Shlien, S.,
A Method for Computing the Partial Singular Value Decomposition,
PAMI(4), No. 6, November 1982, pp. 671-676.
BibRef
8211
Haimi-Cohen, R., and
Cohen, A.,
Gradient-Type Algorithms for Partial Singular Value Decomposition,
PAMI(9), No. 1, January 1987, pp. 137-142.
BibRef
8701
Nayar, S.K.[Shree K.],
Murase, H.[Hiroshi],
Dimensionality of Illumination Manifolds in Appearance Matching,
ORCV96(165)
9611
BibRef
Roseborough, J.B.[James B.],
Murase, H.[Hiroshi],
Partial eigenvalue decomposition for large image sets using run-length
encoding,
PR(28), No. 3, March 1995, pp. 421-430.
Elsevier DOI
0401
BibRef
Murase, W.,
Lindenbaum, M.,
Partial eigenvalue decomposition of large images using spatial temporal
adaptive method,
IP(4), No. 5, May 1995, pp. 620-629.
IEEE DOI
0402
BibRef
Oja, E.,
A simplified neuron model as a principal component analyzer,
J. Math. Biol.(15), 1982, pp. 267-273.
Neural Networks.
BibRef
8200
Oja, E.,
Neural networks, principal components, and subspace,
IJNS(1), 1989, pp. 61-68.
BibRef
8900
Oja, E.,
Principal components, minor components, and linear neural
networks,
NeurNet(5), 1992, pp. 927-935.
BibRef
9200
Lorenzelli, F.,
Yao, K.,
Updating the Jacobi SVD for Nonstationary Data,
VISP(144), No. 2, April 1997, pp. 108-115.
9706
BibRef
Chandrasekaran, S.,
Manjunath, B.S.,
Wang, Y.F.,
Winkeler, J.,
Zhang, H.,
An Eigenspace Update Algorithm for Image Analysis,
GMIP(59), No. 5, September 1997, pp. 321-332.
PDF File.
9712
BibRef
Earlier:
TRUniv. of California Santa Barbara. 1995.
BibRef
And: A2, A1, A3 Only:
SCV95(551-556).
IEEE DOI
PDF File. Introduce the vision community to the eigenspace updating algoithms
from signal processing.
HTML Version.
BibRef
Boyle, R.D.[Roger D.],
Scaling additional contributions to principal components analysis,
PR(31), No. 12, December 1998, pp. 2047-2053.
Elsevier DOI
BibRef
9812
Zhao, L.[Li],
Yang, Y.H.[Yee-Hong],
An efficient algorithm to compute eigenimages in PCA-based vision
systems,
PR(32), No. 5, May 1999, pp. 851-864.
Elsevier DOI
BibRef
9905
Yang, T.N.[Tai-Ning],
Wang, S.D.[Sheng-De],
Robust algorithms for principal component analysis,
PRL(20), No. 8, August 1999, pp. 927-933.
BibRef
9908
Horgan, G.W.[Graham W.],
Principal Component Analysis of Random Particles,
JMIV(12), No. 2, April 2000, pp. 169-175.
DOI Link
0002
BibRef
Havlicek, J.P.,
Harding, D.S.,
Bovik, A.C.,
Multidimensional Quasi-Eigenfunction Approximations and Multicomponent
AM-FM Models,
IP(9), No. 2, February 2000, pp. 227-242.
IEEE DOI
0003
BibRef
Hall, P.M.[Peter M.],
Marshall, D.R.[David R.],
Martin, R.R.[Ralph R.],
Merging and Splitting Eigenspace Models,
PAMI(22), No. 9, September 2000, pp. 1042-1049.
IEEE DOI
0010
Method to merge and split models.
BibRef
Hall, P.M.,
Marshall, D.R.,
Martin, R.R.,
Incremental Eigenanalysis for Classification,
BMVC98(xx-yy).
BibRef
9800
Hall, P.M.[Peter M.],
Marshall, D.R.[David R.],
Martin, R.R.[Ralph R.],
Adding and subtracting eigenspaces with eigenvalue decomposition and
singular value decomposition,
IVC(20), No. 13-14, December 2002, pp. 1009-1016.
Elsevier DOI
0212
BibRef
Earlier:
Adding and subtracting eigenspaces,
BMVC99(Models and Search).
PDF File.
BibRef
Bach, F.R., and
Jordan, M.I.,
Kernel independent component analysis,
MachLearnRes(3), 2002, pp. 1-48.
DOI Link
BibRef
0200
p
Chang, C.Y.,
Maciejewski, A.A.,
Balakrishnan, V.,
Fast Eigenspace Decomposition of Correlated Images,
IP(9), No. 11, November 2000, pp. 1937-1949.
IEEE DOI
0011
BibRef
Saitwal, K.,
Maciejewski, A.A.,
Roberts, R.G.,
Draper, B.A.,
Using the Low-Resolution Properties of Correlated Images to Improve the
Computational Efficiency of Eigenspace Decomposition,
IP(15), No. 8, August 2006, pp. 2376-2387.
IEEE DOI
0606
BibRef
Saitwal, K.,
Maciejewski, A.A.,
Roberts, R.G.,
Eigendecomposition of Correlated Images Characterized by Three
Parameters,
Southwest06(203-207).
IEEE DOI
0603
BibRef
Donoho, D.L.,
Huo, X.M.[Xiao-Ming],
Uncertainty Principle and Ideal Atomic Decompositions,
IT(47), No. 7, November 2001, pp. 2845-2862.
Decompose image with pairs of bases.
BibRef
0111
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
From image vector to matrix:
A straightforward image projection technique: IMPCA vs. PCA,
PR(35), No. 9, September 2002, pp. 1997-1999.
Elsevier DOI
0206
See also Face recognition based on the uncorrelated discriminant transformation.
BibRef
Yang, J.[Jian],
Zhang, D.[David],
Frangi, A.F.[Alejandro F.],
Yang, J.Y.[Jing-Yu],
Two-Dimensional PCA: A New Approach to Appearance-Based Face
Representation and Recognition,
PAMI(26), No. 1, January 2004, pp. 131-137.
IEEE Abstract.
0401
PCA applied to a 2-D matrix rather than conversion to 1-D matrix.
BibRef
Xu, Y.,
Zhang, D.[David],
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
A Two-Phase Test Sample Sparse Representation Method for Use With Face
Recognition,
CirSysVideo(21), No. 9, September 2011, pp. 1255-1262.
IEEE DOI
1109
BibRef
Yang, M.[Meng],
Zhang, L.[Lei],
Yang, J.,
Zhang, D.[David],
Regularized Robust Coding for Face Recognition,
IP(22), No. 5, May 2013, pp. 1753-1766.
IEEE DOI
1303
See also Gabor Feature Based Robust Representation and Classification for Face Recognition with Gabor Occlusion Dictionary.
BibRef
Yang, J.[Jian],
Jin, Z.[Zhong],
Yang, J.Y.[Jing-Yu],
Zhang, D.[David],
Frangi, A.F.[Alejandro F.],
Essence of kernel Fisher discriminant: KPCA plus LDA,
PR(37), No. 10, October 2004, pp. 2097-2100.
Elsevier DOI
0409
BibRef
Yang, J.[Jian],
Frangi, A.F.[Alejandro F.],
Yang, J.Y.[Jing-Yu],
Zhang, D.[David],
Jin, Z.[Zhong],
KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for
Feature Extraction and Recognition,
PAMI(27), No. 2, February 2005, pp. 230-244.
IEEE Abstract.
0501
BibRef
Yang, J.[Jian],
Zhang, D.[David],
Jin, Z.[Zhong],
Yang, J.Y.[Jing-Yu],
Unsupervised Discriminant Projection Analysis for Feature Extraction,
ICPR06(I: 904-907).
IEEE DOI
0609
BibRef
Zuo, W.M.[Wang-Meng],
Zhang, D.[David],
Wang, K.Q.[Kuan-Quan],
An assembled matrix distance metric for 2DPCA-based image recognition,
PRL(27), No. 3, February 2006, pp. 210-216.
Elsevier DOI
0512
BibRef
Zuo, W.M.[Wang-Meng],
Zhang, D.[David],
Wang, K.Q.[Kuan-Quan],
Bidirectional PCA With Assembled Matrix Distance Metric for Image
Recognition,
SMC-B(36), No. 4, August 2006, pp. 863-872.
IEEE DOI
0606
BibRef
Earlier: A1, A3, A2:
Bi-Directional PCA with Assembled Matrix Distance Metric,
ICIP05(II: 958-961).
IEEE DOI
0512
BibRef
Wang, F.Q.[Fa-Qiang],
Zhang, H.Z.[Hong-Zhi],
Wang, K.Q.[Kuan-Quan],
Zuo, W.M.[Wang-Meng],
Fast neighbourhood component analysis with spatially smooth
regulariser for robust noisy face recognition,
IET-Bio(3), No. 4, 2014, pp. 278-290.
DOI Link
1504
face recognition
BibRef
Elad, M.,
Bruckstein, A.M.,
A Generalized Uncertainty Principle and
Sparse Representation in Pairs of Bases,
IT(48), No. 9, September 2002, pp. 2558-2567.
BibRef
0209
Altamirano, L.C.[Luis Carlos],
Altamirano, L.[Leopoldo],
Alvarado, M.[Matías],
Non-uniform sampling for improved appearance-based models,
PRL(24), No. 1-3, January 2003, pp. 521-535.
Elsevier DOI
0211
BibRef
Hamdan, R.[Raouf],
Heitz, F.[Fabrice],
Thoraval, L.[Laurent],
A low complexity approximation of probabilistic appearance models,
PR(36), No. 5, May 2003, pp. 1107-1118.
Elsevier DOI
0301
BibRef
Wang, Z.[Ze],
Lee, Y.[Yin],
Fiori, S.[Simone],
Leung, C.S.[Chi-Sing],
Zhu, Y.S.[Yi-Sheng],
An improved sequential method for principal component analysis,
PRL(24), No. 9-10, June 2003, pp. 1409-1415.
Elsevier DOI
0304
BibRef
Roberts, S.[Stephen],
Choudrey, R.[Rizwan],
Data decomposition using independent component analysis with prior
constraints,
PR(36), No. 8, August 2003, pp. 1813-1825.
Elsevier DOI
0304
BibRef
Melzer, T.[Thomas],
Reiter, M.[Michael],
Bischof, H.[Horst],
Appearance Models Based on Kernel Canonical Correlation Analysis,
PR(36), No. 9, September 2003, pp. 1961-1971.
Elsevier DOI
0307
BibRef
Jogan, M.,
Zagar, E.,
Leonardis, A.,
Karhunen-Loeve expansion of a set of rotated templates,
IP(12), No. 7, July 2003, pp. 817-825.
IEEE DOI
0308
Eigen vectors of a set of rotated templates.
BibRef
Artac, M.,
Jogan, M.,
Leonardis, A.,
Incremental PCA for on-line visual learning and recognition,
ICPR02(III: 781-784).
IEEE DOI
0211
BibRef
Weng, J.Y.[Ju-Yang],
Zhang, Y.L.[Yi-Lu],
Hwang, W.S.[Wey-Shiuan],
Candid covariance-free incremental principal component analysis,
PAMI(25), No. 8, August 2003, pp. 1034-1040.
IEEE Abstract.
0308
Fast incremental computation method.
BibRef
Davies, M.,
Mitianoudis, N.,
Simple mixture model for sparse overcomplete ICA,
VISP(151), No. 1, February 2004, pp. 35-43.
IEEE Abstract.
0403
Use a mixture of Gaussians.
BibRef
Davies, M.,
Identifiability Issues in Noisy ICA,
SPLetters(11), No. 5, may 2004, pp. 470-473.
IEEE Abstract.
0404
BibRef
Liu, W.X.[Wei-Xiang],
Zheng, N.N.[Nan-Ning],
Non-negative matrix factorization based methods for object recognition,
PRL(25), No. 8, June 2004, pp. 893-897.
Elsevier DOI
0405
BibRef
And:
Erratum:
PRL(26), No. 14, 15 October 2005, pp. 2313.
Elsevier DOI Non-negative matrix factorization creates nonorthonormal bases so
nearest neighbor classification does not work. Adopt a Riemannian metric.
BibRef
Yuan, Z.J.[Ze-Jian],
Qu, Y.Y.[Yan-Yun],
Yang, Y.[Yang],
Zheng, N.N.[Nan-Ning],
An Approach for Constructing Sparse Kernel Classifier,
ICPR06(II: 560-563).
IEEE DOI
0609
BibRef
Eriksson, J.,
Koivunen, V.,
Identifiability, Separability, and Uniqueness of Linear ICA Models,
SPLetters(11), No. 7, July 2004, pp. 601-604.
IEEE Abstract.
0407
BibRef
Musa, M.E.M.[Mohamed E. M.],
de Ridder, D.[Dick],
Duin, R.P.W.[Robert P. W.],
Atalay, V.[Volkan],
Almost autonomous training of mixtures of principal component analyzers,
PRL(25), No. 9, 2 July 2004, pp. 1085-1095.
Elsevier DOI
0407
BibRef
Lee, S.,
Hayes, M.H.,
Properties of the Singular Value Decomposition for Efficient Data
Clustering,
SPLetters(11), No. 11, November 2004, pp. 862-866.
IEEE Abstract.
0411
BibRef
Lipovetsky, S.[Stan],
Conklin, W.M.[W. Michael],
Singular value decomposition in additive, multiplicative, and logistic
forms,
PR(38), No. 7, July 2005, pp. 1099-1110.
Elsevier DOI
0505
BibRef
Lipovetsky, S.[Stan],
PCA and SVD with nonnegative loadings,
PR(42), No. 1, January 2009, pp. 68-76.
Elsevier DOI
0809
Principal component analysis; Singular value decomposition; Exponential;
Logit; Multinomial parameterization; Positive and sparse loadings;
Perron-Frobenius theory
BibRef
Chen, S.C.[Song-Can],
Zhu, Y.L.[Yu-Lian],
Zhang, D.Q.[Dao-Qiang],
Yang, J.Y.[Jing-Yu],
Feature extraction approaches based on matrix pattern:
MatPCA and MatFLDA,
PRL(26), No. 8, June 2005, pp. 1157-1167.
Elsevier DOI
0506
BibRef
Kim, K.I.[Kwang In],
Franz, M.O.,
Scholkopf, B.,
Iterative Kernel Principal Component Analysis for Image Modeling,
PAMI(27), No. 9, September 2005, pp. 1351-1366.
IEEE DOI
0508
Iterative estimation of PCA.
Applied to super resolution and denoising.
BibRef
Liang, Z.Z.[Zhi-Zheng],
Shi, P.F.[Peng-Fei],
An analytical algorithm for generalized low-rank approximations of
matrices,
PR(38), No. 11, November 2005, pp. 2213-2216.
Elsevier DOI
0509
See also Comments on An analytical algorithm for generalized low-rank approximations of matrices.
BibRef
Nishino, K.[Ko],
Nayar, S.K.,
Jebara, T.,
Clustered Blockwise PCA for Representing Visual Data,
PAMI(27), No. 10, October 2005, pp. 1675-1679.
IEEE DOI
0509
PCA applied to video, use spatio-temporal correlation.
PCA to blocks of the data, not the whole thing.
BibRef
Wang, L.,
Wang, X.,
Feng, J.,
On Image Matrix Based Feature Extraction Algorithms,
SMC-B(36), No. 1, February 2006, pp. 194-197.
IEEE DOI
0602
2DPCA and 2DLDA are equivalent to a block based feature extraction.
Partition into blocks and perform PCA/LDA on aggerate of all blocks.
BibRef
Gao, Q.,
Zhang, L.,
Zhang, D.,
Yang, J.,
Comments on 'On Image Matrix Based Feature Extraction Algorithms',
SMC-B(37), No. 5, October 2007, pp. 1373-1374.
IEEE DOI
0711
See also On Image Matrix Based Feature Extraction Algorithms.
BibRef
Liu, J.[Jun],
Chen, S.C.[Song-Can],
Non-iterative generalized low rank approximation of matrices,
PRL(27), No. 9, July 2006, pp. 1002-1008.
Elsevier DOI 2DPCA; Generalized low rank approximation of matrices (GLRAM);
Non-iterative GLRAM (NIGLRAM); Feature extraction
0605
BibRef
Burvall, A.[Anna],
Barrett, H.H.[Harrison H.],
Dainty, C.[Christopher],
Myers, K.J.[Kyle J.],
Singular-value decomposition for through-focus imaging systems,
JOSA-A(23), No. 10, October 2006, pp. 2440-2448.
WWW Link.
0610
BibRef
Park, S.,
Witten, J.M.,
Myers, K.J.,
Singular Vectors of a Linear Imaging System as Efficient Channels for
the Bayesian Ideal Observer,
MedImg(28), No. 5, May 2009, pp. 657-668.
IEEE DOI
0905
BibRef
Witten, J.M.,
Park, S.,
Myers, K.J.,
Partial Least Squares: A Method to Estimate Efficient Channels for the
Ideal Observers,
MedImg(29), No. 4, April 2010, pp. 1050-1058.
IEEE DOI
1003
BibRef
Ranade, A.[Abhiram],
Mahabalarao, S.S.[Srikanth S.],
Kale, S.[Satyen],
A variation on SVD based image compression,
IVC(25), No. 6, 1 June 2007, pp. 771-777.
Elsevier DOI
0704
Image compression; Singular value decomposition; Karhunen-Loeve transform;
Matrix rank, Low resolution sample
BibRef
Chin, T.J.[Tat-Jun],
Suter, D.[David],
Incremental Kernel Principal Component Analysis,
IP(16), No. 6, June 2007, pp. 1662-1674.
IEEE DOI
0706
BibRef
Earlier:
Improving the Speed of Kernel PCA on Large Scale Datasets,
AVSBS06(41-41).
IEEE DOI
0611
BibRef
And:
Incremental Kernel PCA for Efficient Non-linear Feature Extraction,
BMVC06(III:939).
PDF File.
0609
BibRef
And:
A New Distance Criterion for Face Recognition Using Image Sets,
ACCV06(I:549-558).
Springer DOI
0601
BibRef
Chin, T.J.[Tat-Jun],
Schindler, K.,
Suter, D.[David],
Incremental Kernel SVD for Face Recognition with Image Sets,
FGR06(461-466).
IEEE DOI
0604
BibRef
Chin, T.J.[Tat-Jun],
Suter, D.[David],
Wang, H.Z.[Han-Zi],
Boosting histograms of descriptor distances for scalable multiclass
specific scene recognition,
IVC(29), No. 4, March 2011, pp. 241-250.
Elsevier DOI
1102
BibRef
Earlier:
Multi-structure model selection via kernel optimisation,
CVPR10(3586-3593).
IEEE DOI
1006
Keypoints; Descriptors; Distance histograms; Specific scene recognition
BibRef
Chin, T.J.[Tat-Jun],
Yu, J.[Jin],
Suter, D.[David],
Accelerated Hypothesis Generation for Multistructure Data via
Preference Analysis,
PAMI(34), No. 4, April 2012, pp. 625-638.
IEEE DOI
1203
BibRef
Earlier:
Accelerated Hypothesis Generation for Multi-structure Robust Fitting,
ECCV10(V: 533-546).
Springer DOI
1009
In the rantom hypothesis generation and test model for matching.
Sampling within coherent structures.
BibRef
Wong, H.S.[Hoi Sim],
Chin, T.J.[Tat-Jun],
Yu, J.[Jin],
Suter, D.[David],
Efficient Multi-structure Robust Fitting with Incremental Top-k Lists
Comparison,
ACCV10(IV: 553-564).
Springer DOI
1011
BibRef
Tanaka, A.[Akira],
Imai, H.[Hideyuki],
Kudo, M.[Mineichi],
Miyakoshi, M.[Masaaki],
Integrated kernels and their properties,
PR(40), No. 11, November 2007, pp. 2930-2938.
Elsevier DOI
0707
Kernel; Reproducing kernel Hilbert space (RKHS); Projection learning;
Parameter integration
BibRef
Chang, C.C.[Chin-Chun],
Lin, T.Y.[Tzung-Ying],
Linear feature extraction by integrating pairwise and global
discriminatory information via sequential forward floating selection
and kernel QR factorization with column pivoting,
PR(41), No. 4, April 2008, pp. 1373-1383.
Elsevier DOI
0801
Linear discriminant analysis; Kernel methods; Feature extraction
BibRef
Agrawal, R.K.,
Karmeshu,
Perturbation scheme for online learning of features:
Incremental principal component analysis,
PR(41), No. 5, May 2008, pp. 1452-1460.
Elsevier DOI
0711
Statistical pattern recognition; Feature extraction; Face recognition;
Principal component analysis; Variance-covariance matrix; Perturbation method
BibRef
Hu, Y.F.[Ya-Feng],
Lv, H.R.[Hai-Rong],
Zhang, X.D.[Xian-Da],
Comments on 'An analytical algorithm for generalized low-rank
approximations of matrices',
PR(41), No. 6, June 2008, pp. 2133-2135.
Elsevier DOI
0802
See also analytical algorithm for generalized low-rank approximations of matrices, An. Low rank approximation; Analytical algorithm; Iterative algorithm
BibRef
Saegusa, R.[Ryo],
Sakano, H.[Hitoshi],
Hashimoto, S.[Shuji],
A Nonlinear Principal Component Analysis of Image Data,
IEICE(E88-D), No. 10, October 2005, pp. 2242-2248.
DOI Link
0510
BibRef
Pang, Y.,
Tao, D.C.,
Yuan, Y.,
Li, X.L.,
Binary Two-Dimensional PCA,
SMC-B(37), No. 4, August 2008, pp. 1176-1180.
IEEE DOI
0808
BibRef
Rahman, M.M.[M. Masudur],
Ishikawa, S.[Seiji],
Overcoming Dress Effect In Eigenspace,
IJIG(5), No. 4, October 2005, pp. 811-823.
0510
BibRef
Wu, W.,
Ahmad, M.O.,
Samadi, S.,
Discriminant analysis based on modified generalised singular value
decomposition and its numerical error analysis,
IET-CV(3), No. 3, September 2009, pp. 159-173.
DOI Link
0909
SVD to perform LDA.
BibRef
Fowler, J.E.,
Compressive-Projection Principal Component Analysis,
IP(18), No. 10, October 2009, pp. 2230-2242.
IEEE DOI
0909
BibRef
Costache, G.N.[Gabriel Nicolae],
Corcoran, P.[Peter],
Puslecki, P.[Pawel],
Combining PCA-based datasets without retraining of the basis vector set,
PRL(30), No. 16, 1 December 2009, pp. 1441-1447.
Elsevier DOI
0911
Principal component analysis; Incremental PCA; Combining collections
BibRef
Gurumoorthy, K.S.[Karthik S.],
Rajwade, A.[Ajit],
Banerjee, A.[Arunava],
Rangarajan, A.[Anand],
A Method for Compact Image Representation Using Sparse Matrix and
Tensor Projections Onto Exemplar Orthonormal Bases,
IP(19), No. 2, February 2010, pp. 322-334.
IEEE DOI
1002
BibRef
Earlier:
Beyond SVD: Sparse projections onto exemplar orthonormal bases for
compact image representation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jenssen, R.[Robert],
Kernel Entropy Component Analysis,
PAMI(32), No. 5, May 2010, pp. 847-860.
IEEE DOI
1003
For data transformation and dimensionality reduction.
BibRef
Jenssen, R.[Robert],
Storås, O.[Ola],
Kernel Entropy Component Analysis Pre-images for Pattern Denoising,
SCIA09(626-635).
Springer DOI
0906
BibRef
Zafeiriou, S.P.[Stefanos P.],
Petrou, M.[Maria],
Nonlinear Non-Negative Component Analysis Algorithms,
IP(19), No. 4, April 2010, pp. 1050-1066.
IEEE DOI
1003
BibRef
Earlier:
Nonlinear Nonnegative Component Analysis,
CVPR09(2860-2865).
IEEE DOI
0906
BibRef
Si, S.,
Tao, D.,
Chan, K.P.,
Evolutionary Cross-Domain Discriminative Hessian Eigenmaps,
IP(19), No. 4, April 2010, pp. 1075-1086.
IEEE DOI
1003
BibRef
Bergqvist, G.,
Larsson, E.G.,
The Higher-Order Singular Value Decomposition:
Theory and an Application,
SPMag(27), No. 3, 2010, pp. 151-154.
IEEE DOI
1006
Survey, SVD. Lecture Notes
BibRef
Li, X.L.[Xue-Long],
Pang, Y.W.[Yan-Wei],
Yuan, Y.[Yuan],
L1-Norm-Based 2DPCA,
SMC-B(40), No. 4, August 2010, pp. 1170-1175.
IEEE DOI
1008
BibRef
Mirkin, B.[Boris],
Core Concepts in Data Analysis:
Summarization, Correlation and Visualization,
Springer2011, ISBN: 978-0-85729-286-5
WWW Link.
Buy this book: Core Concepts in Data Analysis: Summarization, Correlation and Visualization (Undergraduate Topics in Computer Science)
1106
In depth analysis of summarization tools such as PCA.
BibRef
Liang, Z.Z.[Zhi-Zheng],
Xia, S.X.[Shi-Xiong],
Zhou, Y.[Yong],
Li, Y.F.[You-Fu],
Blockwise projection matrix versus blockwise data on undersampled problems:
Analysis, comparison and applications,
PR(44), No. 10-11, October-November 2011, pp. 2774-2785.
Elsevier DOI
1101
LDA; PCA; Blockwise PCA; Blockwise LDA; 2DPCA; 2DLDA; Face
recognition; Gene expression data
BibRef
Ponce, C.,
Singer, A.,
Computing Steerable Principal Components of a Large Set of Images and
Their Rotations,
IP(20), No. 11, November 2011, pp. 3051-3062.
IEEE DOI
1110
Applied to electron microscopy.
BibRef
Zhang, W.T.,
Lou, S.T.,
A Low Complexity Iterative Algorithm for Joint Zero Diagonalization,
SPLetters(19), No. 2, February 2012, pp. 115-118.
IEEE DOI
1201
BibRef
Lee, K.Y.[Kwan-Yong],
Park, H.[Hyeyoung],
Probabilistic learning of similarity measures for tensor PCA,
PRL(33), No. 10, 15 July 2012, pp. 1364-1372.
Elsevier DOI
1205
Tensor; Principal component analysis; Similarity measure; Probabilistic
learning
BibRef
Rusu, C.,
Dumitrescu, B.,
Stagewise K-SVD to Design Efficient Dictionaries for Sparse
Representations,
SPLetters(19), No. 10, October 2012, pp. 631-634.
IEEE DOI
1209
BibRef
Li, J.[Jun],
Tao, D.C.[Da-Cheng],
On Preserving Original Variables in Bayesian PCA With Application to
Image Analysis,
IP(21), No. 12, December 2012, pp. 4830-4843.
IEEE DOI
1212
BibRef
Smith, L.N.,
Elad, M.,
Improving Dictionary Learning:
Multiple Dictionary Updates and Coefficient Reuse,
SPLetters(20), No. 1, January 2013, pp. 79-82.
IEEE DOI
1212
BibRef
Liu, W.,
Lin, W.,
Additive White Gaussian Noise Level Estimation in SVD Domain for Images,
IP(22), No. 3, March 2013, pp. 872-883.
IEEE DOI
1302
BibRef
Hirokawa, M.[Mariko],
Kuroki, Y.[Yoshimitsu],
A Fast Implementation of PCA-L1 Using Gram-Schmidt Orthogonalization,
IEICE(E96-D), No. 3, March 2013, pp. 559-561.
WWW Link.
1303
BibRef
Ghassabeh, Y.A.[Youness Aliyari],
Abrishami Moghaddam, H.[Hamid],
Adaptive linear discriminant analysis for online feature extraction,
MVA(24), No. 4, May 2013, pp. 777-794.
Springer DOI
1304
computation of the square root of the inverse covariance matrix.
BibRef
Van Nguyen, H.,
Patel, V.M.,
Nasrabadi, N.M.,
Chellappa, R.,
Design of Non-Linear Kernel Dictionaries for Object Recognition,
IP(22), No. 12, 2013, pp. 5123-5135.
IEEE DOI
1312
image classification
BibRef
Shekhar, S.,
Patel, V.M.,
Van Nguyen, H.,
Chellappa, R.,
Coupled Projections for Adaptation of Dictionaries,
IP(24), No. 10, October 2015, pp. 2941-2954.
IEEE DOI
1507
Cost function
BibRef
Bigot, J.,
Gouet, R.,
López, A.,
Geometric PCA of Images,
SIIMS(6), No. 4, 2013, pp. 1851-1879.
DOI Link
1402
BibRef
Vidal, R.[René],
Favaro, P.[Paolo],
Low rank subspace clustering (LRSC),
PRL(43), No. 1, 2014, pp. 47-61.
Elsevier DOI
1404
Subspace clustering
BibRef
Favaro, P.[Paolo],
Vidal, R.[Rene],
Ravichandran, A.[Avinash],
A closed form solution to robust subspace estimation and clustering,
CVPR11(1801-1807).
IEEE DOI
1106
BibRef
Patel, V.M.[Vishal M.],
Nguyen, H.V.[Hien Van],
Vidal, R.[Rene],
Latent Space Sparse Subspace Clustering,
ICCV13(225-232)
IEEE DOI
1403
Subspace clustering; dimension reduction; sparse optimization
BibRef
Tsakiris, M.C.[Manolis C.],
Vidal, R.[René],
Filtrated Algebraic Subspace Clustering,
SIIMS(10), No. 1, 2017, pp. 372-415.
DOI Link
1704
BibRef
Earlier:
Dual Principal Component Pursuit,
RSL-CV15(850-858)
IEEE DOI
1602
Computational modeling
BibRef
And:
Filtrated Spectral Algebraic Subspace Clustering,
RSL-CV15(868-876)
IEEE DOI
1602
Clustering algorithms
BibRef
Tsakiris, M.C.[Manolis C.],
Vidal, R.[René],
Algebraic Clustering of Affine Subspaces,
PAMI(40), No. 2, February 2018, pp. 482-489.
IEEE DOI
1801
Clustering methods, Complexity theory, Geometry,
Motion segmentation, Silicon, Algebraic subspace clustering,
homogeneous coordinates
BibRef
Nguyen, H.V.[Hien V.],
Patel, V.M.[Vishal M.],
Max residual classifier,
WACV14(580-587)
IEEE DOI
1406
Dictionaries
BibRef
Damon, J.N.[James N.],
Marron, J.S.,
Backwards Principal Component Analysis and Principal Nested Relations,
JMIV(50), No. 1-2, September 2014, pp. 107-114.
Springer DOI
1408
BibRef
Lee, M.[Minsik],
Choi, C.H.[Chong-Ho],
Incremental N-Mode SVD for Large-Scale Multilinear Generative
Models,
IP(23), No. 10, October 2014, pp. 4255-4269.
IEEE DOI
1410
image processing
BibRef
Zhao, J.H.[Jian-Hua],
Efficient Model Selection for Mixtures of Probabilistic PCA Via
Hierarchical BIC,
Cyber(44), No. 10, October 2014, pp. 1871-1883.
IEEE DOI
1410
Bayes methods
BibRef
Lin, M.[Ming],
Wang, F.[Fei],
Zhang, C.S.[Chang-Shui],
Large-scale eigenvector approximation via Hilbert Space Embedding
Nyström,
PR(48), No. 5, 2015, pp. 1904-1912.
Elsevier DOI
1502
Eigenvalues and eigenfunctions
BibRef
Ghassabeh, Y.A.[Youness Aliyari],
Rudzicz, F.[Frank],
Abrishami Moghaddam, H.[Hamid],
Fast incremental LDA feature extraction,
PR(48), No. 6, 2015, pp. 1999-2012.
Elsevier DOI
1503
Incremental linear discriminant analysis
BibRef
Lin, G.Y.[Guan-You],
Tang, N.Z.[Nian-Zu],
Wang, H.X.[Hai-Xian],
Locally principal component analysis based on L1-norm maximisation,
IET-IPR(9), No. 2, 2015, pp. 91-96.
DOI Link
1503
data handling
BibRef
Hintermüller, M.[Michael],
Wu, T.[Tao],
Robust Principal Component Pursuit via Inexact Alternating Minimization
on Matrix Manifolds,
JMIV(51), No. 3, March 2015, pp. 361-377.
WWW Link.
1504
BibRef
Wang, R.,
Nie, F.,
Yang, X.,
Gao, F.,
Yao, M.,
Robust 2DPCA With Non-greedy L_1-Norm Maximization for Image Analysis,
Cyber(45), No. 5, May 2015, pp. 1108-1112.
1505
Databases
BibRef
Ju, F.[Fujiao],
Sun, Y.F.[Yan-Feng],
Gao, J.B.[Jun-Bin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Image Outlier Detection and Feature Extraction via L1-Norm-Based 2D
Probabilistic PCA,
IP(24), No. 12, December 2015, pp. 4834-4846.
IEEE DOI
1512
Bayes methods
BibRef
Yadav, S.K.,
Sinha, R.,
Bora, P.K.,
An Efficient SVD Shrinkage for Rank Estimation,
SPLetters(22), No. 12, December 2015, pp. 2406-2410.
IEEE DOI
1512
estimation theory
BibRef
Wang, J.,
Generalized 2-D Principal Component Analysis by Lp-Norm for Image
Analysis,
Cyber(46), No. 3, March 2016, pp. 792-803.
IEEE DOI
1602
Algorithm design and analysis
BibRef
Oh, T.H.[Tae-Hyun],
Tai, Y.W.[Yu-Wing],
Bazin, J.C.[Jean-Charles],
Kim, H.W.[Hyeong-Woo],
Kweon, I.S.[In So],
Partial Sum Minimization of Singular Values in Robust PCA: Algorithm
and Applications,
PAMI(38), No. 4, April 2016, pp. 744-758.
IEEE DOI
1603
BibRef
Earlier: A1, A4, A2, A3, A5:
Partial Sum Minimization of Singular Values in RPCA for Low-Level
Vision,
ICCV13(145-152)
IEEE DOI
1403
Approximation methods.
Nuclear Norm
BibRef
Oh, T.H.[Tae-Hyun],
Matsushita, Y.[Yasuyuki],
Tai, Y.W.[Yu-Wing],
Kweon, I.S.[In So],
Fast Randomized Singular Value Thresholding for Low-Rank Optimization,
PAMI(40), No. 2, February 2018, pp. 376-391.
IEEE DOI
1801
BibRef
Earlier:
Fast randomized Singular Value Thresholding for Nuclear Norm
Minimization,
CVPR15(4484-4493)
IEEE DOI
1510
Acceleration, Complexity theory,
Matrix decomposition, Minimization, Optimization, Sparse matrices,
robust principal component analysis
BibRef
He, X.F.[Xiao-Fei],
Zhang, C.Y.[Chi-Yuan],
Zhang, L.J.[Li-Jun],
Li, X.L.[Xue-Long],
A-Optimal Projection for Image Representation,
PAMI(38), No. 5, May 2016, pp. 1009-1015.
IEEE DOI
1604
design of experiments
BibRef
Wang, J.H.[Jian-Hong],
Zhang, P.Z.[Pin-Zheng],
Luo, L.M.[Lin-Min],
Nonnegative Component Representation with Hierarchical Dictionary
Learning Strategy for Action Recognition,
IEICE(E99-D), No. 4, April 2016, pp. 1259-1263.
WWW Link.
1604
mid-level representation based on nonnegative matrix factorization.
BibRef
Keeling, S.L.[Stephen L.],
Kunisch, K.[Karl],
Robust L1 Approaches to Computing the Geometric Median and Principal
and Independent Components,
JMIV(56), No. 1, September 2016, pp. 99-124.
WWW Link.
1605
BibRef
da Silva, A.P.,
Comon, P.,
de Almeida, A.L.F.,
A Finite Algorithm to Compute Rank-1 Tensor Approximations,
SPLetters(23), No. 7, July 2016, pp. 959-963.
IEEE DOI
1608
singular value decomposition
BibRef
Tichavský, P.,
Phan, A.H.,
Cichocki, A.,
Partitioned Alternating Least Squares Technique for Canonical
Polyadic Tensor Decomposition,
SPLetters(23), No. 7, July 2016, pp. 993-997.
IEEE DOI
1608
convergence of numerical methods
BibRef
Xing, H.J.[Hong-Jie],
Wang, X.Z.[Xi-Zhao],
Selective ensemble of SVDDs with Renyi entropy based diversity
measure,
PR(61), No. 1, 2017, pp. 185-196.
Elsevier DOI
1705
One-class classification
BibRef
Kviatkovsky, I.,
Gabel, M.,
Rivlin, E.,
Shimshoni, I.[Ilan],
On the Equivalence of the LC-KSVD and the D-KSVD Algorithms,
PAMI(39), No. 2, February 2017, pp. 411-416.
IEEE DOI
1702
Algorithm design and analysis
BibRef
Liu, Y.,
Gao, Q.,
Miao, S.,
Gao, X.,
Nie, F.,
Li, Y.,
A Non-Greedy Algorithm for L1-Norm LDA,
IP(26), No. 2, February 2017, pp. 684-695.
IEEE DOI
1702
face recognition
BibRef
Dumitrescu, B.,
Irofti, P.,
Regularized K-SVD,
SPLetters(24), No. 3, March 2017, pp. 309-313.
IEEE DOI
1702
Approximation algorithms
BibRef
Wang, Q.Q.[Qian-Qian],
Gao, Q.X.[Quan-Xue],
Gao, X.B.[Xin-Bo],
Nie, F.P.[Fei-Ping],
Optimal mean two-dimensional principal component analysis with F-norm
minimization,
PR(68), No. 1, 2017, pp. 286-294.
Elsevier DOI
1704
Dimensionality reduction
BibRef
Ye, Q.,
Zhao, H.,
Fu, L.,
Gao, S.,
Underlying Connections Between Algorithms for Nongreedy LDA-L1,
IP(27), No. 5, May 2018, pp. 2557-2559.
IEEE DOI
1804
Algorithm design and analysis, Indexes, Internet of Things,
Linear discriminant analysis, Mobile communication, Upper bound,
improved L1-norm linear discriminant analysis (ILDA-L1)
BibRef
Gao, Q.,
Ma, L.,
Liu, Y.,
Gao, X.,
Nie, F.,
Angle 2DPCA: A New Formulation for 2DPCA,
Cyber(48), No. 5, May 2018, pp. 1672-1678.
IEEE DOI
1804
Covariance matrices, Feature extraction, Image reconstruction,
Linear programming, Measurement, Principal component analysis,
dimensionality reduction
BibRef
Silva, D.G.,
Attux, R.,
Simulated Annealing for Independent Component Analysis Over Galois
Fields,
SPLetters(25), No. 4, April 2018, pp. 516-520.
IEEE DOI
1804
Galois fields, combinatorial mathematics,
computational complexity, entropy,
finite fields
BibRef
Miao, J.,
Cheng, G.,
Cai, Y.,
Xia, J.,
Approximate Joint Singular Value Decomposition Algorithm Based on
Givens-Like Rotation,
SPLetters(25), No. 5, May 2018, pp. 620-624.
IEEE DOI
1805
Hermitian matrices, approximation theory,
blind source separation, matrix algebra,
joint singular value decomposition
BibRef
Shang, F.H.[Fan-Hua],
Cheng, J.[James],
Liu, Y.Y.[Yuan-Yuan],
Luo, Z.Q.[Zhi-Quan],
Lin, Z.C.[Zhou-Chen],
Bilinear Factor Matrix Norm Minimization for Robust PCA:
Algorithms and Applications,
PAMI(40), No. 9, September 2018, pp. 2066-2080.
IEEE DOI
1808
Minimization, Sparse matrices, Robustness,
Principal component analysis, Algorithm design and analysis,
alternating direction method of multipliers (ADMM)
BibRef
Smallman, L.[Luke],
Artemiou, A.[Andreas],
Morgan, J.[Jennifer],
Sparse Generalised Principal Component Analysis,
PR(83), 2018, pp. 443-455.
Elsevier DOI
1808
Dimension reduction, PCA, Text mining, Exponential family
BibRef
Vaswani, N.,
Chi, Y.,
Bouwmans, T.,
Rethinking PCA for Modern Data Sets: Theory, Algorithms, and
Applications,
PIEEE(106), No. 8, August 2018, pp. 1274-1276.
IEEE DOI
1808
Special issues and sections, Principal component analysis,
Statistical analysis, Algorithm design and analysis
BibRef
Johnstone, I.M.,
Paul, D.,
PCA in High Dimensions: An Orientation,
PIEEE(106), No. 8, August 2018, pp. 1277-1292.
IEEE DOI
1808
Eigenvalues and eigenfunctions, Covariance matrices,
Principal component analysis, Statistical analysis, Estimation,
Tracy-Widom law
BibRef
Balzano, L.,
Chi, Y.,
Lu, Y.M.,
Streaming PCA and Subspace Tracking: The Missing Data Case,
PIEEE(106), No. 8, August 2018, pp. 1293-1310.
IEEE DOI
1808
Principal component analysis, Signal processing algorithms,
Signal processing, Radar tracking, Statistical analysis,
subspace and low-rank models
BibRef
Zou, H.,
Xue, L.,
A Selective Overview of Sparse Principal Component Analysis,
PIEEE(106), No. 8, August 2018, pp. 1311-1320.
IEEE DOI
1808
Principal component analysis, Statistical analysis,
Covariance matrices, Dimensionality reduction, Sparse matrices,
statistical learning
BibRef
Wu, S.X.,
Wai, H.,
Li, L.,
Scaglione, A.,
A Review of Distributed Algorithms for Principal Component Analysis,
PIEEE(106), No. 8, August 2018, pp. 1321-1340.
IEEE DOI
1808
Principal component analysis, Signal processing algorithms,
Distributed databases, Statistical analysis,
radar signal processing
BibRef
Zare, A.,
Ozdemir, A.,
Iwen, M.A.,
Aviyente, S.,
Extension of PCA to Higher Order Data Structures: An Introduction to
Tensors, Tensor Decompositions, and Tensor PCA,
PIEEE(106), No. 8, August 2018, pp. 1341-1358.
IEEE DOI
1808
Tensile stress, Principal component analysis,
Dimensionality reduction, Matrix decomposition,
tensor PCA
BibRef
Vaswani, N.,
Narayanamurthy, P.,
Static and Dynamic Robust PCA and Matrix Completion: A Review,
PIEEE(106), No. 8, August 2018, pp. 1359-1379.
IEEE DOI
1808
Principal component analysis, Statistical analysis,
Sparse matrices, Matrix decomposition, Dimensionality reduction,
robust subspace tracking
BibRef
Lerman, G.,
Maunu, T.,
An Overview of Robust Subspace Recovery,
PIEEE(106), No. 8, August 2018, pp. 1380-1410.
IEEE DOI
1808
Robustness, Principal component analysis, Data models,
Statistical analysis, Analytical models, Matrix decomposition,
Unsupervised learning
BibRef
Ma, S.,
Aybat, N.S.,
Efficient Optimization Algorithms for Robust Principal Component
Analysis and Its Variants,
PIEEE(106), No. 8, August 2018, pp. 1411-1426.
IEEE DOI
1808
Principal component analysis, Sparse matrices, Robustness,
Optimization, Convergence, Probability, Statistical analysis,
? -stationary solution
BibRef
Bouwmans, T.,
Javed, S.,
Zhang, H.,
Lin, Z.,
Otazo, R.,
On the Applications of Robust PCA in Image and Video Processing,
PIEEE(106), No. 8, August 2018, pp. 1427-1457.
IEEE DOI
1808
Robustness, Principal component analysis,
Statistical analysis, Sparse matrices, Image processing,
3-D computer vision
BibRef
Yazdi, S.V.[Saeed Varasteh],
Douzal-Chouakria, A.[Ahlame],
Time warp invariant kSVD: Sparse coding and dictionary learning for
time series under time warp,
PRL(112), 2018, pp. 1-8.
Elsevier DOI
1809
SVD, Sparse coding, Dictionary learning, Time series, Time warping
BibRef
Schnass, K.,
Average Performance of Orthogonal Matching Pursuit (OMP) for Sparse
Approximation,
SPLetters(25), No. 12, December 2018, pp. 1865-1869.
IEEE DOI
1812
BibRef
And:
Corrections:
SPLetters(26), No. 10, October 2019, pp. 1566-1567.
IEEE DOI
1909
approximation theory, iterative methods, signal processing,
time-frequency analysis, orthogonal matching pursuit, OMP,
decaying coefficients
BibRef
Tarzanagh, D.A.[Davoud Ataee],
Michailidis, G.[George],
Fast Randomized Algorithms for t-Product Based Tensor Operations and
Decompositions with Applications to Imaging Data,
SIIMS(11), No. 4, 2018, pp. 2629-2664.
DOI Link
1901
BibRef
Hovhannisyan, V.[Vahan],
Panagakis, Y.[Yannis],
Parpas, P.[Panos],
Zafeiriou, S.P.[Stefanos P.],
Fast Multilevel Algorithms for Compressive Principal Component
Pursuit,
SIIMS(12), No. 1, 2019, pp. 624-649.
DOI Link
1904
BibRef
Earlier:
Multilevel Approximate Robust Principal Component Analysis,
Matrix-Tensor17(536-544)
IEEE DOI
1802
Approximation algorithms, Computational modeling,
Matrix decomposition, Optimization, Principal component analysis,
Sparse matrices
BibRef
Mo, D.M.[Dong-Mei],
Lai, Z.H.[Zhi-Hui],
Wong, W.K.[Wai-Keung],
Locally Joint Sparse Marginal Embedding for Feature Extraction,
MultMed(21), No. 12, December 2019, pp. 3038-3052.
IEEE DOI
1912
Code:
WWW Link. Feature extraction, Sparse matrices,
Linear discriminant analysis, Principal component analysis, robustness
BibRef
Machidon, A.L.[Alina L.],
Machidon, O.M.[Octavian M.],
Ciobanu, C.B.[Catalin B.],
Ogrutan, P.L.[Petre L.],
Accelerating a Geometrical Approximated PCA Algorithm Using AVX2 and
CUDA,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Kim, C.[Cheolmin],
Klabjan, D.[Diego],
A Simple and Fast Algorithm for L1-Norm Kernel PCA,
PAMI(42), No. 8, August 2020, pp. 1842-1855.
IEEE DOI
2007
Principal component analysis, Kernel, Matrix decomposition,
Convergence, Anomaly detection, Loading, Sparse matrices,
outlier detection
BibRef
Rontogiannis, A.A.,
Giampouras, P.V.,
Koutroumbas, K.D.,
Online Reweighted Least Squares Robust PCA,
SPLetters(27), 2020, pp. 1340-1344.
IEEE DOI
2008
Sparse matrices, Signal processing algorithms, Minimization,
Linear programming, Matrix decomposition, Robustness,
robust PCA
BibRef
Rusu, C.[Cristian],
An Iterative Coordinate Descent Algorithm to Compute Sparse Low-Rank
Approximations,
SPLetters(29), 2022, pp. 249-253.
IEEE DOI
2202
Signal processing algorithms, Optimization,
Approximation algorithms, Principal component analysis,
low-rank approximation
BibRef
Salloum, R.[Ronald],
Kuo, C.-.C.J.[C.-C. Jay],
cPCA++: An efficient method for contrastive feature learning,
PR(124), 2022, pp. 108378.
Elsevier DOI
2203
PCA, Contrastive PCA, Feature learning, Dimensionality reduction
BibRef
Wang, W.[Wei],
Dang, Z.[Zheng],
Hu, Y.L.[Yin-Lin],
Fua, P.[Pascal],
Salzmann, M.[Mathieu],
Robust Differentiable SVD,
PAMI(44), No. 9, September 2022, pp. 5472-5487.
IEEE DOI
2208
Covariance matrices, Eigenvalues and eigenfunctions, Training,
Explosions, Decorrelation, Taylor series,
taylor expansion
BibRef
Song, Y.[Yue],
Sebe, N.[Nicu],
Wang, W.[Wei],
Orthogonal SVD Covariance Conditioning and Latent Disentanglement,
PAMI(45), No. 7, July 2023, pp. 8773-8786.
IEEE DOI
2306
BibRef
Earlier:
Improving Covariance Conditioning of the SVD Meta-layer by
Orthogonality,
ECCV22(XXIV:356-372).
Springer DOI
2211
Covariance matrices, Training, Decorrelation, Matrix decomposition,
Task analysis, Eigenvalues and eigenfunctions, Neural networks,
unsupervised latent disentanglement
BibRef
Moon, M.[Minam],
Hur, I.[Injo],
Moon, S.[Sunghwan],
Singular Value Decomposition of the Wave Forward Operator with Radial
Variable Coefficients,
SIIMS(16), No. 3, 2023, pp. 1520-1534.
DOI Link
2309
BibRef
Arashloo, S.R.[Shervin Rahimzadeh],
Large-margin multiple kernel Lp-SVDD using Frank-Wolfe algorithm for
novelty detection,
PR(148), 2024, pp. 110189.
Elsevier DOI
2402
L-SVDD, Large-margin learning, Convex optimisation,
Frank-Wolfe algorithm, Multiple kernel learning, Novelty detection
BibRef
Geng, X.Y.[Xiao-Yu],
Guo, Q.[Qiang],
Hui, S.[Shuaixiong],
Yang, M.[Ming],
Zhang, C.M.[Cai-Ming],
Tensor robust PCA with nonconvex and nonlocal regularization,
CVIU(243), 2024, pp. 104007.
Elsevier DOI Code:
WWW Link.
2405
Low-rank property, Nonconvex surrogate,
Nonlocal self-similarity, Tensor robust PCA
BibRef
Ghosh, T.[Tomojit],
Kirby, M.[Michael],
Linear Centroid Encoder for Supervised Principal Component Analysis,
PR(155), 2024, pp. 110634.
Elsevier DOI
2408
Supervised Linear Centroid-Encoder, Centroid-Encoder,
Principal component analysis (PCA), Supervised PCA,
Supervised dimensionality reduction
BibRef
Rajpurohit, P.[Pushpendra],
Arora, A.[Aakash],
Babu, P.[Prabhu],
A Block Minorization-Maximization Algorithm for Row-Sparse Principal
Component Analysis,
SPLetters(31), 2024, pp. 1905-1909.
IEEE DOI
2408
Covariance matrices, Sparse matrices,
Principal component analysis, Signal processing algorithms,
sparse principal component analysis
BibRef
Fang, S.[Shun],
Xu, Z.Q.[Zheng-Qin],
Wu, S.Q.[Shi-Qian],
Xie, S.L.[Shou-Lie],
Efficient Robust Principal Component Analysis via Block Krylov
Iteration and CUR Decomposition,
CVPR23(1348-1357)
IEEE DOI
2309
BibRef
Ozdemir, C.[Cagri],
Hoover, R.C.[Randy C.],
Caudle, K.[Kyle],
2DTPCA: A New Framework for Multilinear Principal Component Analysis,
ICIP21(344-348)
IEEE DOI
2201
Tensors, Image recognition, Face recognition,
Principal component analysis, Singular value decomposition,
tensor singular value decomposition
BibRef
Cai, H.Q.[Han-Qin],
Chao, Z.[Zehan],
Huang, L.X.[Long-Xiu],
Needell, D.[Deanna],
Fast Robust Tensor Principal Component Analysis via Fiber CUR
Decomposition,
RSLCV21(189-197)
IEEE DOI
2112
Tensors, Color, Computational complexity, Principal component analysis
BibRef
Zhang, M.,
Gao, Y.,
Sun, C.,
Blumenstein, M.,
Kernel Mean P Power Error Loss for Robust Two-Dimensional Singular
Value Decomposition,
ICIP19(3432-3436)
IEEE DOI
1910
2DSVD, correntropy, non-second order minimization, image clustering
BibRef
Tsingalis, I.,
Kotropoulos, C.,
A Simple Algorithm for Non-Negative Sparse Principal Component
Analysis,
ICIP19(2075-2079)
IEEE DOI
1910
sparse decompositions, non-negativity, PCA, subspace learning,
eigenvectors, eigenvalues, Oja's rule
BibRef
Xu, S.,
Zhang, X.,
Liao, S.,
A Linear Incremental Nyström Method for Online Kernel Learning,
ICPR18(2256-2261)
IEEE DOI
1812
Kernel, Matrix decomposition, Time complexity,
Singular value decomposition, Approximation algorithms,
Approximation methods
BibRef
Chen, G.,
Scalable spectral clustering with cosine similarity,
ICPR18(314-319)
IEEE DOI
1812
matrix algebra, pattern clustering, singular value decomposition,
scalable spectral clustering, cosine similarity,
Laplace equations
BibRef
Zhang, Z.,
Jiang, W.,
Li, S.,
Qin, J.,
Liu, G.,
Yan, S.,
Robust Locality-Constrained Label Consistent K-SVD by Joint Sparse
Embedding,
ICPR18(1664-1669)
IEEE DOI
1812
Dictionaries, Sparse matrices, Machine learning, Training data,
Laplace equations, Noise reduction, Encoding, classification
BibRef
Shen, M.,
Wang, R.,
A New Singular Value Decomposition Algorithm for Octonion Signal,
ICPR18(3233-3237)
IEEE DOI
1812
Noise reduction, Singular value decomposition,
Matrix decomposition, Image reconstruction, Quaternions,
Image Denoising
BibRef
Fronckova, K.[Katerina],
Prazak, P.[Pavel],
Slaby, A.[Antonin],
Singular Value Decomposition in Image Compression and Blurred Image
Restoration,
ICIAR18(62-67).
Springer DOI
1807
BibRef
Chen, H.,
Sun, Y.,
Gao, J.,
Hu, Y.,
Ju, F.,
L1-2DPCA Revisit via Optimization on Product Manifolds,
DICTA17(1-7)
IEEE DOI
1804
greedy algorithms, image classification, image reconstruction,
optimisation, principal component analysis, EM algorithm,
BibRef
Erichson, N.B.,
Brunton, S.L.,
Kutz, J.N.,
Compressed Singular Value Decomposition for Image and Video
Processing,
RSL-CV17(1880-1888)
IEEE DOI
1802
Approximation algorithms, Compressed sensing,
Eigenvalues and eigenfunctions, Image coding,
Sparse matrices
BibRef
Paradkar, M.[Mihir],
Udell, M.[Madeleine],
Graph-Regularized Generalized Low-Rank Models,
Tensor17(1921-1926)
IEEE DOI
1709
GLRM.
Convergence, Laplace equations, Linear programming,
Principal component analysis, Robustness, Sparse matrices
BibRef
Mao, M.[Minqi],
Zheng, Z.L.[Zhong-Long],
Chen, Z.Y.[Zhong-Yu],
Liu, H.W.[Hua-Wen],
He, X.W.[Xiao-Wei],
Ye, R.H.[Rong-Hua],
Two-dimensional PCA hashing and its extension,
ICPR16(1624-1629)
IEEE DOI
1705
Binary codes, Covariance matrices, Encoding, Feature extraction,
Principal component analysis, Quantization (signal), Training,
Hashing, ITQ, PCAH, Two, dimension
BibRef
Shah, S.[Sohil],
Goldstein, T.[Tom],
Studer, C.[Christoph],
Estimating Sparse Signals with Smooth Support via Convex Programming
and Block Sparsity,
CVPR16(5906-5915)
IEEE DOI
1612
BibRef
Tan, M.K.[Ming-Kui],
Xiao, S.J.[Shi-Jie],
Gao, J.B.[Jun-Bin],
Xu, D.[Dong],
van den Hengel, A.J.[Anton J.],
Shi, Q.F.[Qin-Feng],
Proximal Riemannian Pursuit for Large-Scale Trace-Norm Minimization,
CVPR16(5877-5886)
IEEE DOI
1612
BibRef
Lu, J.H.[Jian-Hua],
Robust two-dimensional principal component analysis via alternating
optimization,
ICIP13(340-344)
IEEE DOI
1402
Covariance matrices
BibRef
Li, L.[Lai],
Liu, G.C.[Guang-Can],
Liu, Q.S.[Qing-Shan],
Advancing Iterative Quantization Hashing Using Isotropic Prior,
MMMod16(II: 174-184).
Springer DOI
1601
BibRef
Gerardo de la Fraga, L.,
A very fast procedure to calculate the smallest singular value,
ICAPR15(1-4)
IEEE DOI
1511
computer vision
BibRef
Azimi-Sadjadi, M.R.[Mahmood R.],
Kopacz, J.[Justin],
Klausner, N.[Nick],
K-SVD dictionary learning using a fast OMP with applications,
ICIP14(1599-1603)
IEEE DOI
1502
Detectors
BibRef
Goncalves, H.[Hugo],
Correia, M.[Miguel],
Li, X.[Xin],
Sankaranarayanan, A.[Aswin],
Tavares, V.[Vitor],
DALM-SVD: Accelerated sparse coding through singular value
decomposition of the dictionary,
ICIP14(4907-4911)
IEEE DOI
1502
Convergence
BibRef
Thongkamwitoon, T.[Thirapiroon],
Muammar, H.[Hani],
Dragotti, P.L.[Pier Luigi],
Robust image recapture detection using a K-SVD learning approach to
train dictionaries of edge profiles,
ICIP14(5317-5321)
IEEE DOI
1502
Cameras
BibRef
Podosinnikova, A.[Anastasia],
Setzer, S.[Simon],
Hein, M.[Matthias],
Robust PCA:
Optimization of the Robust Reconstruction Error Over the Stiefel Manifold,
GCPR14(121-131).
Springer DOI
1411
BibRef
Kim, H.W.J.[Hyun-Woo J.],
Bendlin, B.B.[Barbara B.],
Adluru, N.[Nagesh],
Collins, M.D.[Maxwell D.],
Chung, M.K.[Moo K.],
Johnson, S.C.[Sterling C.],
Davidson, R.J.[Richard J.],
Singh, V.[Vikas],
Multivariate General Linear Models (MGLM) on Riemannian Manifolds
with Applications to Statistical Analysis of Diffusion Weighted
Images,
CVPR14(2705-2712)
IEEE DOI
1409
Code, MGLM.
WWW Link. Multivariate general linear models
BibRef
Yamauchi, Y.,
Kanade, T.,
Fujiyoshi, H.,
Classifier Introducing Transition Likelihood Model Based on
Quantization Residual,
ACPR13(272-277)
IEEE DOI
1408
binary codes
BibRef
Zhang, F.L.[Fan-Long],
Qian, J.J.[Jian-Jun],
Yang, J.[Jian],
Nuclear Norm Based 2DPCA,
ACPR13(74-78)
IEEE DOI
1408
face recognition
BibRef
Chen, Y.J.[Yu-Jin],
Nießner, M.[Matthias],
Dai, A.[Angela],
4DContrast: Contrastive Learning with Dynamic Correspondences for 3D
Scene Understanding,
ECCV22(XXXII:543-560).
Springer DOI
2211
BibRef
Hou, J.[Ji],
Graham, B.[Benjamin],
Nießner, M.[Matthias],
Xie, S.N.[Sai-Ning],
Exploring Data-Efficient 3D Scene Understanding with Contrastive
Scene Contexts,
CVPR21(15582-15592)
IEEE DOI
2111
Annotations,
Semantics, Training data, Benchmark testing
BibRef
Xie, S.N.[Sai-Ning],
Feng, J.S.[Jia-Shi],
Yan, S.C.[Shui-Cheng],
Lu, H.T.[Hong-Tao],
Perception Preserving Projections,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Jiang, B.[Bo],
Ding, C.[Chris],
Luo, B.[Bio],
Tang, J.[Jin],
Graph-Laplacian PCA: Closed-Form Solution and Robustness,
CVPR13(3492-3498)
IEEE DOI
1309
Laplacian; PCA; graph; robustness
BibRef
Bassu, D.,
Izmailov, R.,
McIntosh, A.,
Ness, L.,
Shallcross, D.,
Centralized multi-scale singular value decomposition for feature
construction in LIDAR image classification problems,
AIPR12(1-6)
IEEE DOI
1307
computational geometry
BibRef
Kimura, A.[Akisato],
Sakano, H.[Hitoshi],
Kameoka, H.[Hirokazu],
Sugiyama, M.[Masashi],
Designing various component analysis at will,
ICPR12(2959-2962).
WWW Link.
1302
Generic Component Analysis (PCA, ICA, ...)
BibRef
Hidaka, A.[Akinori],
Kurita, T.[Takio],
Nonlinear Discriminant Analysis Based on Probability Estimation by
Gaussian Mixture Model,
SSSPR14(133-142).
Springer DOI
1408
BibRef
Earlier:
Sparse Discriminant Analysis Based on the Bayesian Posterior
Probability Obtained by L1 Regression,
SSSPR12(648-656).
Springer DOI
1211
BibRef
Li, F.X.[Fu-Xin],
Lebanon, G.[Guy],
Sminchisescu, C.[Cristian],
Chebyshev approximations to the histogram X^2 kernel,
CVPR12(2424-2431).
IEEE DOI
1208
BibRef
Yang, Y.Q.[Yi-Qing],
Zhang, L.[Li],
Wang, S.[Sen],
Jiang, H.R.[Hong-Rui],
Murphy, C.J.[Chris J.],
Hoeve, J.V.[Jim Ver],
A multi-affine model for tensor decomposition,
ITCVPR11(1348-1355).
IEEE DOI
1201
SVD for tensor decomposition.
BibRef
Li, H.Y.[Hong-Yu],
Zhang, L.[Lin],
Dynamic Subspace Update with Incremental Nyström Approximation,
Subspace10(384-393).
Springer DOI
1109
for eigen decomposition
BibRef
Schmidt, F.R.[Frank R.],
Ackermann, H.[Hanno],
Rosenhahn, B.[Bodo],
Multilinear Model Estimation with L2-Regularization,
DAGM11(81-90).
Springer DOI
1109
BibRef
Xu, W.P.[Wei-Ping],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Determining the Cause of Negative Dissimilarity Eigenvalues,
CAIP11(I: 589-597).
Springer DOI
1109
BibRef
Mu, Y.D.[Ya-Dong],
Dong, J.[Jian],
Yuan, X.T.[Xiao-Tong],
Yan, S.C.[Shui-Cheng],
Accelerated low-rank visual recovery by random projection,
CVPR11(2609-2616).
IEEE DOI
1106
computing the R-PCA efficiently
BibRef
Abrams, A.[Austin],
Feder, E.[Emily],
Pless, R.[Robert],
Exploratory analysis of time-lapse imagery with fast subset PCA,
WACV11(336-343).
IEEE DOI
1101
Quickly compute PCA on a subset of the date (spatial and temporal subsets).
BibRef
Kwatra, V.[Vivek],
Han, M.[Mei],
Fast Covariance Computation and Dimensionality Reduction for Sub-window
Features in Images,
ECCV10(II: 156-169).
Springer DOI
1009
BibRef
Chen, W.[Wei],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Tao, D.C.[Da-Cheng],
A convergent solution to two dimensional linear discriminant analysis,
ICIP09(4133-4136).
IEEE DOI
0911
BibRef
Feng, J.Z.[Jian-Zhou],
Song, L.[Li],
Yang, X.K.[Xiao-Kang],
Zhang, W.J.[Wen-Jun],
Learning dictionary via subspace segmentation for sparse representation,
ICIP11(1245-1248).
IEEE DOI
1201
BibRef
Earlier:
Sub clustering K-SVD:
Size variable dictionary learning for sparse representations,
ICIP09(2149-2152).
IEEE DOI
0911
BibRef
Cheng, P.[Peng],
Li, W.Q.[Wan-Qing],
Ogunbona, P.[Philip],
Greedy Approximation of Kernel PCA by Minimizing the Mapping Error,
DICTA09(303-308).
IEEE DOI
0912
BibRef
Kong, X.Y.[Xiang-Yu],
Hu, C.H.[Chang-Hua],
Han, C.Z.[Chong-Zhao],
The Performance Analysis of the Self-Stabilizing Douglas's MCA
Algorithm,
CISP09(1-5).
IEEE DOI
0910
smallest eigenvalue of the correlation matrix of input data.
BibRef
Yang, Z.R.[Zhi-Rong],
Laaksonen, J.T.[Jorma T.],
Informative Laplacian Projection,
SCIA09(359-368).
Springer DOI
0906
constructing the similarity matrix for eigendecomposition
BibRef
Olsson, C.[Carl],
Oskarsson, M.[Magnus],
A Convex Approach to Low Rank Matrix Approximation with Missing Data,
SCIA09(301-309).
Springer DOI
0906
Formulate problems as minimization problem to solve using SVD, which does not
work well with missing data.
BibRef
Mauthner, T.[Thomas],
Kluckner, S.[Stefan],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Efficient Object Detection Using Orthogonal NMF Descriptor Hierarchies,
DAGM10(212-221).
Springer DOI
1009
NMF: Non-negative Matrix Factorizations
BibRef
Storer, M.[Markus],
Roth, P.M.[Peter M.],
Urschler, M.[Martin],
Bischof, H.[Horst],
Fast-Robust PCA,
SCIA09(430-439).
Springer DOI
0906
BibRef
Lucini, M.M.[María M.],
Frery, A.C.[Alejandro C.],
Robust Principal Components for Hyperspectral Data Analysis,
ICIAR09(126-135).
Springer DOI
0907
BibRef
Mazhar, R.[Raazia],
Gader, P.D.[Paul D.],
EK-SVD: Optimized dictionary design for sparse representations,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Nguyen, N.[Nam],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Boosting performance for 2D Linear Discriminant Analysis via regression,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Andriyashin, A.[Alexey],
Parkkinen, J.[Jussi],
Jaaskelainen, T.[Timo],
Illuminant dependence of PCA, NMF and NTF in spectral color imaging,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Gai, J.D.[Jia-Ding],
Li, Y.[Yong],
Stevenson, R.L.[Robert L.],
Robust Bayesian PCA with Student's t-distribution:
The variational inference approach,
ICIP08(1340-1343).
IEEE DOI
0810
BibRef
And:
An EM algorithm for robust Bayesian PCA with student's t-distribution,
ICIP08(2672-2675).
IEEE DOI
0810
BibRef
Thorstensen, N.[Nicolas],
Keriven, R.[Renaud],
Non-rigid Shape Matching Using Geometry and Photometry,
ACCV09(III: 644-654).
Springer DOI
0909
BibRef
Thorstensen, N.[Nicolas],
Segonne, F.[Florent],
Keriven, R.[Renaud],
Pre-image as Karcher Mean Using Diffusion Maps:
Application to Shape and Image Denoising,
SSVM09(721-732).
Springer DOI
0906
BibRef
Earlier:
Normalization and preimage problem in gaussian kernel PCA,
ICIP08(741-744).
IEEE DOI
0810
BibRef
Park, M.S.[Myoung Soo],
Choi, J.Y.[Jin Young],
Novel Incremental Principal Component Analysis with Improved
Performance,
SSPR08(592-601).
Springer DOI
0812
BibRef
Ding, C.[Chris],
Huang, H.[Heng],
Luo, D.[Dijun],
Tensor reduction error analysis:
Applications to video compression and classification,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Ma, Y.[Yong],
Ijiri, Y.[Yoshihisa],
Lao, S.H.[Shi-Hong],
Kawade, M.[Masato],
Re-weighting Linear Discrimination Analysis under ranking loss,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Shi, Y.G.[Yong-Gang],
Lai, R.J.[Rong-Jie],
Krishna, S.[Sheila],
Sicotte, N.[Nancy],
Dinov, I.D.[Ivo D.],
Toga, A.W.[Arthur W.],
Anisotropic Laplace-Beltrami eigenmaps:
Bridging Reeb graphs and skeletons,
MMBIA08(1-7).
IEEE DOI
0806
BibRef
di Martino, F.[Ferdinando],
Loia, V.[Vincenzo],
Sessa, S.[Salvatore],
A Fuzzy Hybrid Method for Image Decomposition Problem,
EvoIASP08(xx-yy).
Springer DOI
0804
BibRef
Takahashi, T.[Tomokazu],
Lina,
Ide, I.[Ichiro],
Mekada, Y.[Yoshito],
Murase, H.[Hiroshi],
Interpolation Between Eigenspaces Using Rotation in Multiple Dimensions,
ACCV07(II: 774-783).
Springer DOI
0711
Like rotation hyper-ellipsoid in high dimensional space.
BibRef
Muñoz, A.[Alberto],
González, J.[Javier],
Functional Learning of Kernels for Information Fusion Purposes,
CIARP08(277-283).
Springer DOI
0809
BibRef
Earlier:
Joint Diagonalization of Kernels for Information Fusion,
CIARP07(556-563).
Springer DOI
0711
BibRef
Lewis, J.P.,
Mostafavi, I.[Iman],
Sosinsky, G.[Gina],
Martone, M.E.[Maryanne E.],
West, R.[Ruth],
Shape Priors by Kernel Density Modeling of PCA Residual Structure,
ICIP07(IV: 333-336).
IEEE DOI
0709
BibRef
Melenchón, J.[Javier],
Martínez, E.[Elisa],
Efficiently Downdating, Composing and Splitting Singular Value
Decompositions Preserving the Mean Information,
IbPRIA07(II: 436-443).
Springer DOI
0706
BibRef
Franc, V.[Vojtech],
Hlavác, V.[Václav],
Greedy Kernel Principal Component Analysis,
CogVis03(87-105).
Springer DOI
0310
BibRef
Yan, S.C.[Shui-Cheng],
Tang, X.[Xiaoou],
Trace Quotient Problems Revisited,
ECCV06(II: 232-244).
Springer DOI
0608
BibRef
Yan, S.C.[Shui-Cheng],
Tang, X.[Xiaoou],
Largest-Eigenvalue-Theory for Incremental Principal Component Analysis,
ICIP05(I: 1181-1184).
IEEE DOI
0512
BibRef
Yang, A.Y.[Allen Y.],
Rao, S.[Shankar],
Wagner, A.[Andrew],
Ma, Y.[Yi],
Fossum, R.M.[Robert M.],
Hilbert Functions and Applications to the Estimation of Subspace
Arrangements,
ICCV05(I: 158-165).
IEEE DOI
0510
e.g. factorization and eigen models.
BibRef
Wang, H.C.[Hong-Cheng],
Ahuja, N.[Narendra],
A Tensor Approximation Approach to Dimensionality Reduction,
IJCV(76), No. 3, March 2008, pp. 217-229.
Springer DOI
0801
BibRef
Earlier:
Rank-R Approximation of Tensors: Using Image-as-Matrix Representation,
CVPR05(II: 346-353).
IEEE DOI
0507
BibRef
Ghodsi, A.[Ali],
Huang, J.Y.[Jia-Yuan],
Southey, F.[Finnegan],
Schuurmans, D.[Dale],
Tangent-Corrected Embedding,
CVPR05(I: 518-525).
IEEE DOI
0507
Use prior info from the sequence in PCA like methods.
BibRef
Mühlich, M.[Matthias],
Mester, R.[Rudolf],
Optimal Estimation of Homogeneous Vectors,
SCIA05(322-332).
Springer DOI
0506
BibRef
Mühlich, M.[Matthias],
Mester, R.[Rudolf],
Unbiased Errors-In-Variables Estimation Using Generalized Eigensystem
Analysis,
SMVP04(38-49).
Springer DOI
0505
BibRef
Yuan, X.T.[Xiao-Tong],
Zhu, H.W.[Hong-Wen],
Yang, S.T.[Shu-Tang],
A Robust Framework For Eigenspace Image Reconstruction,
WACV05(I: 54-59).
IEEE DOI
0502
Two step PCA.
BibRef
Wilczkowiak, M.,
Sturm, P.F.,
Boyer, E.,
The Analysis of Ambiguous Solutions in Linear Systems and its
Application to Computer Vision,
BMVC03(xx-yy).
HTML Version.
0409
Analysis of problems where degenerate cases are easy to detect.
Based on SVD analysis.
BibRef
Gribonval, R.,
Nielsen, M.,
Sparse decompositions in 'incoherent' dictionaries,
ICIP03(I: 33-36).
IEEE DOI
0312
BibRef
Tropp, J.A.,
Gilbert, A.C.,
Muthukrishnan, S.,
Strauss, M.J.,
Improved sparse approximation over quasi-incoherent dictionaries,
ICIP03(I: 37-40).
IEEE DOI
0312
BibRef
Rozell, C.[Christopher],
Johnson, D.[Don],
Baraniuk, R.G.[Richard G.],
Olshausen, B.A.[Bruno A.],
Locally Competitive Algorithms for Sparse Approximation,
ICIP07(IV: 169-172).
IEEE DOI
0709
BibRef
Olshausen, B.A.,
Learning sparse, overcomplete representations of time-varying natural
images,
ICIP03(I: 41-44).
IEEE DOI
0312
BibRef
Vermaak, J.,
Perez, P.,
Constrained subspace modelling,
CVPR03(II: 106-113).
IEEE DOI
0307
Probabilistic analysis of PCA.
BibRef
Li, Y.W.[Yong-Win],
Xu, L.Q.[Li-Qun],
Morphett, J.,
Jacobs, R.,
An integrated algorithm of incremental and robust PCA,
ICIP03(I: 245-248).
IEEE DOI
0312
BibRef
Pei, S.C.[Soo-Chang],
Chang, J.H.[Ja-Han],
Ding, J.J.[Jian-Jiun],
Quaternion matrix singular value decomposition and its applications for
color image processing,
ICIP03(I: 805-808).
IEEE DOI
0312
BibRef
Ho, J.,
Yang, M.H.[Ming-Hsuan],
Lim, J.W.[Jong-Woo],
Lee, K.C.[Kuang-Chih],
Kriegman, D.J.,
Clustering appearances of objects under varying illumination conditions,
CVPR03(I: 11-18).
IEEE DOI
0307
BibRef
Fitzgibbon, A.W.,
Zisserman, A.,
Joint manifold distance: a new approach to appearance based clustering,
CVPR03(I: 26-33).
IEEE DOI
0307
BibRef
Levin, A.[Anat],
Shashua, A.[Amnon],
Principal Component Analysis over Continuous Subspaces and Intersection
of Half-Spaces,
ECCV02(III: 635 ff.).
Springer DOI
0205
BibRef
Pesquet-Popescu, B.,
Pesquet, J.C.,
Petropulu, A.P.,
Joint Singular Value Decomposition:
A New Tool for Separable Representation of Images,
ICIP01(II: 569-572).
IEEE DOI
0108
BibRef
Brand, M.,
Incremental Singular Value Decomposition of Uncertain Data
with Missing Values,
ECCV02(I: 707 ff.).
Springer DOI
0205
BibRef
Moghaddam, B.,
Zhou, X.[Xiang],
Factorized local appearance models,
ICPR02(III: 553-556).
IEEE DOI
0211
BibRef
Popovici, V.,
Thiran, J.P.,
PCA in autocorrelation space,
ICPR02(II: 132-135).
IEEE DOI
0211
BibRef
Chennubhotla, C.,
Jepson, A.D.,
Perceptual distance normalization for appearance detection,
ICPR04(II: 23-27).
IEEE DOI
0409
BibRef
Chennubhotla, C.[Chakra],
Jepson, A.D.[Allan D.],
Sparse PCA: Extracting Multi-scale Structure from Data,
ICCV01(I: 641-647).
IEEE DOI
0106
BibRef
Iwamura, M.,
Omachi, S.,
Aso, H.,
A Modification of Eigenvalues to Compensate Estimation Errors of
Eigenvectors,
ICPR00(Vol II: 378-381).
IEEE DOI
0009
BibRef
Wang, S.,
Xia, S.,
Self-Organizing Algorithm of Robust PCA Based on Single-Layer NN,
ICDAR97(851-854).
IEEE DOI
9708
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Faces using Invariants, Appearence models -- Eigenfaces .