Barbu, A.,
Suehling, M.,
Xu, X.,
Liu, D.,
Zhou, S.K.,
Comaniciu, D.,
Automatic Detection and Segmentation of Lymph Nodes From CT Data,
MedImg(31), No. 2, February 2012, pp. 240-250.
IEEE DOI
1202
BibRef
Song, Y.,
Cai, W.D.,
Kim, J.,
Feng, D.D.,
A Multistage Discriminative Model for Tumor and Lymph Node Detection in
Thoracic Images,
MedImg(31), No. 5, May 2012, pp. 1061-1075.
IEEE DOI
1202
BibRef
Chang, C.Y.[Chuan-Yu],
Lai, C.C.[Chih-Chin],
Lai, C.T.[Cheng-Ting],
Chen, S.J.[Shao-Jer],
Integrating PSONN and Boltzmann function for feature selection and
classification of lymph nodes in ultrasound images,
JVCIR(24), No. 1, January 2013, pp. 23-30.
Elsevier DOI
1301
Lymph node; Ultrasound image; Feature selection; Classification;
Support vector machine; Particle swarm optimization; Boltzmann
function; Region of interest (ROI)
BibRef
Fuerst, B.,
Sprung, J.,
Pinto, F.,
Frisch, B.,
Wendler, T.,
Simon, H.,
Mengus, L.,
van den Berg, N.S.,
van der Poel, H.G.,
van Leeuwen, F.W.B.,
Navab, N.,
First Robotic SPECT for Minimally Invasive Sentinel Lymph Node
Mapping,
MedImg(35), No. 3, March 2016, pp. 830-838.
IEEE DOI
1603
Lymph nodes
BibRef
Bándi, P.,
Geessink, O.,
Manson, Q.,
van Dijk, M.,
Balkenhol, M.,
Hermsen, M.,
Ehteshami Bejnordi, B.,
Lee, B.,
Paeng, K.,
Zhong, A.,
Li, Q.,
Zanjani, F.G.,
Zinger, S.,
Fukuta, K.,
Komura, D.,
Ovtcharov, V.,
Cheng, S.,
Zeng, S.,
Thagaard, J.,
Dahl, A.B.,
Lin, H.,
Chen, H.,
Jacobsson, L.,
Hedlund, M.,
Çetin, M.,
Halici, E.,
Jackson, H.,
Chen, R.,
Both, F.,
Franke, J.,
Küsters-Vandevelde, H.,
Vreuls, W.,
Bult, P.,
van Ginneken, B.,
van der Laak, J.,
Litjens, G.,
From Detection of Individual Metastases to Classification of Lymph
Node Status at the Patient Level: The CAMELYON17 Challenge,
MedImg(38), No. 2, February 2019, pp. 550-560.
IEEE DOI
1902
Lymph nodes, Biomedical imaging, Tumors, Metastasis, Pathology,
Hospitals, Breast cancer, sentinel lymph node,
grand challenge
BibRef
Ma, Y.R.[Ying-Ran],
Peng, Y.J.[Yan-Jun],
Lymph node detection method based on multisource transfer learning
and convolutional neural network,
IJIST(30), No. 2, 2020, pp. 298-310.
DOI Link
2005
convolutional neural network, lymph node detection,
multisource transfer learning, point-wise convolutional operation
BibRef
Peng, H.X.[Hai-Xin],
Peng, Y.J.[Yin-Jun],
Spatio-temporal context based recurrent visual attention model for
lymph node detection,
IJIST(30), No. 4, 2020, pp. 1220-1242.
DOI Link
2011
biomedical image classification, false-positive reduction,
mixture density networks, recurrent visual attention
BibRef
Zhang, Y.T.[Yong-Tao],
Li, H.[Haimei],
Du, J.[Jie],
Qin, J.[Jing],
Wang, T.F.[Tian-Fu],
Chen, Y.[Yue],
Liu, B.[Bing],
Gao, W.W.[Wen-Wen],
Ma, G.[Guolin],
Lei, B.[Baiying],
3D Multi-Attention Guided Multi-Task Learning Network for Automatic
Gastric Tumor Segmentation and Lymph Node Classification,
MedImg(40), No. 6, June 2021, pp. 1618-1631.
IEEE DOI
2106
Image segmentation, Feature extraction, Tumors, Task analysis,
Computed tomography, Metastasis, CT scans
BibRef
Li, Y.[Yang],
Dan, T.T.[Ting-Ting],
Li, H.J.[Hao-Jiang],
Chen, J.Z.[Jia-Zhou],
Peng, H.[Hong],
Liu, L.Z.[Li-Zhi],
Cai, H.M.[Hong-Min],
NPCNet: Jointly Segment Primary Nasopharyngeal Carcinoma Tumors and
Metastatic Lymph Nodes in MR Images,
MedImg(41), No. 7, July 2022, pp. 1639-1650.
IEEE DOI
2207
Tumors, Magnetic resonance imaging, Image segmentation,
Lymph nodes, Feature extraction, Learning systems, Visualization,
image segmentation
BibRef
Wang, Z.H.[Zhi-Hua],
Yu, L.[Lequan],
Ding, X.[Xin],
Liao, X.H.[Xue-Hong],
Wang, L.S.[Lian-Sheng],
Lymph Node Metastasis Prediction From Whole Slide Images With
Transformer-Guided Multiinstance Learning and Knowledge Transfer,
MedImg(41), No. 10, October 2022, pp. 2777-2787.
IEEE DOI
2210
Transformers, Feature extraction, Lymph nodes, Metastasis,
Image analysis, Thyroid, Task analysis, Whole slide image analysis,
knowledge distillation
BibRef
Zhu, Z.H.[Zhong-Hang],
Yu, L.[Lequan],
Wu, W.[Wei],
Yu, R.S.[Rong-Shan],
Zhang, D.[Defu],
Wang, L.S.[Lian-Sheng],
MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole
Slide Image Classification,
MedImg(42), No. 5, May 2023, pp. 1337-1348.
IEEE DOI
2305
Feature extraction, Training, Task analysis, Semantics,
Reinforcement learning, Computational modeling,
reinforcement learning
BibRef
Zhang, Y.[Yi],
Li, J.[Jiayue],
Li, X.Y.[Xin-Yang],
Xie, M.[Min],
Islam, M.T.[Md. Tauhidul],
Zhang, H.X.[Hai-Xian],
FAOT-Net: A 1.5-Stage Framework for 3D Pelvic Lymph Node Detection
With Online Candidate Tuning,
MedImg(43), No. 3, March 2024, pp. 1180-1190.
IEEE DOI
2403
Feature extraction, Computed tomography, Tuning, Detectors,
Lymph nodes, Crops, Pelvic lymph node detection,
training anchor selection
BibRef
Farfan Cabrera, D.L.,
Gogin, N.,
Morland, D.,
Naegel, B.,
Papathanassiou, D.,
Passat, N.,
Segmentation of Axillary and Supraclavicular Tumoral Lymph Nodes in
PET/CT: A Hybrid CNN/Component-Tree Approach,
ICPR21(6672-6679)
IEEE DOI
2105
Image segmentation, Pathology, Shape,
Computed tomography, Breast cancer, Topology, Segmentation, CNN, U-Net,
lymph nodes
BibRef
Zhao, Y.,
Yang, F.,
Fang, Y.,
Liu, H.,
Zhou, N.,
Zhang, J.,
Sun, J.,
Yang, S.,
Menze, B.,
Fan, X.,
Yao, J.,
Predicting Lymph Node Metastasis Using Histopathological Images Based
on Multiple Instance Learning With Deep Graph Convolution,
CVPR20(4836-4845)
IEEE DOI
2008
Feature extraction, Generative adversarial networks,
Lymph nodes, Metastasis, Task analysis
BibRef
Gerard, G.[Gianluca],
Piastra, M.[Marco],
Slide Screening of Metastases in Lymph Nodes via Conditional, Fully
Convolutional Segmentation,
NTIAP19(220-227).
Springer DOI
1909
BibRef
Pham, T.D.,
Complementary features for radiomic analysis of malignant and benign
mediastinal lymph nodes,
ICIP17(3849-3853)
IEEE DOI
1803
cancer, cellular biophysics, computerised tomography,
feature extraction, lung, medical image processing, tumours,
texture
BibRef
Villamarín, J.A.[Julian A.],
Montilla, D.A.[Daniela A.],
Potosi, O.M.[Olga M.],
Londoño, L.F.[Luis F.],
Muñoz, F.G.[Fabian G.],
Gutierrez, E.W.[Edgar W.],
Ultrasonic Backscatter Signal Processing Technique for the
Characterization of Animal Lymph Node,
CIARP17(702-709).
Springer DOI
1802
BibRef
Jones, J.L.[Jonathan-Lee],
Xie, X.H.[Xiang-Hua],
Interactive 3D Segmentation of Lymphatic Valves in Confocal Microscopic
Images,
ICIAR16(198-205).
Springer DOI
1608
BibRef
Feulner, J.[Johannes],
Zhou, S.K.[S. Kevin],
Hammon, M.[Matthias],
Hornegger, J.[Joachim],
Comaniciu, D.[Dorin],
Segmentation Based Features for Lymph Node Detection from 3-D Chest CT,
MLMI11(91-99).
Springer DOI
1109
BibRef
Feulner, J.[Johannes],
Zhou, S.K.[S. Kevin],
Huber, M.[Martin],
Hornegger, J.[Joachim],
Comaniciu, D.[Dorin],
Cavallaro, A.[Alexander],
Lymph node detection in 3-D chest CT using a spatial prior probability,
CVPR10(2926-2932).
IEEE DOI
1006
BibRef
Wang, Y.[Yao],
Beichel, R.[Reinhard],
Graph-Based Segmentation of Lymph Nodes in CT Data,
ISVC10(II: 312-321).
Springer DOI
1011
BibRef
Panagiotakis, C.[Costas],
Ramasso, E.[Emmanuel],
Tziritas, G.[Georgios],
Lymphocyte Segmentation Using the Transferable Belief Model,
ICPR-Contests10(253-262).
Springer DOI
1008
BibRef
Unal, G.,
Slabaugh, G.G.,
Ess, A.,
Yezzi, A.J.,
Fang, T.,
Tyan, J.,
Requardt, M.,
Krieg, R.,
Seethamraju, R.,
Harisinghani, M.,
Weissleder, R.,
Semi-Automatic Lymph Node Segmentation in LN-MRI,
ICIP06(77-80).
IEEE DOI
0610
BibRef
Gurevich, I.,
Murashov, D.,
Method for early diagnostics of lymphatic system tumors on the basis of
the analysis of chromatin constitution in cell nucleus images,
ICPR04(III: 806-809).
IEEE DOI
0409
BibRef
Gurevich, I.[Igor],
Kharazishvili, D.[Dmitry],
Jernova, I.[Irina],
Khilkov, A.[Andrei],
Nefyodov, A.V.[Alexey V.],
Vorobjev, I.[Ivan],
Information Technology for the Morphological Analysis of the Lymphoid
Cell Nuclei,
SCIA03(541-548).
Springer DOI
0310
BibRef
Olivieri, D.N.,
Vega, F.,
Image Prototype Similarity Matching for Lymph Node Hemopathology,
ICPR00(Vol II: 279-282).
IEEE DOI
0009
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Prostate Cancer Analysis .