual consistency, semi-supervised learning, uncertainty estimation
BibRef
Yu, B.Q.[Bao-Qi],
Liu, Y.[Yong],
Caudo-Diff: Diffusion calibrated pseudo labels in guided latent space
for minimally supervised medical segmentation,
PR(170), 2026, pp. 112007.
Elsevier DOI
2509
Diffusion model, Medical image segmentation,
Minimally supervised learning, Pseudo label
BibRef
Huang, Y.[Yigeng],
Li, S.[Suwen],
Guo, Z.[Zheng],
Mei, Q.[Qiao],
Han, Z.[Zhuo],
Wang, X.J.[Xiu-Juan],
Wang, H.Q.[Huan-Qin],
Boundary feature alignment for semi-supervised medical image
segmentation,
PR(170), 2026, pp. 111946.
Elsevier DOI Code:
WWW Link.
2509
Semi-supervised medical image segmentation, Boundary learning, Feature alignment
BibRef
Sun, W.J.[Wen-Jie],
Lei, Y.J.[Yu-Jie],
Hong, D.F.[Dan-Feng],
Hu, Z.W.[Zhong-Wen],
Li, Q.Q.[Qing-Quan],
Zhang, J.[Jie],
RSProtoSemiSeg: Semi-supervised semantic segmentation of high spatial
resolution remote sensing images with probabilistic distribution
prototypes,
PandRS(228), 2025, pp. 771-784.
Elsevier DOI Code:
WWW Link.
2509
Remote sensing, Semi-supervised semantic segmentation,
Distribution prototypes, Probabilistic embedding, Contrastive learning
BibRef
Yin, J.J.[Jian-Jian],
Chen, T.[Tao],
Pei, G.S.[Gen-Sheng],
Liu, H.F.[Hua-Feng],
Yao, Y.Z.[Ya-Zhou],
Nie, L.Q.[Li-Qiang],
Hua, X.S.[Xian-Sheng],
Semi-Supervised Semantic Segmentation with Multi-Constraint
Consistency Learning,
MultMed(27), 2025, pp. 6449-6461.
IEEE DOI
2510
Decoding, Semantic segmentation, Training, IP networks,
Feature extraction, Data mining, Semantics, Prototypes, Noise,
self-adaptive intervention
See also Graph-Based Semi-Supervised Learning with Multiple Labels.
BibRef
Li, S.[Shiman],
Zhao, J.[Jiayue],
Hao, Y.[Yi],
Zhang, C.X.[Chen-Xi],
Song, Z.J.[Zhi-Jian],
Beyond the Distribution: Perturbation Toward Domain Distribution
Boundary for Strengthening Generalizable Semi-Supervised Segmentation,
SPLetters(32), 2025, pp. 3535-3539.
IEEE DOI
2510
Perturbation methods, Biomedical imaging, Computational modeling,
Data models, Training, Magnetic resonance imaging,
boundary perturbation
BibRef
Lu, C.Y.[Chen-Yi],
Derakhshandeh, K.[Kasra],
Chaterji, S.[Somali],
Improving Semi-Supervised Semantic Segmentation with
Sliced-Wasserstein Feature Alignment and Uniformity,
CVPR25(20233-20243)
IEEE DOI
2508
Training, Measurement, Monte Carlo methods, Accuracy,
Semantic segmentation, Semisupervised learning, Optimization
BibRef
Karypidis, E.[Efstathios],
Kakogeorgiou, I.[Ioannis],
Gidaris, S.[Spyros],
Komodakis, N.[Nikos],
Advancing Semantic Future Prediction through Multimodal Visual
Sequence Transformers,
CVPR25(3793-3803)
IEEE DOI Code:
WWW Link.
2508
Training, Visualization, Accuracy, Computational modeling,
Semantic segmentation, Semantics, Pipelines, Predictive models,
masked visual modeling
BibRef
Ma, Q.[Qinghe],
Zhang, J.[Jian],
Li, Z.K.[Ze-Kun],
Qi, L.[Lei],
Yu, Q.[Qian],
Shi, Y.H.[Ying-Huan],
Steady Progress Beats Stagnation: Mutual Aid of Foundation and
Conventional Models in Mixed Domain Semi-Supervised Medical Image
Segmentation,
CVPR25(5175-5185)
IEEE DOI Code:
WWW Link.
2508
Training, Image segmentation, Visualization, Foundation models,
Reliability, Optimization, Convergence, Biomedical imaging, domain shift
BibRef
Hu, M.[Ming],
Yin, J.[Jianfu],
Ma, Z.Z.[Zhuang-Zhuang],
Ma, J.H.[Jian-Heng],
Zhu, F.Y.[Fei-Yu],
Wu, B.B.[Bing-Bing],
Wen, Y.[Ya],
Wu, M.[Meng],
Hu, C.[Cong],
Hu, B.L.[Bing-Liang],
Wang, Q.[Quan],
beta-FFT: Nonlinear Interpolation and Differentiated Training Strategies
for Semi-Supervised Medical Image Segmentation,
CVPR25(30839-30849)
IEEE DOI Code:
WWW Link.
2508
Training, Interpolation, Image segmentation, Fast Fourier transforms,
System performance, Data processing, deep co-training
BibRef
Assefa, M.[Maregu],
Naseer, M.[Muzammal],
Ganapathi, I.I.[Iyyakutti Iyappan],
Ali, S.S.[Syed Sadaf],
Seghier, M.L.[Mohamed L],
Werghi, N.[Naoufel],
DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning
for Semi-supervised Medical Image Segmentation,
CVPR25(30850-30860)
IEEE DOI
2508
Training, Image segmentation, Visualization, Uncertainty, Accuracy,
Contrastive learning, Semisupervised learning, Lesions
BibRef
Thakur, R.S.[Rini Smita],
Kurmi, V.K.[Vinod K],
Uncertainty and Energy based Loss Guided Semi-Supervised Semantic
Segmentation,
WACV25(8035-8045)
IEEE DOI Code:
WWW Link.
2505
Training, Measurement, Couplings, Energy loss, Uncertainty,
Semantic segmentation, Noise, Transformers, Data models,
uncertainty, calibration
BibRef
Liu, Q.Y.[Qian-Ying],
Henderson, P.[Paul],
Gu, X.[Xiao],
Dai, H.[Hang],
Deligianni, F.[Fani],
Learning Semi-Supervised Medical Image Segmentation from Spatial
Registration,
WACV25(6383-6393)
IEEE DOI Code:
WWW Link.
2505
Training, Image segmentation, Computational modeling, Semantics,
Transforms, Contrastive learning, Benchmark testing, Data models,
transformer
BibRef
Gao, N.[Ning],
Zhou, S.P.[San-Ping],
Wang, L.[Le],
Zheng, N.N.[Nan-Ning],
PMT: Progressive Mean Teacher via Exploring Temporal Consistency for
Semi-Supervised Medical Image Segmentation,
ECCV24(LXVIII: 144-160).
Springer DOI
2412
BibRef
Zhao, Z.[Zhen],
Wang, Z.C.[Zi-Cheng],
Wang, L.[Longyue],
Yu, D.[Dian],
Yuan, Y.X.[Yi-Xuan],
Zhou, L.P.[Lu-Ping],
Alternate Diverse Teaching for Semi-supervised Medical Image
Segmentation,
ECCV24(V: 227-243).
Springer DOI
2412
BibRef
Miao, J.Z.[Ju-Zheng],
Chen, C.[Cheng],
Liu, F.[Furui],
Wei, H.[Hao],
Heng, P.A.[Pheng-Ann],
CauSSL: Causality-Inspired Semi-Supervised Learning for Medical Image
Segmentation,
ICCV23(21369-21380)
IEEE DOI Code:
WWW Link.
2401
BibRef
Qiu, M.[Muyang],
Zhang, J.[Jian],
Qi, L.[Lei],
Yu, Q.[Qian],
Shi, Y.H.[Ying-Huan],
Gao, Y.[Yang],
The Devil Is in the Statistics: Mitigating and Exploiting Statistics
Difference for Generalizable Semi-supervised Medical Image Segmentation,
ECCV24(LIV: 74-91).
Springer DOI
2412
BibRef
Qi, W.B.[Wen-Bo],
Wu, J.[Jiafei],
Chan, S.C.,
Gradient-aware for Class-imbalanced Semi-supervised Medical Image
Segmentation,
ECCV24(LV: 473-490).
Springer DOI
2412
BibRef
Howlader, P.[Prantik],
Das, S.[Srijan],
Le, H.[Hieu],
Samaras, D.[Dimitris],
Beyond Pixels: Semi-supervised Semantic Segmentation with a Multi-scale
Patch-based Multi-label Classifier,
ECCV24(LXXV: 342-360).
Springer DOI
2412
BibRef
Chi, H.Y.[Han-Yang],
Pang, J.[Jian],
Zhang, B.F.[Bing-Feng],
Liu, W.F.[Wei-Feng],
Adaptive Bidirectional Displacement for Semi-Supervised Medical Image
Segmentation,
CVPR24(4070-4080)
IEEE DOI Code:
WWW Link.
2410
Image segmentation, Adaptation models, Perturbation methods,
Source coding, Semantics, Predictive models,
Consistency Learning
BibRef
Hu, X.T.[Xin-Ting],
Jiang, L.[Li],
Schiele, B.[Bernt],
Training Vision Transformers for Semi-Supervised Semantic
Segmentation,
CVPR24(4007-4017)
IEEE DOI Code:
WWW Link.
2410
Training, Semantic segmentation, Perturbation methods, Modulation,
Transformer cores
BibRef
Wang, X.Y.[Xiao-Yang],
Bai, H.H.[Hui-Hui],
Yu, L.M.[Li-Min],
Zhao, Y.[Yao],
Xiao, J.[Jimin],
Towards the Uncharted: Density-Descending Feature Perturbation for
Semi-supervised Semantic Segmentation,
CVPR24(3303-3312)
IEEE DOI Code:
WWW Link.
2410
Training, Protocols, Perturbation methods, Semantic segmentation,
Semantics, Estimation, Semisupervised learning, semi-supervised learning
BibRef
Mai, H.Y.[Hua-Yu],
Sun, R.[Rui],
Zhang, T.Z.[Tian-Zhu],
Wu, F.[Feng],
RankMatch: Exploring the Better Consistency Regularization for
Semi-Supervised Semantic Segmentation,
CVPR24(3391-3401)
IEEE DOI
2410
Learning systems, Correlation, Mitochondria, Semantic segmentation,
Computational modeling, Contrastive learning
BibRef
Sun, B.[Boyuan],
Yang, Y.Q.[Yu-Qi],
Zhang, L.[Le],
Cheng, M.M.[Ming-Ming],
Hou, Q.[Qibin],
CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation,
CVPR24(3097-3107)
IEEE DOI Code:
WWW Link.
2410
Training, Correlation, Accuracy, Codes, Shape, Semantic segmentation,
semi-supervised learning, pseudo-labeling
BibRef
Wang, H.N.[Hao-Nan],
Zhang, Q.X.[Qi-Xiang],
Li, Y.[Yi],
Li, X.M.[Xiao-Meng],
AllSpark: Reborn Labeled Features from Unlabeled in Transformer for
Semi-Supervised Semantic Segmentation,
CVPR24(3627-3636)
IEEE DOI Code:
WWW Link.
2410
Training, Protocols, Semantic segmentation, Semantics, Pipelines,
Manuals, Benchmark testing
BibRef
Maheshwari, H.[Harsh],
Liu, Y.C.[Yen-Cheng],
Kira, Z.[Zsolt],
Missing Modality Robustness in Semi-Supervised Multi-Modal Semantic
Segmentation,
WACV24(1009-1019)
IEEE DOI Code:
HTML Version.
2404
Training, Semantic segmentation, Benchmark testing, Robustness,
Data models, Proposals, Algorithms
BibRef
Liu, L.Y.[Li-Yang],
Wang, Z.[Zihan],
Phan, M.H.[Minh Hieu],
Zhang, B.[Bowen],
Ge, J.C.[Jin-Chao],
Liu, Y.F.[Yi-Fan],
BPKD: Boundary Privileged Knowledge Distillation For Semantic
Segmentation,
WACV24(1051-1061)
IEEE DOI Code:
WWW Link.
2404
Body regions, Adaptation models, Sensitivity, Shape,
Semantic segmentation, Knowledge representation, Algorithms, Image recognition and understanding
BibRef
Liu, T.[Tao],
Chen, C.[Chenshu],
Yang, X.[Xi],
Tan, W.M.[Wen-Ming],
Rethinking Knowledge Distillation with Raw Features for Semantic
Segmentation,
WACV24(1144-1153)
IEEE DOI
2404
Knowledge engineering, Sensitivity, Semantic segmentation,
Feature extraction, Robustness, Tuning, Algorithms
BibRef
Li, P.X.[Pei-Xia],
Purkait, P.[Pulak],
Ajanthan, T.[Thalaiyasingam],
Abdolshah, M.[Majid],
Garg, R.[Ravi],
Husain, H.[Hisham],
Xu, C.C.[Chen-Chen],
Gould, S.[Stephen],
Ouyang, W.L.[Wan-Li],
van den Hengel, A.J.[Anton J.],
Semi-Supervised Semantic Segmentation under Label Noise via Diverse
Learning Groups,
ICCV23(1229-1238)
IEEE DOI
2401
BibRef
Ma, J.[Jie],
Wang, C.[Chuan],
Liu, Y.[Yang],
Lin, L.[Liang],
Li, G.B.[Guan-Bin],
Enhanced Soft Label for Semi-Supervised Semantic Segmentation,
ICCV23(1185-1195)
IEEE DOI
2401
BibRef
Dong, R.M.[Run-Min],
Mou, L.C.[Li-Chao],
Chen, M.X.[Meng-Xuan],
Li, W.J.[Wei-Jia],
Tong, X.Y.[Xin-Yi],
Yuan, S.[Shuai],
Zhang, L.X.[Li-Xian],
Zheng, J.P.[Jue-Peng],
Zhu, X.X.[Xiao Xiang],
Fu, H.[Haohuan],
Large-Scale Land Cover Mapping with Fine-Grained Classes via
Class-Aware Semi-Supervised Semantic Segmentation,
ICCV23(16737-16747)
IEEE DOI
2401
BibRef
Liang, C.[Chen],
Wang, W.G.[Wen-Guan],
Miao, J.X.[Jia-Xu],
Yang, Y.[Yi],
Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation,
ICCV23(16151-16162)
IEEE DOI
2401
BibRef
Zhao, Z.[Zhen],
Yang, L.[Lihe],
Long, S.[Sifan],
Pi, J.[Jimin],
Zhou, L.P.[Lu-Ping],
Wang, J.D.[Jing-Dong],
Augmentation Matters: A Simple-Yet-Effective Approach to
Semi-Supervised Semantic Segmentation,
CVPR23(11350-11359)
IEEE DOI
2309
BibRef
Huang, H.M.[Hui-Min],
Xie, S.[Shiao],
Lin, L.F.[Lan-Fen],
Tong, R.F.[Ruo-Feng],
Chen, Y.W.[Yen-Wei],
Li, Y.X.[Yue-Xiang],
Wang, H.[Hong],
Huang, Y.W.[Ya-Wen],
Zheng, Y.F.[Ye-Feng],
SemiCVT: Semi-Supervised Convolutional Vision Transformer for
Semantic Segmentation,
CVPR23(11340-11349)
IEEE DOI
2309
BibRef
Zhou, Y.F.[Yan-Feng],
Huang, J.X.[Jia-Xing],
Wang, C.L.[Chen-Long],
Song, L.[Le],
Yang, G.[Ge],
XNet: Wavelet-Based Low and High Frequency Fusion Networks for Fully-
and Semi-Supervised Semantic Segmentation of Biomedical Images,
ICCV23(21028-21039)
IEEE DOI Code:
WWW Link.
2401
BibRef
Wang, Z.Y.[Zi-Yang],
Ma, C.Y.[Cong-Ying],
Dual-Contrastive Dual-Consistency Dual-Transformer:
A Semi-Supervised Approach to Medical Image Segmentation,
NIVT23(870-879)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, Y.J.[Yi-Jiang],
Wang, X.J.[Xin-Jiang],
Yang, L.[Lihe],
Feng, L.T.[Li-Tong],
Zhang, W.[Wayne],
Gao, Y.[Ying],
Diverse Cotraining Makes Strong Semi-Supervised Segmentor,
ICCV23(16009-16021)
IEEE DOI
2401
BibRef
Fang, Y.[Yan],
Zhu, F.[Feng],
Cheng, B.[Bowen],
Liu, L.Q.[Luo-Qi],
Zhao, Y.[Yao],
Wei, Y.C.[Yun-Chao],
Locating Noise is Halfway Denoising for Semi-Supervised Segmentation,
ICCV23(16566-16576)
IEEE DOI
2401
BibRef
Wang, C.Q.[Chang-Qi],
Xie, H.Y.[Hao-Yu],
Yuan, Y.H.[Yu-Hui],
Fu, C.[Chong],
Yue, X.Y.[Xiang-Yu],
Space Engage: Collaborative Space Supervision for Contrastive-based
Semi-Supervised Semantic Segmentation,
ICCV23(931-942)
IEEE DOI
2401
BibRef
Kar, P.[Purbayan],
Chudasama, V.[Vishal],
Onoe, N.[Naoyuki],
Wasnik, P.[Pankaj],
Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection,
ECV23(4570-4579)
IEEE DOI
2309
BibRef
Lao, J.W.[Jiang-Wei],
Hong, W.X.[Wei-Xiang],
Guo, X.[Xin],
Zhang, Y.Y.[Ying-Ying],
Wang, J.[Jian],
Chen, J.D.[Jing-Dong],
Chu, W.[Wei],
Simultaneously Short- and Long-Term Temporal Modeling for
Semi-Supervised Video Semantic Segmentation,
CVPR23(14763-14772)
IEEE DOI
2309
BibRef
Wang, Z.C.[Zi-Cheng],
Zhao, Z.[Zhen],
Xing, X.X.[Xiao-Xia],
Xu, D.[Dong],
Kong, X.Y.[Xiang-Yu],
Zhou, L.P.[Lu-Ping],
Conflict-Based Cross-View Consistency for Semi-Supervised Semantic
Segmentation,
CVPR23(19585-19595)
IEEE DOI
2309
BibRef
Yang, L.[Lihe],
Qi, L.[Lei],
Feng, L.T.[Li-Tong],
Zhang, W.[Wayne],
Shi, Y.H.[Ying-Huan],
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic
Segmentation,
CVPR23(7236-7246)
IEEE DOI
2309
BibRef
Wang, X.Y.[Xiao-Yang],
Zhang, B.F.[Bing-Feng],
Yu, L.M.[Li-Min],
Xiao, J.[Jimin],
Hunting Sparsity: Density-Guided Contrastive Learning for
Semi-Supervised Semantic Segmentation,
CVPR23(3114-3123)
IEEE DOI
2309
BibRef
Zhang, Y.Y.[Yun-Yang],
Gong, Z.Q.[Zhi-Qiang],
Zhao, X.Y.[Xiao-Yu],
Zheng, X.H.[Xiao-Hu],
Yao, W.[Wen],
Semi-supervised Semantic Segmentation with Uncertainty-guided Self
Cross Supervision,
ACCV22(VII:327-343).
Springer DOI
2307
BibRef
Rangnekar, A.[Aneesh],
Kanan, C.[Christopher],
Hoffman, M.[Matthew],
Semantic Segmentation with Active Semi-Supervised Learning,
WACV23(5955-5966)
IEEE DOI
2302
Training, Deep learning, Head, Costs, Annotations,
Semantic segmentation, Training data,
visual reasoning
BibRef
Kong, H.[Heejo],
Lee, G.H.[Gun-Hee],
Kim, S.[Suneung],
Lee, S.W.[Seong-Whan],
Pruning-Guided Curriculum Learning for Semi-Supervised Semantic
Segmentation,
WACV23(5903-5912)
IEEE DOI
2302
Training, Knowledge engineering, Semantic segmentation,
Benchmark testing, Feature extraction, Noise measurement
BibRef
Chai, L.[Lu],
Liu, Q.[Qinyuan],
Semi-Supervised Semantic Segmentation of Class-Imbalanced Images: A
Hierarchical Self-Attention Generative Adversarial Network,
ICIVC22(398-404)
IEEE DOI
2301
Image segmentation, Image synthesis, Computational modeling,
Biological system modeling, Semantics, Pipelines, biomedical images
BibRef
Teh, E.W.[Eu Wern],
de Vries, T.[Terrance],
Duke, B.[Brendan],
Jiang, R.[Ruowei],
Aarabi, P.[Parham],
Taylor, G.W.[Graham W.],
The GIST and RIST of Iterative Self-Training for Semi-Supervised
Segmentation,
CRV22(58-66)
IEEE DOI
2301
Greedy Iterative Self-Training (GIST) and
Random Iterative Self-Training (RIST).
Training, Degradation, Semantics, Semisupervised learning,
Behavioral sciences, Iterative methods, Task analysis, self-training
BibRef
Pauletto, L.[Loïc],
Amini, M.R.[Massih-Reza],
Winckler, N.[Nicolas],
Se2NAS: Self-Semi-Supervised architecture optimization for Semantic
Segmentation,
ICPR22(54-60)
IEEE DOI
2212
Semantic segmentation, Training data, Artificial neural networks,
Self-supervised learning, Semisupervised learning, Routing
BibRef
Chen, Y.[Ying],
Ouyang, X.[Xu],
Zhu, K.Y.[Kai-Yue],
Agam, G.[Gady],
Semi-supervised Dual-Domain Adaptation for Semantic Segmentation,
ICPR22(230-237)
IEEE DOI
2212
Deep learning, Annotations, Semantic segmentation,
Supervised learning, Semisupervised learning, Benchmark testing
BibRef
Qin, J.[Jie],
Wu, J.[Jie],
Li, M.[Ming],
Xiao, X.F.[Xue-Feng],
Zheng, M.[Min],
Wang, X.G.[Xin-Gang],
Multi-granularity Distillation Scheme Towards Lightweight
Semi-supervised Semantic Segmentation,
ECCV22(XXX:481-498).
Springer DOI
2211
BibRef
Cho, H.[Hyuna],
Choi, I.[Injun],
Kwak, S.[Suha],
Kim, W.H.[Won Hwa],
Interactive Network Perturbation between Teacher and Students for
Semi-Supervised Semantic Segmentation,
WACV24(615-624)
IEEE DOI
2404
Training, Semantic segmentation, Perturbation methods,
Computational modeling, Semisupervised learning,
and algorithms
BibRef
Kwon, D.[Donghyeon],
Kwak, S.[Suha],
Semi-supervised Semantic Segmentation with Error Localization Network,
CVPR22(9947-9957)
IEEE DOI
2210
Training, Location awareness, Degradation, Heart, Image resolution,
Semisupervised learning,
grouping and shape analysis
BibRef
Guan, D.[Dayan],
Huang, J.X.[Jia-Xing],
Xiao, A.[Aoran],
Lu, S.J.[Shi-Jian],
Unbiased Subclass Regularization for Semi-Supervised Semantic
Segmentation,
CVPR22(9958-9968)
IEEE DOI
2210
Deep learning, Image segmentation, Semantics, Neural networks,
Object detection, Logic gates, Semisupervised learning,
grouping and shape analysis
BibRef
Chen, S.J.[Shuai-Jun],
Jia, X.[Xu],
He, J.Z.[Jian-Zhong],
Shi, Y.J.[Yong-Jie],
Liu, J.Z.[Jian-Zhuang],
Semi-supervised Domain Adaptation based on Dual-level Domain Mixing
for Semantic Segmentation,
CVPR21(11013-11022)
IEEE DOI
2111
Training, Adaptation models, Image segmentation,
Costs, Semantics, Benchmark testing
BibRef
Zatsarynna, O.[Olga],
Sawatzky, J.[Johann],
Gall, J.[Juergen],
Discovering Latent Classes for Semi-supervised Semantic Segmentation,
GCPR20(202-217).
Springer DOI
2110
BibRef
Luo, W.F.[Wen-Feng],
Yang, M.[Meng],
Semi-supervised Semantic Segmentation via Strong-weak Dual-branch
Network,
ECCV20(V:784-800).
Springer DOI
2011
BibRef
Stekovic, S.,
Fraundorfer, F.,
Lepetit, V.[Vincent],
Casting Geometric Constraints in Semantic Segmentation as
Semi-Supervised Learning,
WACV20(1843-1852)
IEEE DOI
2006
Image segmentation, Semantics, Predictive models,
Semisupervised learning, Task analysis, Training,
BibRef
Wang, Z.,
Wei, Y.,
Feris, R.,
Xiong, J.,
Hwu, W.,
Huang, T.S.,
Shi, H.,
Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation,
VL3W20(4043-4047)
IEEE DOI
2008
Semantics, Task analysis, Adaptation models, Image segmentation,
Training, Feature extraction, Urban areas
BibRef
Kalluri, T.,
Varma, G.,
Chandraker, M.,
Jawahar, C.V.,
Universal Semi-Supervised Semantic Segmentation,
ICCV19(5258-5269)
IEEE DOI
2004
entropy, image segmentation, unsupervised learning,
cross-domain unsupervised losses, segmentation datasets, Roads
BibRef
Wei, Y.,
Xiao, H.,
Shi, H.,
Jie, Z.,
Feng, J.,
Huang, T.S.,
Revisiting Dilated Convolution: A Simple Approach for Weakly- and
Semi-Supervised Semantic Segmentation,
CVPR18(7268-7277)
IEEE DOI
1812
Image segmentation, Semantics, Convolution, Training, Kernel,
Standards, Head
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Efficient Semantic Segmentation, Real-Time Segmentation .