Ohba, K.,
Ikeuchi, K.,
Detectability, Uniqueness, and Reliability of Eigen Windows for
Stable Verification of Partially Occluded Objects,
PAMI(19), No. 9, September 1997, pp. 1043-1047.
IEEE DOI
9710
BibRef
Earlier:
Recognition of the Multi Specularity Objects Using the Eigen-Window,
ICPR96(I: 692-696).
IEEE DOI
9608
BibRef
And:
CMU-CS-TR-96-105, February 1996.
PS File.
BibRef
Ohba, K.[Kohtaro],
Sato, Y.[Yoichi],
Ikeuchi, K.[Katsushi],
Appearance-Based Visual Learning and Object Recognition with
Illumination Invariance,
MVA(12), No. 4, 2000, pp. 189-196.
Springer DOI
0101
BibRef
Earlier:
Appearance Based Object Recognition with Illumination Invariance,
DARPA97(1229-1236).
BibRef
Selinger, A.[Andrea],
Nelson, R.C.[Randal C.],
A Perceptual Grouping Hierarchy for Appearance-Based 3D Object
Recognition,
CVIU(76), No. 1, October 1999, pp. 83-92.
DOI Link
BibRef
9910
Earlier: A2, A1:
Perceptual Grouping Hierarchy for 3D Object Recognition and
Representation,
DARPA98(157-163).
BibRef
Selinger, A.,
Nelson, R.C.,
Minimally Supervised Acquisition of 3D Recognition Models from
Cluttered Images,
CVPR01(I:213-220).
IEEE DOI
0110
BibRef
And:
Appearance-Based Object Recognition Using Multiple Views,
CVPR01(I:905-911).
IEEE DOI
0110
BibRef
Earlier:
Improving Appearance-based Object Recognition in Cluttered Backgrounds,
ICPR00(Vol I: 46-50).
IEEE DOI
0009
Find the closest one to the initial item, keep merging until
above threshold to add to the cluster.
Learning for DB indexing.
BibRef
Nelson, R.C.[Randal C.],
Selinger, A.[Andrea],
Learning 3D Recognition Models for General Objects from Unlabeled Imagery:
An Experiment in Intelligent Brute Force,
ICPR00(Vol I: 1-8).
IEEE DOI
0009
BibRef
Earlier:
Experiments on (Intelligent) Brute Force Methods for
Appearance-Based Object Recognition,
DARPA97(1197-1206).
BibRef
Nelson, R.C.[Randal C.], and
Selinger, A.[Andrea],
A Cubist Approach to Object Recognition,
ICCV98(614-621).
IEEE DOI
BibRef
9800
Lee, D.D.,
Seung, H.S.,
Learning the Parts of Objects by non-Negative Matrix Factorization,
Nature(401), 1999, pp. 788-791.
Generate a positive, sparse component bases, similar to PCA, but sparse.
BibRef
9900
Pope, A.R.[Arthur R.],
Lowe, D.G.[David G.],
Probabilistic Models of Appearance for 3-D Object Recognition,
IJCV(40), No. 2, November 2000, pp. 149-167.
DOI Link
0101
BibRef
Earlier:
Learning Appearance Models for Object Recognition,
ORCV96(201).
9611
BibRef
Earlier:
Learning Object Recognition Models from Images,
ICCV93(296-301).
IEEE DOI
BibRef
And:
Learning 3D Object Recognition Models from 2D Images,
AAAI-MLCV93(xx).
University of British Columbia.
BibRef
Zheng, W.S.[Wei-Shi],
Lai, J.H.[Jian-Huang],
Yuen, P.C.[Pong C.],
Li, S.Z.[Stan Z.],
Perturbation LDA: Learning the difference between the class empirical
mean and its expectation,
PR(42), No. 5, May 2009, pp. 764-779.
Elsevier DOI
0902
Fisher criterion; Perturbation analysis; Face recognition
BibRef
Zheng, W.S.[Wei-Shi],
Lai, J.H.[Jian-Huang],
Yuen, P.C.[Pong C.],
Weakly Supervised Learning on Pre-image Problem in Kernel Methods,
ICPR06(II: 711-715).
IEEE DOI
0609
BibRef
Zheng, W.S.[Wei-Shi],
Lai, J.H.[Jian-Huang],
Regularized Locality Preserving Learning of Pre-Image Problem in Kernel
Principal Component Analysis,
ICPR06(II: 456-459).
IEEE DOI
0609
BibRef
Cai, H.P.[Hong-Ping],
Mikolajczyk, K.[Krystian],
Matas, J.G.[Jiri G.],
Learning Linear Discriminant Projections for Dimensionality Reduction
of Image Descriptors,
PAMI(33), No. 2, February 2011, pp. 338-352.
IEEE DOI
1101
BibRef
Earlier:
BMVC08(xx-yy).
PDF File.
0809
LDP. Deal with requirement of large training set, from simulations of image
transformations rather than real correspondence data.
BibRef
Mikolajczyk, K.[Krystian],
Matas, J.G.[Jiri G.],
Improving Descriptors for Fast Tree Matching by Optimal Linear
Projection,
ICCV07(1-8).
IEEE DOI
0710
SIFT
BibRef
Ali, K.[Karim],
Fleuret, F.[François],
Hasler, D.[David],
Fua, P.[Pascal],
A Real-Time Deformable Detector,
PAMI(34), No. 2, February 2012, pp. 225-239.
IEEE DOI
1112
BibRef
Earlier:
Joint Pose Estimator and Feature Learning for Object Detection,
ICCV09(1373-1380).
IEEE DOI
PDF File.
0909
Single classifier that can deform for different poses, thus estimates the
pose at the same time.
BibRef
All, K.[Karim],
Hasler, D.[David],
Fleuret, F.[Frangois],
FlowBoost: Appearance learning from sparsely annotated video,
CVPR11(1433-1440).
IEEE DOI
1106
exploits temporal consistency for complex AM
BibRef
Hughes, J.M.,
Rockmore, D.N.,
Wang, Y.[Yang],
Bayesian Learning of Sparse Multiscale Image Representations,
IP(22), No. 12, 2013, pp. 4972-4983.
IEEE DOI
1312
belief networks
BibRef
Sun, Y.[Yubao],
Liu, Q.S.[Qing-Shan],
Tang, J.H.[Jin-Hui],
Tao, D.C.[Da-Cheng],
Learning Discriminative Dictionary for Group Sparse Representation,
IP(23), No. 9, September 2014, pp. 3816-3828.
IEEE DOI
1410
dictionaries
BibRef
Sprechmann, P.,
Bronstein, A.M.,
Sapiro, G.,
Learning Efficient Sparse and Low Rank Models,
PAMI(37), No. 9, September 2015, pp. 1821-1833.
IEEE DOI
1508
Computational modeling
BibRef
Yuan, Y.H.,
Li, J.,
Li, Y.,
Gou, J.,
Qiang, J.,
Learning Unsupervised and Supervised Representations via General
Covariance,
SPLetters(28), 2021, pp. 145-149.
IEEE DOI
2101
Covariance matrices, Principal component analysis, Kernel,
Training, Task analysis, Training data,
representation learning
BibRef
Rekavandi, A.M.[Aref Miri],
Seghouane, A.K.[Abd-Krim],
Evans, R.J.[Robin J.],
Learning Robust and Sparse Principal Components With the
alpha-Divergence,
IP(33), 2024, pp. 3441-3455.
IEEE DOI
2406
Principal component analysis, Vectors, Loading, Sparse matrices,
Robustness, Covariance matrices, Probabilistic logic,
maximum likelihood estimator
BibRef
Rekavandi, A.M.,
Seghouane, A.K.,
Robust Principal Component Analysis Using Alpha Divergence,
ICIP20(6-10)
IEEE DOI
2011
Robustness, Principal component analysis, Covariance matrices,
Estimation, Loading, Singular value decomposition, Sparse matrices,
singular value decomposition
BibRef
Li, Q.Z.[Qing-Zhen],
Zhao, J.[Jiufen],
Zhu, X.P.[Xiao-Ping],
An Unsupervised Learning Algorithm for Intelligent Image Analysis,
ICARCV06(1-5).
IEEE DOI
0612
Learning Kernel PCA.
BibRef
Xuan, G.R.[Guo-Rong],
Chai, P.Q.[Pei-Qi],
Zhu, X.M.[Xiu-Ming],
Yao, Q.M.[Qiu-Ming],
Huang, C.[Cong],
Shi, Y.Q.[Yun Q.],
Fu, D.D.[Dong-Dong],
A Novel Pattern Classification Scheme:
Classwise Non-Principal Component Analysis (CNPCA),
ICPR06(III: 320-323).
IEEE DOI
0609
BibRef
Yan, S.C.[Shui-Cheng],
Xu, D.[Dong],
Zhang, L.[Lei],
Zhang, B.Y.[Ben-Yu],
Zhang, H.J.[Hong-Jiang],
Coupled Kernel-Based Subspace Learning,
CVPR05(I: 645-650).
IEEE DOI
0507
BibRef
Pauli, J.[Josef],
Sommer, G.[Gerald],
Ellipsoidal Bias in Learning Appearance-Based Recognition Functions,
WTRCV01(201).
0103
BibRef
Shental, N.,
Hertz, T.,
Weinshall, D.,
Pavel, M.,
Adjustment Learning and Relevant Component Analysis,
ECCV02(IV: 776 ff.).
Springer DOI
0205
BibRef
Eriksen, R.D.[René Dencker],
Balslev, I.[Ivar],
Training Space Truncation in Vision-Based Recognition,
VF01(494 ff.).
Springer DOI
0209
BibRef
Guillamet, D.[David],
Vitrià, J.[Jordi],
Unsupervised Learning of Part-Based Representations,
CAIP01(700-708).
Springer DOI
0210
BibRef
Hou, X.W.,
Li, S.Z.,
Zhang, H.J.,
Cheng, Q.S.,
Direct Appearance Models,
CVPR01(I:828-833).
IEEE DOI
0110
Use texture directly in the prediction of the shape and position.
BibRef
Li, S.Z.,
Hou, X.W.,
Zhang, H.J.,
Cheng, Q.S.,
Learning Spatially Localized, Parts-Based Representation,
CVPR01(I:207-212).
IEEE DOI
0110
Faces.
Sparse matrix. ICA.
See also Learning the Parts of Objects by non-Negative Matrix Factorization.
BibRef
Shah-Hosseini, H.,
Safabakhsh, R.,
TAPCA: Time Adaptive Self-organizing Maps for Adaptive Principal
Components Analysis,
ICIP01(I: 509-512).
IEEE DOI
0108
BibRef
Herbst, B.M.[Ben M.],
Muller, N.[Neil],
Building a Representative Training Set Based on Eigenimages,
ICPR98(Vol II: 1846-1848).
IEEE DOI
9808
See also Use of Eigenpictures for Optical Character Recognition, The.
BibRef
Abe, T.[Toru],
Nakamura, T.[Tomohiko],
Hierarchical-clustering of Parametric Data with Application to the
Parametric Eigenspace Method,
ICIP99(IV:118-122).
IEEE DOI
BibRef
9900
Abe, T.,
Nakamura, T.,
Hierarchical Dictionary Constructing Method for the
Parametric Eigenspace Method,
MVA98(xx-yy).
BibRef
9800
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Computation and Analysis of Principal Components, Eigen Values, SVD .