Buxton, B.F.,
Buxton, H.,
Computation of Optic Flow from the Motion of Edge Features in
Image Sequences,
IVC(2), No. 2, May 1984, pp. 59-75.
Elsevier DOI Extension of Marr-Hildreth.
See also Monocular Depth Perception from Optical Flow by Space Time Signal Processing.
BibRef
8405
Buxton, B.F.,
Murray, D.W.,
Optic Flow Segmentation as an Ill-Posed and Maximum Likelihood Problem,
IVC(3), No. 4, November 1985, pp. 163-169.
Elsevier DOI minimum entropy regularization.
BibRef
8511
Murray, D.W.,
Buxton, B.F.,
Reconstructing the Optic Flow Field from Edge Motion:
An Examination of Two Different Approaches,
CAIA84(382-388).
BibRef
8400
Schunck, B.G.[Brian],
Image Flow Segmentation and Estimation by Constraint Line Clustering,
PAMI(11), No. 10, October 1989, pp. 1010-1027.
IEEE DOI
BibRef
8910
Earlier:
Image Flow: Fundamentals and Algorithms,
MU88(23-80).
BibRef
And:
Motion Segmentation and Estimation by Constraint Line Filtering,
CVWS84(58-62).
Survey, Motion.
Motion, Survey.
Optical Flow, Evaluation. This papers discusses techniques for image
flow analysis with discontinuities in the flow.
BibRef
Thompson, W.B.,
Mutch, K.M., and
Berzins, V.B.,
Dynamic Occlusion Analysis in Optical Flow Fields,
PAMI(7), No. 4, July 1985, pp. 374-383.
BibRef
8507
Earlier:
Univ. of MinnesotaComp. Sci. 84-6, May 1984. An expanded version of:
BibRef
Edge Detection in Optical Flow Fields,
AAAI-82(26-29).
Edge Detection. The application of the Marr-Hildreth zero crossing technique edge detection
to vector fields. Apply the operator to each component then
combine them to find 2-d zero-crossings (i.e. zero crossings in one component)
- change in the vector of 180 (approx).
BibRef
Thompson, W.B.[William B.],
Exploiting Discontinuities in Optical Flow,
IJCV(30), No. 3, December 1998, pp. 163-173.
DOI Link
BibRef
9812
Thompson, W.B.,
Mutch, K.M., and
Berzins, V.A.,
Analyzing Object Motion Based on Optical Flow,
ICPR84(791-794).
BibRef
8400
Shulman, D.,
Aloimonos, Y.,
(Non-) Rigid Motion Interpretation: A Regularized Approach,
RoyalP(B-233), 1988, pp. 217-234.
BibRef
8800
Shulman, D., and
Herve, J.Y.,
Regularization of Discontinuous Flow Fields,
Motion89(81-86).
Regularization.
BibRef
8900
Mahmoud, S.A.,
Motion Analysis of Multiple Moving Objects Using Hartley Transform,
SMC(21), 1991, pp. 280-287.
BibRef
9100
Schnorr, C.,
Determining Optical Flow for Irregular Domains by
Minimizing Quadratic Functionals of a Certain Class,
IJCV(6), No. 1, April 1991, pp. 25-38.
Springer DOI Addresses the solution of equations of
See also Determining Optical Flow. and
See also On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results. approaches to optical flow.
BibRef
9104
Schnorr, C.,
Computation of Discontinuous Optical Flow by Domain
Decomposition and Shape Optimization,
IJCV(8), No. 2, August 1992, pp. 153-165.
Springer DOI
BibRef
9208
Earlier:
BMVC90(xx-yy).
PDF File.
9009
See also Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion, A.
BibRef
Schnorr, C.,
On Functionals with Greyvalue-Controlled Smoothness
Terms for Determining Optical Flow,
PAMI(15), No. 10, October 1993, pp. 1074-1079.
IEEE DOI
BibRef
9310
Schnorr, C.,
Unique Reconstruction of Piecewise Smooth Images by
Minimizing Strictly Convex Nonquadratic Functionals,
JMIV(4), 1994, pp. 189-198.
BibRef
9400
Earlier:
Segmentation of Visual Motion by Minimizing
Convex Non-Quadratic Functionals,
ICPR94(A:661-663).
IEEE DOI
BibRef
Nesi, P.[Paolo],
Variational Approach to Optical-Flow Estimation
Managing Discontinuities,
IVC(11), No. 7, September 1993, pp. 419-439.
Elsevier DOI
BibRef
9309
Zheng, H.Y.,
Blostein, S.D.,
An Error-Weighted Regularization Algorithm for
Image Motion-Field Estimation,
IP(2), No. 2, April 1993, pp. 246-252.
IEEE DOI
BibRef
9304
Namazi, N.M.,
Lee, C.H.,
Nonuniform Image Motion Estimation from Noisy Data,
ASSP(38), No. 2, February 1990, pp. 364-366.
BibRef
9002
Fan, C.M.[Chieh-Min],
Namazi, N.M.,
Image motion estimation from blurred and noisy image sequences,
ICIP98(II: 228-232).
IEEE DOI
9810
BibRef
Earlier:
Estimation of image motion parameters using the EM algorithm,
ICIP95(I: 195-198).
IEEE DOI
9510
BibRef
Fan, C.M.,
Namazi, N.M.,
Simultaneous Motion Estimation and Filtering of Image Sequences,
IP(8), No. 12, December 1999, pp. 1788-1795.
IEEE DOI
9912
BibRef
Earlier:
ICIP97(II: 156-159).
IEEE DOI
BibRef
Earlier:
Simultaneous Parameter Estimation and Image Segmentation
for Image Sequence Coding,
ICASSP96(XX)
BibRef
And:
Simultaneous motion parameter estimation and image segmentation using
the EM algorithm,
ICIP95(I: 542-545).
IEEE DOI
9510
See also Nonuniform Image Motion Estimation Using Kalman Filtering.
See also Bayes Decision Test for Detecting Uncovered Background and Moving Pixels in Image Sequences, A.
BibRef
Namazi, N.M.,
Lipp, J.I.,
Nonuniform Image Motion Estimation Using the Maximum
a Posteriori Principle,
IP(1), No. 4, October 1992, pp. 520-525.
IEEE DOI
BibRef
9210
Namazi, N.M.,
Lipp, J.I.,
Nonuniform Image Motion Estimation in Reduced Coefficient
Transformed-Domains,
IP(2), No. 2, April 1993, pp. 236-246.
IEEE DOI
BibRef
9304
Namazi, N.M.,
Penafiel, P.B.,
Fan, C.M.,
Nonuniform Image Motion Estimation Using Kalman Filtering,
IP(3), No. 5, September 1994, pp. 678-683.
IEEE DOI
See also Simultaneous Motion Estimation and Filtering of Image Sequences.
BibRef
9409
Fan, C.M.,
Namazi, N.M.,
Penafiel, P.B.,
A New Image Motion Estimation Algorithm Based on the EM Technique,
PAMI(18), No. 3, March 1996, pp. 348-352.
IEEE DOI Expectation-Maximization.
Impose, smoothness constraint. Use low-pass property of the motion.
DCT representation for motion.
BibRef
9603
Namazi, N.M.,
Foxall, D.W.,
On the Convergence of the Generalized Maximum Likelihood
Algorithm for Nonuniform Image Motion Estimation,
IP(1), No. 1, January 1992, pp. 116-119.
IEEE DOI
BibRef
9201
And:
Correction:
IP(1), No. 3, 1992, pp. 440.
BibRef
Wu, S.F.,
Kittler, J.V.,
A Gradient-Based Method For General Motion Estimation And Segmentation,
JVCIR(4), 1993, pp. 25-38.
BibRef
9300
Otte, M.[Michael],
Nagel, H.H.[Hans-Hellmut],
Estimation of Optical-Flow Based on Higher-Order Spatiotemporal
Derivatives in Interlaced and Noninterlaced Image Sequences,
AI(78), No. 1-2, October 1995, pp. 5-43.
Elsevier DOI
BibRef
9510
Earlier:
Optical Flow Estimation: Advances and Comparisons,
ECCV94(A:49-60).
Springer DOI
BibRef
Nagel, H.H.,
Socher, G.,
Kollnig, H.,
Otte, M.,
Motion Boundary Detection in Image Sequences by Local Stochastic Tests,
ECCV94(B:305-315).
Springer DOI
BibRef
9400
Nagel, H.H.,
Gehrke, A.,
Spatiotemporally Adaptive Estimation and Segmentation
of Optical Flow Fields,
ECCV98(II: 86).
Springer DOI
BibRef
9800
Middendorf, M.[Markus],
Nagel, H.H.[Hans-Hellmut],
Estimation and Interpretation of Discontinuities in Optical Flow Fields,
ICCV01(I: 178-183).
IEEE DOI
0106
BibRef
Huntsberger, T.L.,
Jayaramamurthy, S.N.,
Determination of the Optic Flow Field in the Presence of Occlusion,
PRL(8), 1988, pp. 325-333.
See also Determination of the Optic Flow Field Using the Spatiotemporal Deformation of Region Properties.
BibRef
8800
Reddi, S.,
Loizou, G.,
First-Order Algorithm with Three Clusters of Optical-Flow Vectors,
IJIST(7), No. 1, Spring 1996, pp. 33-40.
BibRef
9600
Chang, M.M.,
Tekalp, A.M.,
Sezan, M.I.,
Simultaneous Motion Estimation and Segmentation,
IP(6), No. 9, September 1997, pp. 1326-1333.
IEEE DOI
9709
Optical flow estimation and segmentation.
BibRef
Convertino, G.,
Stella, E.,
Branca, A.,
Distante, A.,
Optic Flow Estimation by a Hopfield Neural-Network Using
Geometrical Constraints,
MVA(10), No. 3, 1997, pp. 114-122.
Springer DOI
9709
BibRef
Earlier: A3, A1, A2, A4:
A Neural Network for Egomotion Estimation from Optical Flow,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Branca, A.,
Attolico, G.,
Stella, E.,
Distante, A.,
Classification and Segmentation of Vector Flow-Fields Using a
Neural-Network,
MVA(10), No. 4, 1997, pp. 174-187.
Springer DOI
9801
BibRef
Sim, D.G.,
Park, R.H.,
Robust Reweighted MAP Motion Estimation,
PAMI(20), No. 4, April 1998, pp. 353-365.
IEEE DOI
9806
Comparisons with Black/Anandan (
See also Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow-Fields, The. ),
Weber/Malik (
See also Rigid-Body Segmentation and Shape-Description from Dense Optical-Flow Under Weak Perspective. ) and
Bober/Kittler (
See also Robust Motion Analysis. ).
BibRef
Aubert, G.,
Kornprobst, P.,
A Mathematical Study of the Relaxed Optical Flow Problem in the Space V,
MathAnal(30), No. 6, 1999, pp. 1282-1308.
WWW Link. or:
PS File.
BibRef
9900
Kornprobst, P.[Pierre],
Deriche, R.[Rachid],
Aubert, G.[Gilles],
Image Sequence Analysis via Partial Differential Equations,
JMIV(11), No. 1, September 1999, pp. 5-26.
DOI Link
BibRef
9909
Earlier:
Image Sequence Restoration:
A PDE-Based Coupled Method for Image Restoration and Motion Segmentation,
ECCV98(II: 548).
Springer DOI
BibRef
And:
INRIANo. 3308, November 1997.
PS File.
BibRef
Earlier:
Image Coupling, Restoration and Enhancement via PDE's,
ICIP97(II: 458-461).
IEEE DOI
PS File.
BibRef
Deriche, R.,
Kornprobst, P., and
Aubert, G.,
Optical Flow Estimation While Preserving its
Discontinuities: A Variational Approach,
ACCV95(xx-yy).
PS File.
BibRef
9500
Beauchemin, S.S.[Steven S.],
Barron, J.L.[John L.],
The Frequency Structure of 1D Occluding Image Signals,
PAMI(22), No. 2, February 2000, pp. 200-206.
IEEE DOI
0003
Analysis of the changes along occluding line.
BibRef
Beauchemin, S.S.[Steven S.],
Barron, J.L.[John L.],
On the Fourier Properties of Discontinuous Motion,
JMIV(13), No. 3, December 2000, pp. 155-172.
DOI Link
0106
BibRef
Martens, H.A.[Harald Aagaard],
Reberg, J.O.[Jan Otto],
Method and apparatus for depth modelling and providing
depth information of moving objects,
US_Patent6,252,974, Jun 26, 2001
WWW Link. occlusions
BibRef
0106
Amiaz, T.[Tomer],
Kiryati, N.[Nahum],
Piecewise-Smooth Dense Optical Flow via Level Sets,
IJCV(68), No. 2, June 2006, pp. 111-124.
Springer DOI
0606
Active Contours.
BibRef
Earlier:
Dense Discontinuous Optical Flow via Contour-Based Segmentation,
ICIP05(III: 1264-1267).
IEEE DOI
0512
Embed (
See also High Accuracy Optical Flow Estimation Based on a Theory for Warping. ) within a 2 phase
active contour model.
Piecewise smooth flow fields and crisp boundaries.
Apply level set methods.
BibRef
Amiaz, T.[Tomer],
Lubetzky, E.[Eyal],
Kiryati, N.[Nahum],
Coarse to over-fine optical flow estimation,
PR(40), No. 9, September 2007, pp. 2496-2503.
Elsevier DOI
0705
Handle discontinuities.
BibRef
Ince, S.[Serdar],
Konrad, J.[Janusz],
Occlusion-Aware Optical Flow Estimation,
IP(17), No. 8, August 2008, pp. 1443-1451.
IEEE DOI
0808
See also Occlusion-Aware View Interpolation.
BibRef
Brune, C.[Christoph],
Maurer, H.[Helmut],
Wagner, M.[Marcus],
Detection Of Intensity And Motion Edges Within Optical Flow
Via Multidimensional Control,
SIIMS(2), No. 4, 2009, pp. 1190-1210.
optical flow; edge detection; partial differential equation constrained optimization; optimal control problem; direct methods
DOI Link
1002
BibRef
Estellers, V.[Virginia],
Soatto, S.[Stefano],
Detecting Occlusions as an Inverse Problem,
JMIV(54), No. 2, February 2016, pp. 181-198.
Springer DOI
1602
BibRef
Hadhri, H.[Hela],
Vernier, F.[Flavien],
Atto, A.M.[Abdourrahmane M.],
Trouvé, E.[Emmanuel],
Time-lapse optical flow regularization for geophysical complex
phenomena monitoring,
PandRS(150), 2019, pp. 135-156.
Elsevier DOI
1903
Time series, Temporal regularization,
Remote/proximal sensing, Natural Outdoor Environment,
Tracking
BibRef
Zhang, C.X.[Cong-Xuan],
Zhou, Z.K.[Zhong-Kai],
Chen, Z.[Zhen],
Hu, W.M.[Wei-Ming],
Li, M.[Ming],
Jiang, S.F.[Shao-Feng],
Self-Attention-Based Multiscale Feature Learning Optical Flow With
Occlusion Feature Map Prediction,
MultMed(24), 2022, pp. 3340-3354.
IEEE DOI
2207
Optical flow, Estimation, Image motion analysis, Optical losses,
Computational modeling, Robustness, Learning optical flow,
occlusions
BibRef
Wang, Z.[Zige],
Chen, Z.[Zhen],
Zhang, C.X.[Cong-Xuan],
Zhou, Z.K.[Zhong-Kai],
Chen, H.[Hao],
LCIF-Net: Local criss-cross attention based optical flow method using
multi-scale image features and feature pyramid,
SP:IC(112), 2023, pp. 116921.
Elsevier DOI
2302
Optical flow, Large displacement, Edge-blurring,
Image features and feature pyramids, Local criss-cross attention
BibRef
Wang, Z.X.[Zi-Xu],
Zhang, C.X.[Cong-Xuan],
Chen, Z.[Zhen],
Hu, W.M.[Wei-Ming],
Lu, K.[Ke],
Ge, L.[Liyue],
Wang, Z.[Zige],
ACR-Net: Learning High-Accuracy Optical Flow via Adaptive-Aware
Correlation Recurrent Network,
CirSysVideo(34), No. 10, October 2024, pp. 9064-9077.
IEEE DOI Code:
WWW Link.
2411
Optical flow, Estimation, Feature extraction, Correlation, Decoding,
Image motion analysis, Optical flow, self-adaptation, scale-aware,
occlusion
BibRef
Neoral, M.[Michal],
Šochman, J.[Jan],
Matas, J.G.[Jirí G.],
Continual Occlusion and Optical Flow Estimation,
ACCV18(IV:159-174).
Springer DOI
1906
BibRef
Wang, Y.,
Yang, Y.,
Yang, Z.,
Zhao, L.,
Wang, P.,
Xu, W.,
Occlusion Aware Unsupervised Learning of Optical Flow,
CVPR18(4884-4893)
IEEE DOI
1812
Optical imaging, Optical variables control, Adaptive optics,
Estimation, Optical computing, Optical losses, Unsupervised learning
BibRef
Lao, D.[Dong],
Sundaramoorthi, G.[Ganesh],
Extending Layered Models to 3D Motion,
ECCV18(X: 441-457).
Springer DOI
1810
BibRef
Zhu, Y.,
Newsam, S.,
Learning Optical Flow via Dilated Networks and Occlusion Reasoning,
ICIP18(3333-3337)
IEEE DOI
1809
Estimation, Optical imaging, Convolution, Cognition, Adaptive optics,
Benchmark testing, Image reconstruction, Optical flow estimation,
occlusion reasoning
BibRef
Zhu, Y.,
Newsam, S.,
DenseNet for dense flow,
ICIP17(790-794)
IEEE DOI
1803
Computer architecture, Estimation, Image reconstruction,
Motion estimation, Optical imaging, Semantics, Training,
Unsupervised learning
BibRef
Kennedy, R.[Ryan],
Taylor, C.J.[Camillo J.],
Hierarchically-constrained optical flow,
CVPR15(3340-3348)
IEEE DOI
1510
BibRef
And:
Optical Flow with Geometric Occlusion Estimation and Fusion of Multiple
Frames,
EMMCVPR15(364-377).
Springer DOI
1504
BibRef
Yu, S.[Sha],
Molloy, D.,
Oriented geodesic distance based non-local regularisation approach
for optic flow estimation,
VCIP13(1-7)
IEEE DOI
1402
estimation theory
BibRef
Bereziat, D.,
Herlin, I.,
Non-linear observation equation for motion estimation,
ICIP12(1521-1524).
IEEE DOI
1302
BibRef
Zhang, J.Y.[Jie-Yu],
Barron, J.L.[John L.],
Optical Flow at Occlusion,
CRV12(198-205).
IEEE DOI
1207
BibRef
Han, J.Y.[Jun-Yu],
Qi, F.[Fei],
Shi, G.M.[Guang-Ming],
Gradient sparsity for piecewise continuous optical flow estimation,
ICIP11(2341-2344).
IEEE DOI
1201
BibRef
And:
Enhancing Gradient Sparsity for Parametrized Motion Estimation,
BMVC11(xx-yy).
HTML Version.
1110
Optical flow.
BibRef
Sundberg, P.[Patrik],
Brox, T.[Thomas],
Maire, M.[Michael],
Arbelaez, P.[Pablo],
Malik, J.[Jitendra],
Occlusion boundary detection and figure/ground assignment from optical
flow,
CVPR11(2233-2240).
IEEE DOI
1106
BibRef
Shen, X.H.[Xiao-Hui],
Wu, Y.[Ying],
Exploiting sparsity in dense optical flow,
ICIP10(741-744).
IEEE DOI
1009
BibRef
And:
Sparsity model for robust optical flow estimation at motion
discontinuities,
CVPR10(2456-2463).
IEEE DOI
1006
BibRef
Chen, F.L.[Fa-Ling],
Luo, H.B.[Hai-Bo],
A Robust and Discontinuity-Preserving Approach to Optical Flow
Estimation,
CISP09(1-5).
IEEE DOI
0910
BibRef
Ren, X.F.[Xiao-Feng],
Local grouping for optical flow,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Cassisa, C.,
Simoens, S.,
Prinet, V.,
Two-Frame Optical Flow Formulation in an Unwarping Multiresolution
Scheme,
CIARP09(790-797).
Springer DOI
0911
BibRef
Prinet, V.,
Cassisa, C.,
Tang, F.F.,
MRF Modeling for Optical Flow Computation from Multi-Structure Objects,
ICIP06(1093-1096).
0610
IEEE DOI
BibRef
Xiao, J.J.[Jiang-Jian],
Cheng, H.[Hui],
Sawhney, H.S.[Harpreet S.],
Rao, C.[Cen],
Isnardi, M.A.[Michael A.],
Bilateral Filtering-Based Optical Flow Estimation with Occlusion
Detection,
ECCV06(I: 211-224).
Springer DOI
0608
BibRef
Zitnick, C.L.[C. Lawrence],
Jojic, N.[Nebojsa],
Kang, S.B.[Sing Bing],
Consistent Segmentation for Optical Flow Estimation,
ICCV05(II: 1308-1315).
IEEE DOI
0510
BibRef
Molton, N.D.,
Davison, A.J.,
Reid, I.D.,
Locally Planar Patch Features for Real-Time Structure from Motion,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Lu, M.L.[Min-Long],
Deng, Z.W.[Zhi-Wei],
Li, Z.N.[Ze-Nian],
Learning Contextual Dependencies for Optical Flow with Recurrent Neural
Networks,
ACCV16(IV: 68-83).
Springer DOI
1704
BibRef
Jiang, H.[Hao],
Li, Z.N.[Ze-Nian],
Drew, M.S.,
Optimizing motion estimation with linear programming and
detail-preserving variational method,
CVPR04(I: 738-745).
IEEE DOI
0408
Two images.
BibRef
Laurent, N.,
Hierarchical Mesh-based Global Motion Estimation, Including Occlusion
Areas Detection,
ICIP00(Vol III: 620-623).
IEEE DOI
0008
BibRef
Guichard, F.[Frederic],
Rudin, L.[Lenny],
Accurate Estimation of Discontinuous Optical Flow by
Minimizing Divergence Related Functionals,
ICIP96(I: 497-500).
IEEE DOI
BibRef
9600
Hebert, T.J.,
Yang, X.,
A sequential algorithm for motion estimation from point correspondences
with intermittent occlusions,
ICIP95(II: 221-224).
IEEE DOI
9510
BibRef
Proesmans, M.,
Van Gool, L.J.,
Pauwels, E.J.,
Oosterlinck, A.,
Determination of Optical Flow and Its Discontinuities Using
Non-Linear Diffusion,
ECCV94(B:294-304).
Springer DOI
BibRef
9400
Spetsakis, M.E.[Minas E.],
Optical Flow Estimation Using Discontinuity Conforming Filters,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Anandan, P.,
Computing Dense Fields Displacement with Confidence
Measures in Scenes Containing Occlusion,
DARPA84(236-246).
BibRef
8400
Raghavan, S.,
Gupta, S.,
Kanal, L.N.,
Computing Discontinuity-Preserved Image Flow,
ICPR92(I:764-767).
IEEE DOI
BibRef
9200
Chapter on Optical Flow Field Computations and Use continues in
Optical Flow -- Hierarchical, Pyramid, Multi-Grid, Multi-Scale Approaches .