Huntsberger, T.L.,
Jayaramamurthy, S.N.,
Determination of the Optic Flow Field Using the
Spatiotemporal Deformation of Region Properties,
PRL(6), 1987, pp. 169-177.
See also Determination of the Optic Flow Field in the Presence of Occlusion.
BibRef
8700
Kottke, D.P.,
Sun, Y.,
Motion Estimation Via Cluster Matching,
PAMI(16), No. 11, November 1994, pp. 1128-1132.
IEEE DOI First cluster according to position and intensity, estimate
displacement by matching cluster centers. Compares results to
gradient and block matching.
BibRef
9411
Mahmoud, S.A.,
Afifi, M.S.,
Green, R.J.,
Recognition and Velocity Computation of Large Moving Objects in Images,
ASSP(36), 1988, pp. 1790-1791.
BibRef
8800
Chhabra, A.K.,
Grogan, T.A.,
On Poisson Solvers and Semidirect Methods for Computing
Area Based Optical-Flow,
PAMI(16), No. 11, November 1994, pp. 1133-1138.
IEEE DOI
BibRef
9411
Earlier:
CVPR92(857-860).
IEEE DOI Direct computation of area based optical flow.
See also Direct Analytical Methods for Solving Poisson Equations in Computer Vision Problems.
BibRef
Chhabra, A.K., and
Grogan, T.A.,
Uniqueness, the Minimum Norm Constraint, and Analog Networks
for Optical Flow Along Contours,
ICCV90(80-84).
IEEE DOI
BibRef
9000
Chhabra, A.K.,
Fast direct methods for computing optical flow along contours,
ICIP94(II: 242-246).
IEEE DOI
9411
BibRef
Stiller, C.,
Object-Based Estimation Of Dense Motion Fields,
IP(6), No. 2, February 1997, pp. 234-250.
IEEE DOI
9703
BibRef
Earlier:
Object-Based Motion Computation,
ICIP96(I: 913-916).
IEEE DOI
BibRef
Ye, M.[Ming],
Haralick, R.M.,
Shapiro, L.G.,
Estimating piecewise-smooth optical flow with global matching and
graduated optimization,
PAMI(25), No. 12, December 2003, pp. 1625-1630.
IEEE Abstract.
0401
BibRef
Earlier:
Estimating optical flow using a global matching formulation and
graduated optimization,
ICIP02(II: 289-292).
IEEE DOI
0210
Three frame matching with global optimization.
Use local and global gradient.
BibRef
Ye, M.[Ming],
Haralick, R.M.[Robert M.],
Two-Stage Robust Optical Flow Estimation,
CVPR00(II: 623-628).
IEEE DOI
0005
BibRef
And:
Optical Flow Estimation: A Two-Stage Robust Approach,
ICPR00(xx-yy).
0005
BibRef
Ye, M.[Ming],
Haralick, R.M.,
Optical Flow from a Least-trimmed Squares Based Adaptive Approach,
ICPR00(Vol III: 1052-1055).
IEEE DOI
IEEE DOI
0009
BibRef
Ye, M.[Ming],
Haralick, R.M.[Robert M.],
Local Gradient, Global Matching, Piecewise-Smooth Optical Flow,
CVPR01(II:712-717).
IEEE DOI
0110
BibRef
Ahmadianpour, F.[Farzin],
Ahmad, M.O.[M. Omair],
A Fast Algorithm for Motion Estimation Under the
Varying Inter-Frame Brightness Characteristics,
GVIP(05), No. V1, December 2004, pp. xx-yy
HTML Version.
BibRef
0412
Le Besnerais, G.,
Champagnat, F.,
B-Spline Image Model for Energy Minimization-Based Optical Flow
Estimation,
IP(15), No. 10, October 2006, pp. 3201-3206.
IEEE DOI
0609
BibRef
Earlier:
Dense Optical Flow by Iterative Local Window registration,
ICIP05(I: 137-140).
IEEE DOI
0512
BibRef
Chung, P.C.,
Huang, C.L.,
Chen, E.L.,
A region-based selective optical flow back-projection for genuine
motion vector estimation,
PR(40), No. 3, March 2007, pp. 1066-1077.
Elsevier DOI
0611
Horn-Schunck optical flow constraint; Motion estimation;
Optical flow computation; Region-based matching
BibRef
Hu, Y.L.[Yin-Lin],
Song, R.[Rui],
Li, Y.S.[Yun-Song],
Rao, P.[Peng],
Wang, Y.L.[Yang-Li],
Highly accurate optical flow estimation on superpixel tree,
IVC(52), No. 1, 2016, pp. 167-177.
Elsevier DOI
1609
Optical flow
BibRef
Hu, Y.L.[Yin-Lin],
Li, Y.S.[Yun-Song],
Song, R.[Rui],
Rao, P.[Peng],
Wang, Y.L.[Yang-Li],
Minimum barrier superpixel segmentation,
IVC(70), 2018, pp. 1-10.
Elsevier DOI
1804
Superpixels, Minimum barrier distance, Clustering
BibRef
Ren, Z.[Zhe],
Yan, J.C.[Jun-Chi],
Yang, X.K.[Xiao-Kang],
Yuille, A.L.[Alan L.],
Zha, H.Y.[Hong-Yuan],
Unsupervised learning of optical flow with patch consistency and
occlusion estimation,
PR(103), 2020, pp. 107191.
Elsevier DOI
2005
Patch consistency, Optical flow estimation,
Occlusion estimation, Unsupervised learning, Deep learning
BibRef
Ren, Z.[Zhe],
Luo, W.H.[Wen-Han],
Yan, J.C.[Jun-Chi],
Liao, W.L.[Wen-Long],
Yang, X.K.[Xiao-Kang],
Yuille, A.L.[Alan L.],
Zha, H.Y.[Hong-Yuan],
STFlow: Self-Taught Optical Flow Estimation Using Pseudo Labels,
IP(29), 2020, pp. 9113-9124.
IEEE DOI
2009
Optical imaging, Estimation, Optical variables control,
Machine learning, Adaptive optics, Unsupervised learning,
unsupervised learning
BibRef
Dong, C.[Chong],
Wang, Z.S.[Zhi-Sheng],
Han, J.M.[Jia-Ming],
Xing, C.D.[Chang-Da],
Tang, S.F.[Shu-Fang],
A non-local propagation filtering scheme for edge-preserving in
variational optical flow computation,
SP:IC(93), 2021, pp. 116143.
Elsevier DOI
2103
Variational optical flow, Median filtering,
Propagation filtering, Edge-preserving
BibRef
Alhawwary, A.[Ahmed],
Mustaniemi, J.[Janne],
Heikkilä, J.[Janne],
Patchflow: A Two-stage Patch-based Approach for Lightweight Optical
Flow Estimation,
ACCV22(VII:535-551).
Springer DOI
2307
BibRef
Zheng, Z.[Zihua],
Nie, N.[Ni],
Ling, Z.[Zhi],
Xiong, P.F.[Peng-Fei],
Liu, J.Y.[Jiang-Yu],
Wang, H.[Hao],
Li, J.K.[Jian-Kun],
DIP: Deep Inverse Patchmatch for High-Resolution Optical Flow,
CVPR22(8915-8924)
IEEE DOI
2210
Measurement, Correlation, Tracking, Memory management, Estimation,
Benchmark testing, Stereo vision, Motion and tracking
BibRef
Lee, J.[Junghyup],
Kim, D.[Dohyung],
Ponce, J.[Jean],
Ham, B.[Bumsub],
SFNet: Learning Object-Aware Semantic Correspondence,
CVPR19(2273-2282).
IEEE DOI
2002
establishing a dense flow field between images depicting different
instances of the same object.
BibRef
Maurer, D.[Daniel],
Marniok, N.[Nico],
Goldluecke, B.[Bastian],
Bruhn, A.[Andrés],
Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow
Estimation,
ECCV18(VIII: 575-592).
Springer DOI
1810
BibRef
Mahato, M.,
Gedam, S.S.,
Integration of Variational Optical Flow and Surface Splines for Dense
Correspondence Estimation of Remotely Sensed Images,
DICTA17(1-8)
IEEE DOI
1804
geophysical image processing, image sequences, matrix algebra,
remote sensing, splines (mathematics), stereo image processing,
Splines (mathematics)
BibRef
Helala, M.A.,
Qureshi, F.Z.,
Fast Estimation of Large Displacement Optical Flow Using Dominant
Motion Patterns Sub-Volume PatchMatch Filtering,
CRV17(64-71)
IEEE DOI
1804
computational complexity, estimation theory, filtering theory,
image matching, image motion analysis, image sequences,
patch match filtering
BibRef
Schuster, T.,
Wolf, L.B.[Lior B.],
Gadot, D.[David],
Optical Flow Requires Multiple Strategies (but Only One Network),
CVPR17(6921-6930)
IEEE DOI
1711
Benchmark testing, Fasteners, Learning systems, Optical imaging,
Optical losses, Pipelines, Training
BibRef
Gadot, D.[David],
Wolf, L.B.[Lior B.],
PatchBatch: A Batch Augmented Loss for Optical Flow,
CVPR16(4236-4245)
IEEE DOI
1612
BibRef
Drayer, B.[Benjamin],
Brox, T.[Thomas],
Combinatorial Regularization of Descriptor Matching for Optical Flow
Estimation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Shen, C.D.[Cheng-Dong],
Li, S.K.[Si-Kun],
Fast Prediction Mode Decision Algorithm for H.264 Based on Hierarchical
Mode Classification Framework,
ISVC06(II: 882-890).
Springer DOI
0611
BibRef
Shen, C.D.[Cheng-Dong],
Li, T.J.[Tie-Jun],
Li, S.K.[Si-Kun],
A Predictive Direction Guided Fast Motion Estimation Algorithm,
CAIP05(188).
Springer DOI
0509
BibRef
López-Nicolás, G.[Gonzalo],
Sagüés, C.[Carlos],
Guerrero, J.J.[José J.],
Automatic Matching and Motion Estimation from Two Views of a Multiplane
Scene,
IbPRIA05(I:69).
Springer DOI
0509
BibRef
Li, M.[Min],
Biswas, M.,
Kumar, S.,
Nguyen, T.[Truong],
DCT-based phase correlation motion estimation,
ICIP04(I: 445-448).
IEEE DOI
0505
BibRef
Wu, Y.S.[Yun-Song],
Megson, G.[Graham],
Nie, Z.G.[Zhen-Gang],
Alavi, F.N.,
Linear Hashtable Method Predicted Hexagonal Search Algorithm with
Spatial Related Criterion,
SCIA05(1208-1217).
Springer DOI
0506
BibRef
Wu, Y.S.[Yun-Song],
Megson, G.[Graham],
Linear Algorithm and Hexagonal Search Based Two-Pass Algorithm for
Motion Estimation,
CAIP05(554).
Springer DOI
0509
BibRef
And:
Two-pass hexagonal algorithm with improved hashtable structure for
motion estimation,
AVSBS05(564-569).
IEEE DOI
0602
BibRef
Krajsek, K.[Kai],
Mester, R.[Rudolf],
Bayesian Model Selection for Optical Flow Estimation,
DAGM07(142-151).
Springer DOI
0709
BibRef
Earlier:
A Maximum Likelihood Estimator for Choosing the Regularization
Parameters in Global Optical Flow Methods,
ICIP06(1081-1084).
0610
IEEE DOI
BibRef
Earlier:
Signal and Noise Adapted Filters for Differential Motion Estimation,
DAGM05(476).
Springer DOI
0509
BibRef
Cheng, Y.[Yun],
Wang, Z.Y.[Zhi-Ying],
Dai, K.[Kui],
Guo, J.J.[Jian-Jun],
A Fast Motion Estimation Algorithm Based on Diamond and Triangle Search
Patterns,
IbPRIA05(I:419).
Springer DOI
0509
BibRef
Yoon, H.S.[Hyo Sun],
Lee, G.S.[Guee Sang],
Low Complexity Motion Estimation Based on Spatio-Temporal Correlations
and Direction of Motion Vectors,
CAIP03(173-181).
Springer DOI
0311
BibRef
Yoon, K.S.[Kyo-Sun],
Lee, G.S.[Guee-Sang],
Motion estimation based on spatio -temporal correlations,
ICIP03(II: 359-362).
IEEE DOI
0312
BibRef
Béréziat, D.[Dominique],
Herlin, I.[Isabelle],
Object Based Optical Flow Estimation with an Affine Prior Model,
ICPR00(Vol III: 1048-1051).
IEEE DOI
IEEE DOI
0009
BibRef
Neumann, U.,
You, S.,
Integration of region tracking and optical flow for image motion
estimation,
ICIP98(III: 658-662).
IEEE DOI
9810
BibRef
Lucius, C.[Christian],
Measurement of Motion Deformation in a Sequence of Images,
(In French),
M.S.Dissertation, June 1996.
gzip-ed Postcript file, 2640386 bytes:
PS File.
BibRef
9606
Vlontzos, J.A., and
Geiger, D.,
A MRF Approach to Optical Flow Estimation,
CVPR92(853-856).
IEEE DOI First get an adaptive window match, then process for continuity and occlusions.
BibRef
9200
Geiger, D.,
Diamantaras, K.J.,
Occlusion Ambiguities in Motion,
ECCV94(A:175-180).
Springer DOI
BibRef
9400
Chapter on Optical Flow Field Computations and Use continues in
Optical Flow Along Contours .