Zahira, S.,
Abderrahmane, H.,
Mederbal, K.,
Frederic, D.,
Mapping Latent Heat Flux in the Western Forest Covered Regions of
Algeria Using Remote Sensing Data and a Spatialized Model,
RS(1), No. 4, December 2009, pp. 795-817.
DOI Link
1203
BibRef
Maltese, A.[Antonino],
Awada, H.[Hassan],
Capodici, F.[Fulvio],
Ciraolo, G.[Giuseppe],
Loggia, G.L.[Goffredo La],
Rallo, G.[Giovanni],
On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow
Transpiration for the Validation of a Surface Energy Balance Model,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Sun, Y.[Yibo],
Jia, L.[Li],
Chen, Q.[Qiting],
Zheng, C.[Chaolei],
Optimizing Window Length for Turbulent Heat Flux Calculations from
Airborne Eddy Covariance Measurements under Near Neutral to Unstable
Atmospheric Stability Conditions,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Kumar, S.[Sujay],
Holmes, T.[Thomas],
Mocko, D.M.[David M.],
Wang, S.[Shugong],
Peters-Lidard, C.[Christa],
Attribution of Flux Partitioning Variations between Land Surface
Models over the Continental U.S.,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
Plant and soil loss.
BibRef
Dhungel, R.[Ramesh],
Allen, R.G.[Richard G.],
Trezza, R.[Ricardo],
Robison, C.W.[Clarence W.],
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using
the Penman-Monteith Method with Satellite-Based Surface Energy
Balance,
RS(6), No. 9, 2014, pp. 8844-8877.
DOI Link
1410
BibRef
Feng, F.[Fei],
Chen, J.Q.[Ji-Quan],
Li, X.L.[Xiang-Lan],
Yao, Y.J.[Yun-Jun],
Liang, S.L.[Shun-Lin],
Liu, M.[Meng],
Zhang, N.N.[Nan-Nan],
Guo, Y.[Yang],
Yu, J.[Jian],
Sun, M.[Minmin],
Validity of Five Satellite-Based Latent Heat Flux Algorithms for
Semi-arid Ecosystems,
RS(7), No. 12, 2015, pp. 15853.
DOI Link
1601
BibRef
Yang, Y.M.[Yong-Min],
Qiu, J.X.[Jian-Xiu],
Su, H.B.[Hong-Bo],
Bai, Q.M.[Qing-Mei],
Liu, S.[Suhua],
Li, L.[Lu],
Yu, Y.L.[Yi-Lei],
Huang, Y.X.[Yao-Xian],
A One-Source Approach for Estimating Land Surface Heat Fluxes Using
Remotely Sensed Land Surface Temperature,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Eswar, R.[Rajasekaran],
Sekhar, M.[Muddu],
Bhattacharya, B.K.[Bimal K.],
Bandyopadhyay, S.[Soumya],
Spatial Disaggregation of Latent Heat Flux Using Contextual Models
over India,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Liu, K.[Kai],
Su, H.B.[Hong-Bo],
Li, X.[Xueke],
Comparative Assessment of Two Vegetation Fractional Cover Estimating
Methods and Their Impacts on Modeling Urban Latent Heat Flux Using
Landsat Imagery,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Chen, S.S.[Shan-Shan],
Hu, D.[Deyong],
Parameterizing Anthropogenic Heat Flux with an Energy-Consumption
Inventory and Multi-Source Remote Sensing Data,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
He, X.L.[Xin-Lei],
Xu, T.R.[Tong-Ren],
Bateni, S.M.[Sayed M.],
Neale, C.M.U.[Christopher M. U.],
Auligne, T.[Thomas],
Liu, S.M.[Shao-Min],
Wang, K.C.[Kai-Cun],
Mao, K.B.[Ke-Biao],
Yao, Y.J.[Yun-Jun],
Evaluation of the Weak Constraint Data Assimilation Approach for
Estimating Turbulent Heat Fluxes at Six Sites,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, S.S.[Sha-Sha],
Hu, D.Y.[De-Yong],
Chen, S.S.[Shan-Shan],
Yu, C.[Chen],
A Partition Modeling for Anthropogenic Heat Flux Mapping in China,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Wang, Y.[Yipu],
Li, R.[Rui],
Min, Q.L.[Qi-Long],
Zhang, L.[Leiming],
Yu, G.R.[Gui-Rui],
Bergeron, Y.[Yves],
Estimation of Vegetation Latent Heat Flux over Three Forest Sites in
ChinaFLUX using Satellite Microwave Vegetation Water Content Index,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Krayenhoff, E.S.[E. Scott],
Wu, Z.F.[Zhi-Feng],
Shi, Q.[Qian],
Ouyang, X.Y.[Xiao-Ying],
Parameterization of Urban Sensible Heat Flux from Remotely Sensed
Surface Temperature: Effects of Surface Structure,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Cheng, Z.[Zian],
Pang, X.P.[Xiao-Ping],
Zhao, X.[Xi],
Stein, A.[Alfred],
Heat Flux Sources Analysis to the Ross Ice Shelf Polynya Ice
Production Time Series and the Impact of Wind Forcing,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Crespo, J.A.[Juan A.],
Posselt, D.J.[Derek J.],
Asharaf, S.[Shakeel],
CYGNSS Surface Heat Flux Product Development,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Ge, N.[Nan],
Zhong, L.[Lei],
Ma, Y.M.[Yao-Ming],
Cheng, M.L.[Mei-Lin],
Wang, X.[Xian],
Zou, M.J.[Mi-Jun],
Huang, Z.Y.[Zi-Yu],
Estimation of Land Surface Heat Fluxes Based on Landsat 7 ETM+ Data
and Field Measurements over the Northern Tibetan Plateau,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Li, X.J.[Xiao-Jun],
Xin, X.Z.[Xiao-Zhou],
Jiao, J.J.[Jing-Jun],
Peng, Z.Q.[Zhi-Qing],
Zhang, H.L.[Hai-Long],
Shao, S.S.[Shan-Shan],
Liu, Q.H.[Qin-Huo],
Estimating Subpixel Surface Heat Fluxes through Applying
Temperature-Sharpening Methods to MODIS Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Wang, X.Y.[Xuan-Yu],
Yao, Y.J.[Yun-Jun],
Zhao, S.H.[Shao-Hua],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Zhang, Y.[Yuhu],
Zhang, L.[Lilin],
Xu, J.[Jia],
Chen, X.W.[Xiao-Wei],
MODIS-Based Estimation of Terrestrial Latent Heat Flux over North
America Using Three Machine Learning Algorithms,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Yang, C.[Cheng],
Wu, T.[Tonghua],
Wang, J.[Jiemin],
Yao, J.[Jimin],
Li, R.[Ren],
Zhao, L.[Lin],
Xie, C.[Changwei],
Zhu, X.F.[Xiao-Fan],
Ni, J.[Jie],
Hao, J.[Junming],
Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote
Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under
Clear-Sky Conditions,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Nkwinkwa Njouodo, A.S.I.[Arielle Stela Imbol],
Rouault, M.[Mathieu],
Johannessen, J.A.[Johnny A.],
Latent Heat Flux in the Agulhas Current,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Shang, K.[Ke],
Yao, Y.J.[Yun-Jun],
Li, Y.[Yufu],
Yang, J.M.[Jun-Ming],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Chen, X.W.[Xiao-Wei],
Bei, X.Y.[Xiang-Yi],
Guo, X.Z.[Xiao-Zheng],
Fusion of Five Satellite-Derived Products Using Extremely Randomized
Trees to Estimate Terrestrial Latent Heat Flux over Europe,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Hossain, K.[Kabir],
Villebro, F.[Frederik],
Forchhammer, S.[Søren],
UAV image analysis for leakage detection in district heating systems
using machine learning,
PRL(140), 2020, pp. 158-164.
Elsevier DOI
2012
CNN, SVM, RF, Adaboost, Energy leakage detection, District heating systems
BibRef
Acharya, B.[Bibek],
Sharma, V.[Vivek],
Heitholt, J.[James],
Tekiela, D.[Daniel],
Nippgen, F.[Fabian],
Quantification and Mapping of Satellite Driven Surface Energy Balance
Fluxes in Semi-Arid to Arid Inter-Mountain Region,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Acharya, B.[Bibek],
Sharma, V.[Vivek],
Comparison of Satellite Driven Surface Energy Balance Models in
Estimating Crop Evapotranspiration in Semi-Arid to Arid
Inter-Mountain Region,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Cristóbal, J.[Jordi],
Prakash, A.[Anupma],
Anderson, M.C.[Martha C.],
Kustas, W.P.[William P.],
Alfieri, J.G.[Joseph G.],
Gens, R.[Rudiger],
Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using
a Thermal-Based Remote Sensing Model,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Kim, J.[Jaemin],
Lee, Y.G.[Yun Gon],
Characteristics of Satellite-Based Ocean Turbulent Heat Flux around
the Korean Peninsula and Relationship with Changes in Typhoon
Intensity,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Wang, L.[Lu],
Zhang, Y.[Yuhu],
Yao, Y.[Yunjun],
Xiao, Z.Q.[Zhi-Qiang],
Shang, K.[Ke],
Guo, X.Z.[Xiao-Zheng],
Yang, J.M.[Jun-Ming],
Xue, S.H.[Shu-Hui],
Wang, J.[Jie],
GBRT-Based Estimation of Terrestrial Latent Heat Flux in the Haihe
River Basin from Satellite and Reanalysis Datasets,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Simpson, J.E.[Jake E.],
Holman, F.[Fenner],
Nieto, H.[Hector],
Voelksch, I.[Ingo],
Mauder, M.[Matthias],
Klatt, J.[Janina],
Fiener, P.[Peter],
Kaplan, J.O.[Jed O.],
High Spatial and Temporal Resolution Energy Flux Mapping of Different
Land Covers Using an Off-the-Shelf Unmanned Aerial System,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
de Andrade, B.C.C.[Bruno César Comini],
Pedrollo, O.C.[Olavo Correa],
Ruhoff, A.[Anderson],
Moreira, A.A.[Adriana Aparecida],
Laipelt, L.[Leonardo],
Kayser, R.B.[Rafael Bloedow],
Biudes, M.S.[Marcelo Sacardi],
Costa dos Santos, C.A.[Carlos Antonio],
Roberti, D.R.[Debora Regina],
Machado, N.G.[Nadja Gomes],
Dalmagro, H.J.[Higo Jose],
Antonino, A.C.D.[Antonio Celso Dantas],
de Sousa Lima, J.R.[José Romualdo],
de Souza, E.S.[Eduardo Soares],
Souza, R.[Rodolfo],
Artificial Neural Network Model of Soil Heat Flux over Multiple Land
Covers in South America,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhang, L.L.[Li-Lin],
Yao, Y.J.[Yun-Jun],
Bei, X.Y.[Xiang-Yi],
Li, Y.[Yufu],
Shang, K.[Ke],
Yang, J.M.[Jun-Ming],
Guo, X.Z.[Xiao-Zheng],
Yu, R.Y.[Rui-Yang],
Xie, Z.J.[Zi-Jing],
ERTFM: An Effective Model to Fuse Chinese GF-1 and MODIS Reflectance
Data for Terrestrial Latent Heat Flux Estimation,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Akkermans, T.[Tom],
Clerbaux, N.[Nicolas],
Retrieval of Daily Mean Top-of-Atmosphere Reflected Solar Flux Using
the Advanced Very High Resolution Radiometer (AVHRR) Instruments,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Taylor, H.[Heather],
Vreugdenburg, M.[Melissa],
Sangalli, L.,
Vincent, R.[Ron],
RMCSat: An F10.7 Solar Flux Index CubeSat Mission,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Khan, M.S.[Muhammad Sarfraz],
Jeon, S.B.[Seung Bae],
Jeong, M.H.[Myeong-Hun],
Gap-Filling Eddy Covariance Latent Heat Flux: Inter-Comparison of
Four Machine Learning Model Predictions and Uncertainties in Forest
Ecosystem,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Peng, Z.[Zhong],
Tang, R.[Ronglin],
Jiang, Y.[Yazhen],
Liu, M.[Meng],
Li, Z.L.[Zhao-Liang],
Global estimates of 500m daily aerodynamic roughness length from
MODIS data,
PandRS(183), 2022, pp. 336-351.
Elsevier DOI
2201
Land surface turbulent heat fluxes .
Aerodynamic roughness length, Machine learning, MODIS, Evapotranspiration
BibRef
Bonsoms, J.[Josep],
Boulet, G.[Gilles],
Ensemble Machine Learning Outperforms Empirical Equations for the
Ground Heat Flux Estimation with Remote Sensing Data,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chickadel, C.C.[C. Chris],
Branch, R.[Ruth],
Asher, W.E.[William E.],
Jessup, A.T.[Andrew T.],
Laboratory Heat Flux Estimates of Seawater Foam for Low Wind Speeds,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhang, B.[Biao],
Yu, X.T.[Xiao-Tong],
Perrie, W.[William],
Zhou, F.[Fenghua],
Air-Sea Interface Parameters and Heat Flux from Neural Network
and Advanced Microwave Scanning Radiometer Observations,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yao, Y.J.[Yun-Jun],
Zhang, X.T.[Xiao-Tong],
Levy, G.[Gad],
Jia, K.[Kun],
Al-Quraishi, A.M.F.[Ayad M. Fadhil],
Advances in Land-Ocean Heat Fluxes Using Remote Sensing,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, H.Y.[Hong-Yi],
Zhou, L.[Libo],
Wang, G.[Ge],
The Observed Impact of the South Asian Summer Monsoon on
Land-Atmosphere Heat Transfers and Its Inhomogeneity over the Tibetan
Plateau,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, Y.Z.[Ying-Ze],
Xu, T.R.[Tong-Ren],
Chen, F.[Fei],
He, X.L.[Xin-Lei],
Li, S.[Shi],
Can Data Assimilation Improve Short-Term Prediction of Land Surface
Variables?,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Kim, M.S.[Min-Seong],
Kwon, B.H.[Byung Hyuk],
Goo, T.Y.[Tae-Young],
Jung, S.P.[Sueng-Pil],
Dropsonde-Based Heat Fluxes and Mixed Layer Height over the Sea
Surface near the Korean Peninsula,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wang, S.Z.[Shu-Zhou],
Ma, Y.M.[Yao-Ming],
Liu, Y.X.[Yu-Xin],
Simulated Trends in Land Surface Sensible Heat Flux on the Tibetan
Plateau in Recent Decades,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Upward Longwave Radiation, Outgoing Longwave Radiation, Upwelling Radiation .