Heinemann, P.H.,
Pathare, N.P.,
Morrow, C.T.,
An Automated Inspection Station for Machine-Vision Grading of Potatoes,
MVA(9), No. 1, 1996, pp. 14-19.
Springer DOI
9608
BibRef
Zhou, L.Y.,
Chalana, V.,
Kim, Y.,
PC-Based Machine Vision System for Real-Time Computer-Aided
Potato Inspection,
IJIST(9), No. 6, 1998, pp. 423-433.
9812
BibRef
Zeng, G.[Guang],
Birchfield, S.T.[Stanley T.],
Wells, C.E.[Christina E.],
Detecting and Measuring Fine Roots in Minirhizotron Images Using
Matched Filtering and Local Entropy Thresholding,
MVA(17), No. 4, September 2006, pp. 265-278.
Springer DOI
0608
BibRef
Zeng, G.[Guang],
Birchfield, S.T.[Stanley T.],
Wells, C.E.[Christina E.],
Rapid automated detection of roots in minirhizotron images,
MVA(21), No. 3, April 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Cai, J.H.[Jin-Hai],
Miklavcic, S.,
Surface fitting for individual image thresholding and beyond,
IET-IPR(7), No. 6, August 2013, pp. 596-605.
DOI Link
1312
background-foreground segmentation.
botany
BibRef
Kumar, P.[Pankaj],
Cai, J.H.[Jin-Hai],
Miklavcic, S.[Stan],
Root crown detection using statistics of Zernike moments,
ICARCV12(1130-1135).
IEEE DOI
1304
BibRef
And:
Automated Detection of Root Crowns Using Gaussian Mixture Model and
Bayes Classification,
DICTA12(1-7).
IEEE DOI
1303
rice, corn, grass.
BibRef
Mairhofer, S.[Stefan],
Johnson, J.[James],
Sturrock, C.J.[Craig J.],
Bennett, M.J.[Malcolm J.],
Mooney, S.J.[Sacha J.],
Pridmore, T.P.[Tony P.],
Visual tracking for the recovery of multiple interacting plant root
systems from X-ray CT images,
MVA(27), No. 5, July 2016, pp. 721-734.
Springer DOI
1608
BibRef
Peebles, M.,
Lim, S.H.,
Streeter, L.,
Duke, M.,
Au, C.K.,
Ground Plane Segmentation of Time-of-Flight Images for Asparagus
Harvesting,
IVCNZ18(1-6)
IEEE DOI
1902
Clutter, Cameras, Image segmentation,
Real-time systems, Mathematical model, asparagus,
ground plane segmentation
BibRef
Soltaninejad, M.,
Sturrock, C.J.,
Griffiths, M.,
Pridmore, T.P.,
Pound, M.P.,
Three Dimensional Root CT Segmentation Using Multi-Resolution
Encoder-Decoder Networks,
IP(29), 2020, pp. 6667-6679.
IEEE DOI
2007
Image segmentation, Computed tomography, Soil, Image resolution,
Decoding, Biomedical imaging,
plant phenotyping
BibRef
Yu, G.[Guohao],
Zare, A.[Alina],
Sheng, H.[Hudanyun],
Matamala, R.[Roser],
Reyes-Cabrera, J.[Joel],
Fritschi, F.B.[Felix B.],
Juenger, T.E.[Thomas E.],
Root identification in minirhizotron imagery with multiple instance
learning,
MVA(31), No. 6, August 2020, pp. Article43.
Springer DOI
2008
BibRef
Jayanthi, M.G.,
Shashikumar, D.R.[Dandinashivara Revanna],
Cucumber disease detection using adaptively regularised kernel-based
fuzzy C-means and probabilistic neural network,
IJCVR(10), No. 5, 2020, pp. 385-411.
DOI Link
2009
BibRef
Appeltans, S.[Simon],
Pieters, J.G.[Jan G.],
Mouazen, A.M.[Abdul M.],
Detection of Leek Rust Disease under Field Conditions Using
Hyperspectral Proximal Sensing and Machine Learning,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Farrar, M.B.[Michael B.],
Wallace, H.M.[Helen M.],
Brooks, P.[Peter],
Yule, C.M.[Catherine M.],
Tahmasbian, I.[Iman],
Dunn, P.K.[Peter K.],
Bai, S.H.[Shahla Hosseini],
A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict
Curcumin Concentration in Fresh Turmeric Rhizomes,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Lu, Y.W.[Ya-Wen],
Wang, Y.X.[Yu-Xing],
Parikh, D.[Devarth],
Khan, A.[Awais],
Lu, G.Y.[Guo-Yu],
Simultaneous Direct Depth Estimation and Synthesis Stereo for Single
Image Plant Root Reconstruction,
IP(30), 2021, pp. 4883-4893.
IEEE DOI
2106
Image reconstruction, Estimation,
Solid modeling, Shape, Cameras, Periodic structures,
single image depth estimation
BibRef
Fernández, C.I.[Claudio I.],
Leblon, B.[Brigitte],
Wang, J.F.[Jin-Fei],
Haddadi, A.[Ata],
Wang, K.[Keri],
Detecting Infected Cucumber Plants with Close-Range Multispectral
Imagery,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Psiroukis, V.[Vasilis],
Espejo-Garcia, B.[Borja],
Chitos, A.[Andreas],
Dedousis, A.[Athanasios],
Karantzalos, K.[Konstantinos],
Fountas, S.[Spyros],
Assessment of Different Object Detectors for the Maturity Level
Classification of Broccoli Crops Using UAV Imagery,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Moualeu-Ngangué, D.[Dany],
Bötzl, M.[Maria],
Stützel, H.[Hartmut],
First Form, Then Function: 3D Reconstruction of Cucumber Plants
(Cucumis sativus L.) Allows Early Detection of Stress Effects through
Leaf Dimensions,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Guo, Y.[Yan],
Xia, H.M.[Hao-Ming],
Zhao, X.Y.[Xiao-Yang],
Qiao, L.X.[Long-Xin],
Qin, Y.C.[Yao-Chen],
Estimate the Earliest Phenophase for Garlic Mapping Using Time Series
Landsat 8/9 Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Cardellicchio, A.,
Solimani, F.,
Dimauro, G.,
Summerer, S.,
Renò, V.,
Patch-based probabilistic identification of plant roots using
convolutional neural networks,
PRL(183), 2024, pp. 125-132.
Elsevier DOI
2406
Deep learning, Root system architecture,
Convolutional neural network
BibRef
Singh, G.[Gursewak],
Slonecki, T.[Tyler],
Wadl, P.[Philip],
Flessner, M.[Michael],
Sosnoskie, L.[Lynn],
Hatterman-Valenti, H.[Harlene],
Gage, K.[Karla],
Cutulle, M.[Matthew],
Implementing Digital Multispectral 3D Scanning Technology for Rapid
Assessment of Hemp (Cannabis sativa L.) Weed Competitive Traits,
RS(16), No. 13, 2024, pp. 2375.
DOI Link
2407
BibRef
Masuzawa, H.[Hiroaki],
Nakano, C.[Chuo],
Miura, J.[Jun],
CG-based dataset generation and adversarial image conversion for deep
cucumber recognition,
MVA23(1-5)
DOI Link
2403
Deep learning, Image recognition, Machine vision, Adversarial machine learning
BibRef
Wang, Y.K.[Yi-Kai],
Dong, Y.P.[Yin-Peng],
Sun, F.C.[Fu-Chun],
Yang, X.[Xiao],
Root Pose Decomposition Towards Generic Non-rigid 3D Reconstruction
with Monocular Videos,
ICCV23(13844-13854)
IEEE DOI Code:
WWW Link.
2401
BibRef
Song, H.[Hao],
Panjvani, K.[Karim],
Liu, Z.G.[Zhi-Gang],
Amar, H.[Huzaifa],
Kochian, L.[Leon],
Ye, S.J.[Sheng-Jian],
Yang, X.[Xuan],
Feurtado, J.A.[J. Allan],
Chavda, K.[Krunal],
Huatatoca, K.A.C.[Karina Angela Chimbo],
Eramian, M.[Mark],
Plant Root Occlusion Inpainting with Generative Adversarial Network,
CVPPA23(531-539)
IEEE DOI
2401
BibRef
Gillert, A.[Alexander],
Peters, B.[Bo],
von Lukas, U.F.[Uwe Freiherr],
Kreyling, J.[Jürgen],
Blume-Werry, G.[Gesche],
Tracking Growth and Decay of Plant Roots in Minirhizotron Images,
WACV23(3688-3697)
IEEE DOI
2302
Codes, Neural networks, User interfaces, Monitoring,
Applications: Environmental monitoring/climate change/ecology, Agriculture
BibRef
Yang, S.[Si],
Zheng, L.H.[Li-Hua],
Chen, X.Y.L.[Xie-Yuan-Li],
Zabawa, L.[Laura],
Zhang, M.[Man],
Wang, M.J.[Min-Juan],
Transfer Learning from Synthetic In-vitro Soybean Pods Dataset for
In-situ Segmentation of On-branch Soybean Pods,
AgriVision22(1665-1674)
IEEE DOI
2210
Training, Image segmentation, Analytical models, Visualization,
Image synthesis, Computational modeling, Transfer learning,
Plant phenotyping
BibRef
Lu, Y.W.[Ya-Wen],
Lu, G.Y.[Guo-Yu],
3D Modeling Beneath Ground: Plant Root Detection and Reconstruction
Based on Ground-Penetrating Radar,
WACV22(697-706)
IEEE DOI
2202
Geometry, Ground penetrating radar,
Shape, Convolution, Instruments, Neural networks, Remote Sensing ,
Vision for Aerial/Drone/Underwater/Ground Vehicles
BibRef
Möller, B.[Birgit],
Schreck, B.[Berit],
Posch, S.[Stefan],
Analysis of Arabidopsis Root Images: Studies on CNNs and
Skeleton-Based Root Topology,
CVPPA21(1294-1302)
IEEE DOI
2112
Image segmentation, Time series analysis, Semantics,
Systems architecture, Skeleton, Topology
BibRef
Gillert, A.[Alexander],
Peters, B.[Bo],
von Lukas, U.F.[Uwe Freiherr],
Kreyling, J.[Jürgen],
Identification and Measurement of Individual Roots in Minirhizotron
Images of Dense Root Systems,
CVPPA21(1323-1331)
IEEE DOI
2112
Image segmentation, Head, Semantics, Estimation, Humidity,
Length measurement, Skeleton
BibRef
Horn, J.[Jannis],
Zhao, Y.[Yi],
Wandel, N.[Nils],
Landl, M.[Magdalena],
Schnepf, A.[Andrea],
Behnke, S.[Sven],
Robust Skeletonization for Plant Root Structure Reconstruction from
MRI,
ICPR21(10689-10696)
IEEE DOI
2105
Soil measurements,
Magnetic resonance imaging, Semantics, Soil, Task analysis
BibRef
Ufuktepe, D.K.,
Palaniappan, K.,
Elmali, M.,
Baskin, T.I.,
Rtip: A Fully Automated Root Tip Tracker For Measuring Plant Growth
With Intermittent Perturbations,
ICIP20(2516-2520)
IEEE DOI
2011
Perturbation methods, Microscopy, Tracking, Image resolution,
Feature extraction, Kinematics, Plant growth, Shi-Tomasi features,
Video Tracking
BibRef
Masuda, T.,
3D Shape Reconstruction of Plant Roots in a Cylindrical Tank From
Multiview Images,
3D-Wild19(2149-2157)
IEEE DOI
2004
cameras, edge detection, feature extraction,
image matching, image reconstruction, ray tracing,
multiple views
BibRef
Tabb, A.,
Duncan, K.E.,
Topp, C.N.,
Segmenting Root Systems in X-Ray Computed Tomography Images Using
Level Sets,
WACV18(586-595)
IEEE DOI
1806
Plant roots.
computerised tomography, image segmentation,
medical image processing,
X-ray imaging
BibRef
Belan, P.A.,
Araújo, S.A.,
Alves, W.A.L.,
An Intelligent Vision-Based System Applied to Visual Quality Inspection
of Beans,
ICIAR16(801-809).
Springer DOI
1608
BibRef
Araújo, S.A.,
Alves, W.A.L.,
Belan, P.A.,
Anselmo, K.P.,
A Computer Vision System for Automatic Classification of Most Consumed
Brazilian Beans,
ISVC15(II: 45-53).
Springer DOI
1601
BibRef
Janusch, I.[Ines],
Kropatsch, W.G.[Walter G.],
Reeb Graphs Through Local Binary Patterns,
GbRPR15(54-63).
Springer DOI
1511
BibRef
Janusch, I.[Ines],
Kropatsch, W.G.[Walter G.],
Busch, W.[Wolfgang],
Ristova, D.[Daniela],
Representing Roots on the Basis of Reeb Graphs in Plant Phenotyping,
PlantType14(75-88).
Springer DOI
1504
BibRef
Mairhofer, S.[Stefan],
Sturrock, C.J.[Craig J.],
Bennett, M.J.[Malcolm J.],
Mooney, S.J.[Sacha J.],
Pridmore, T.P.[Tony P.],
Visual Object Tracking for the Extraction of Multiple Interacting Plant
Root Systems,
PlantType14(89-104).
Springer DOI
1504
BibRef
Nakini, T.K.D.[Tushar Kanta Das],
de Souza, G.N.[Guilherme N.],
Distortion Correction in 3D-Modeling of Root Systems for Plant
Phenotyping,
PlantType14(140-157).
Springer DOI
1504
BibRef
Dacal-Nieto, A.[Angel],
Formella, A.[Arno],
Carrión, P.[Pilar],
Vazquez-Fernandez, E.[Esteban],
Fernández-Delgado, M.[Manuel],
Common Scab Detection on Potatoes Using an Infrared Hyperspectral
Imaging System,
CIAP11(II: 303-312).
Springer DOI
1109
BibRef
And:
Non-destructive Detection of Hollow Heart in Potatoes Using
Hyperspectral Imaging,
CAIP11(II: 180-187).
Springer DOI
1109
BibRef
Barnes, M.[Michael],
Cielniak, G.[Grzegorz],
Duckett, T.[Tom],
Minimalist AdaBoost for Blemish Identification in Potatoes,
ICCVG10(I: 209-216).
Springer DOI
1009
BibRef
Earlier: A1, A3, A2:
Boosting minimalist classifiers for blemish detection in potatoes,
IVCNZ09(397-402).
IEEE DOI
0911
BibRef
Perciano, T.[Talita],
Hirata, R.[Roberto],
de Castro Jorge, L.A.[Lúcio André],
Ridge Linking Using an Adaptive Oriented Mask Applied to Plant Root
Images with Thin Structures,
CIARP10(378-385).
Springer DOI
1011
BibRef
Wang, H.M.[Hong-Mei],
Impact of Magnetic Field on Mung Bean Ultraweak Luminescence,
CISP09(1-3).
IEEE DOI
0910
BibRef
Qi, L.Y.[Li-Yong],
Yang, Q.H.[Qing-Hua],
Bao, G.J.[Guan-Jun],
Xun, Y.[Yi],
Zhang, L.[Libin],
A Dynamic Threshold Segmentation Algorithm for Cucumber Identification
in Greenhouse,
CISP09(1-4).
IEEE DOI
0910
BibRef
Mühlich, M.[Matthias],
Truhn, D.[Daniel],
Nagel, K.[Kerstin],
Walter, A.[Achim],
Scharr, H.[Hanno],
Aach, T.[Til],
Measuring Plant Root Growth,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Erz, G.[Gregor],
Posch, S.[Stefan],
A Region Based Seed Detection for Root Detection in Minirhizotron
Images,
DAGM03(482-489).
Springer DOI
0310
BibRef
Kirchgessner, N.,
Spies, H.,
Scharr, H.,
Schurr, U.,
Root growth analysis in physiological coordinates,
CIAP01(589-594).
IEEE DOI
0210
BibRef
Huang, Q.,
Jain, A.K.,
Stockman, G.C.,
Smucker, A.J.M.,
Automatic image analysis of plant root structures,
ICPR92(II:569-572).
IEEE DOI
9208
BibRef
Lefebvre, M.,
Gil, S.,
Glassey, M.A.,
Baur, C.,
Pun, T.,
3D Computer Vision for Agrotics:
The Potato Operation, An Overview,
ICPR92(I:207-210).
IEEE DOI
BibRef
9200
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Tomato Detection, Tomato Plants .