5.1.9.1 Finite Impulse Response Filters, Design, Implementation

Chapter Contents (Back)
FIR Filters. Finite Impulse Response. Implementation. Filter Implementation. Hardware. FIR: Finite Impulse Response.

Yang, S.J., Lee, J.H., Chieu, B.C.,
Minimax Design of Two-Channel Low-Delay Perfect-Reconstruction FIR Filter Banks,
VISP(146), No. 1, February 1999, pp. 15. BibRef 9902

Lampropoulos, G.A., Fahmy, M.M.,
A New Technique for the Design of Two-Dimensional FIR and IIR Filters,
ASSP(33), 1985, pp. 268-280. BibRef 8500

Dutta Roy, S.C.,
Synthesis of FIR lattice structures,
VISP(147), No. 6, December 2000, pp. 549-552. 0101
BibRef

Siohan, P.,
2-D FIR filter design for sampling structure conversion,
CirSysVideo(1), No. 4, December 1991, pp. 337-350.
IEEE Top Reference. 0206
BibRef

Jou, Y.D., Hsieh, C.H., Kuo, C.M.,
Efficient Weighted Least Squares Algorithm for the Design of FIR Filters,
VISP(144), No. 4, August 1997, pp. 244-248. 9806
BibRef

Vijayakumar, N., Prabhu, K.M.M.,
Two-dimensional FIR compaction filter design,
VISP(148), No. 3, June 2001, pp. 173-181. 0108
BibRef

Tai, Y.L.[Yang-Lung], Lin, T.P.[Teng-Pin],
Design of 2-D FIR filter possessing purely imaginary frequency response by the transformation method,
CirSysVideo(2), No. 1, March 1992, pp. 89-91.
IEEE Top Reference. 0206
BibRef

Pei, S.C., Shyu, J.J.,
Design of two-dimensional FIR eigenfilters for sampling-structure conversion,
CirSysVideo(3), No. 2, April 1993, pp. 158-162.
IEEE Top Reference. 0206
BibRef

Dam, H.H., Nordebo, S., Teo, K.L., Cantoni, A.,
FIR filter design over discrete coefficients and least square error,
VISP(147), No. 6, December 2000, pp. 543-548. 0101
BibRef

Yan, W.Y.[Wei-Yong], Teo, K.L.[Kok Lay],
Optimal finite-precision approximation of FIR filters,
SP(82), No. 11, November 2002, pp. 1695-1705.
Elsevier DOI 0210
BibRef

Hwang, S., Han, G., Kang, S., Kim, J.,
New Distributed Arithmetic Algorithm for Low-Power FIR Filter Implementation,
SPLetters(11), No. 5, May 2004, pp. 463-466.
IEEE Abstract. 0404
BibRef

Lee, W.R., Rehbock, V., Teo, K.L., Caccetta, L.,
A Weighted Least-Square-Based Approach to FIR Filter Design Using the Frequency-Response Masking Technique,
SPLetters(11), No. 7, July 2004, pp. 593-596.
IEEE Abstract. 0407
BibRef

Okuda, M., Khan, I.R., Ikehara, M., Takahashi, S.,
Quasi-equiripple approximation of minimum phase FIR filters by updating desired response,
VISP(151), No. 3, June 2004, pp. 164-169.
IEEE Abstract. 0409
BibRef

Wu, J.Y., Lin, C.A.,
Optimal finite impulse response approximate inverse of linear periodic filters,
VISP(153), No. 2, April 2006, pp. 141-148.
DOI Link 0604
BibRef

Shmaliy, Y.S.[Yuriy S.],
An unbiased p-step predictive FIR filter for a class of noise-free discrete-time models with independently observed states,
SIViP(3), No. 2, June 2009, pp. xx-yy.
Springer DOI 0903
BibRef

Lai, X., Lai, C., Zhao, R.,
An Iterative Approach to Near-Uniform Group-Delay Error Design of FIR Filters,
SPLetters(18), No. 2, February 2011, pp. 107-110.
IEEE DOI 1101
BibRef

Kha, H.H., Tuan, H.D., Nguyen, T.Q.,
Optimal Design of FIR Triplet Halfband Filter Bank and Application in Image Coding,
IP(20), No. 2, February 2011, pp. 586-591.
IEEE DOI 1102
BibRef

Charef, A.[Abdelfatah], Bensouici, T.[Tahar],
Design of digital FIR variable fractional order integrator and differentiator,
SIViP(6), No. 4, November 2012, pp. 679-689.
WWW Link. 1210
BibRef

Milic, D.N., Pavlovic, V.D.,
A New Class of Low Complexity Low-Pass Multiplierless Linear-Phase Special CIC FIR Filters,
SPLetters(21), No. 12, December 2014, pp. 1511-1515.
IEEE DOI 1410
FIR filters BibRef

Chandra, A.[Abhijit], Chattopadhyay, S.[Sudipta],
Novel design strategy of multiplier-less low-pass finite impulse response filter using self-organizing random immigrants genetic algorithm,
SIViP(8), No. 3, March 2014, pp. 507-522.
WWW Link. 1403
BibRef

Chandra, A.[Abhijit], Chattopadhyay, S.[Sudipta],
A novel approach for coefficient quantization of low-pass finite impulse response filter using differential evolution algorithm,
SIViP(8), No. 7, October 2014, pp. 1307-1321.
WWW Link. 1410
BibRef

Mohindru, P.[Pooja], Khanna, R.[Rajesh], Bhatia, S.S.,
New tuning model for rectangular windowed FIR filter using fractional Fourier transform,
SIViP(9), No. 4, May 2015, pp. 761-767.
WWW Link. 1504
BibRef

Loukas, A., Simonetto, A., Leus, G.,
Distributed Autoregressive Moving Average Graph Filters,
SPLetters(22), No. 11, November 2015, pp. 1931-1935.
IEEE DOI 1509
FIR filters BibRef

Suman, S., Kumar, A., Singh, G.K.,
A new method for higher-order linear phase FIR digital filter using shifted Chebyshev polynomials,
SIViP(10), No. 6, June 2016, pp. 1041-1048.
WWW Link. 1608
BibRef

Tanji, H.[Hiroki], Tanaka, R.[Ryo], Murakami, T.[Takahiro], Ishida, Y.[Yoshihisa],
FIR system identification based on a nonparametric Bayesian model using the Indian buffet process,
SIViP(10), No. 6, June 2016, pp. 1105-1112.
Springer DOI 1608
BibRef

Maximo, A.[André],
Efficient finite impulse response filters in massively-parallel recursive systems,
RealTimeIP(12), No. 3, October 2016, pp. 603-611.
WWW Link. 1610
BibRef

Zhao, S., Shmaliy, Y.S., Liu, F.,
On the Iterative Computation of Error Matrix in Unbiased FIR Filtering,
SPLetters(24), No. 5, May 2017, pp. 555-558.
IEEE DOI 1704
FIR filters BibRef

Koshita, S.[Shunsuke], Onizawa, N.[Naoya], Abe, M.[Masahide], Hanyu, T.[Takahiro], Kawamata, M.[Masayuki],
High-Accuracy and Area-Efficient Stochastic FIR Digital Filters Based on Hybrid Computation,
IEICE(E100-D), No. 8, August 2017, pp. 1592-1602.
WWW Link. 1708
BibRef

Kumar, A., Yadav, S., Purohit, N.,
Generalized Rational Sampling Rate Conversion Polyphase FIR Filter,
SPLetters(24), No. 11, November 2017, pp. 1591-1595.
IEEE DOI 1710
FIR filters, signal sampling, addition complexity, computational complexity, BibRef

Mengüç, E.C.[Engin Cemal], Acir, N.[Nurettin],
A generalized Lyapunov stability theory-based adaptive FIR filter algorithm with variable step sizes,
SIViP(11), No. 8, November 2017, pp. 1567-1575.
WWW Link. 1710
BibRef

Capizzi, G., Coco, S., Sciuto, G.L., Napoli, C.,
A New Iterative FIR Filter Design Approach Using a Gaussian Approximation,
SPLetters(25), No. 11, November 2018, pp. 1615-1619.
IEEE DOI 1811
FIR filters, frequency response, Gaussian processes, iterative methods, Gaussian approximation, FIR filters, Gabor system BibRef

Capizzi, G., Sciuto, G.L.,
A Novel 2-D FIR Filter Design Methodology Based on a Gaussian-Based Approximation,
SPLetters(26), No. 2, February 2019, pp. 362-366.
IEEE DOI 1902
band-pass filters, band-stop filters, FIR filters, formal specification, frequency response, Gabor filters, equispaced Gaussian functions BibRef

Li, L.[Luo], Muneeswaran, V., Ramkumar, S., Emayavaramban, G., Gonzalez, G.R.[Gustavo Ramirez],
Metaheuristic FIR filter with game theory based compression technique- A reliable medical image compression technique for online applications,
PRL(125), 2019, pp. 7-12.
Elsevier DOI 1909
FIR filter, Game theory, Medical image BibRef

Zahradnik, P.,
Robust Analytical Design of Optimal Equiripple Lowpass FIR Filters,
SPLetters(27), 2020, pp. 755-759.
IEEE DOI 2006
Digital filters, equiripple approximation, finite impulse response filters, low-pass filters, optimal filters BibRef

Nassralla, M.H., Akl, N., Dawy, Z.,
A Clustering-Based Approach for Designing Low Complexity FIR Filters,
SPLetters(28), 2021, pp. 299-303.
IEEE DOI 2102
Finite impulse response filters, Frequency response, Optimization, Computational complexity, Passband, k-means clustering BibRef

Sarangi, P.[Pulak], Pal, P.[Piya],
Measurement Matrix Design for Sample-Efficient Binary Compressed Sensing,
SPLetters(29), 2022, pp. 1307-1311.
IEEE DOI 2206
Finite impulse response filters, Signal processing algorithms, Filtering algorithms, Decoding, Computational efficiency, sequential decoding BibRef

Shentu, X.Y.[Xuan-Yue], Lai, X.P.[Xiao-Ping], Wang, T.L.[Tian-Lei], Cao, J.W.[Jiu-Wen],
Efficient ADMM-Based Algorithm for Regularized Minimax Approximation,
SPLetters(30), 2023, pp. 210-214.
IEEE DOI 2303
Signal processing algorithms, Approximation algorithms, Finite impulse response filters, Machine learning, ADMM BibRef

Zhu, Y.Y.[Ying-Ying], Zhao, H.Q.[Hai-Quan], Christensen, M.G.[Mads Græsbøll],
Laguerre Kernel Adaptive Filter With Arctangent Criterion for Nonlinear System Identification,
SPLetters(31), 2024, pp. 2085-2089.
IEEE DOI 2408
Kernel, Filters, Noise, Adaptive filters, Signal processing algorithms, Finite impulse response filters, recursive least square BibRef

Linares, D.R.[Deijany Rodriguez], Johansson, H.[Håkan], Wang, Y.[Yinan],
Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands,
SPLetters(31), 2024, pp. 2955-2959.
IEEE DOI 2411
Finite impulse response filters, Equalizers, Accuracy, Delays, Bandwidth, Frequency response, Optimization, Estimation, MATLAB, minimax optimization BibRef

Babic, V.[Vukasin], Babic, D.[Djordje],
Optimized Multistage Decimation Based on Optimal Factorization of Decimation Ratio,
SPLetters(32), 2025, pp. 3142-3146.
IEEE DOI 2509
Finite impulse response filters, Passband, Polynomials, Transfer functions, Training, Minimization, Linear programming, farrow filter BibRef


Fukushima, N., Tsubokawa, T., Maeda, Y.,
Vector Addressing for Non-Sequential Sampling in FIR Image Filtering,
ICIP19(4185-4189)
IEEE DOI 1910
randomized algorithm, randomized subsam-pling, edge-preserving filtering, vector addressing BibRef

Shil, M., Rakshit, H., Ullah, H.,
An adjustable window function to design an FIR filter,
IVPR17(1-5)
IEEE DOI 1704
Finite impulse response filters BibRef

Kha, H.H., Tuan, H.D., Nguyen, T.Q.,
An optimal design of FIR filters with discrete coefficients and image sampling application,
ICIP11(93-96).
IEEE DOI 1201
BibRef

Guan, X.C.[Xiao-Chun], Chen, X.J.[Xiao-Jing], Wu, G.[Guichu],
QX-LMS Adaptive FIR Filters For System Identification,
CISP09(1-5).
IEEE DOI 0910
BibRef

Song, B.B.[Bei-Bei],
Design of 2-D Perfect Reconstruction Diamond-Shaped and Fan-Shaped FIR Filter Banks,
CISP09(1-4).
IEEE DOI 0910
BibRef

Huang, D.F.[Der-Feng],
A Computational Form of the Least Square Error Frequency Sampling Method for the Linear Phase FIR Filter Design,
CISP09(1-4).
IEEE DOI 0910
BibRef

Hjorungnes, A.[Are], Coward, H.[Helge], Ramstad, T.A.[Tor A.],
Minimum Mean Square Error FIR Filter Banks with Arbitrary Filter Lengths,
ICIP99(I:619-623).
IEEE DOI BibRef 9900

Niehsen, W., Brunig, M.,
Least-asymmetric signal extension for two-band paraunitary FIR filter banks,
ICIP98(III: 702-706).
IEEE DOI 9810
BibRef

Barreto, J.A., Burrus, C.S.,
Iterative reweighted least squares and the design of two-dimensional FIR digital filters,
ICIP94(I: 775-779).
IEEE DOI 9411
BibRef

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
High, Low, Bandpass Filters Designs .


Last update:Jan 8, 2026 at 12:52:16