Odell, P.L.[Patrick L.],
A model for dimension reduction in pattern recognition using continuous
data,
PR(11), No. 1, 1979, pp. 51-54.
Elsevier DOI
0309
BibRef
El-Sheikh, T.S.,
Wacker, A.G.,
Effect of dimensionality and estimation on the performance of gaussian
classifiers,
PR(12), No. 3, 1980, pp. 115-126.
Elsevier DOI
0309
BibRef
Kakusho, O.[Osamu],
Mizoguchi, R.[Riichiro],
A new algorithm for non-linear mapping with applications to dimension
and cluster analyses,
PR(16), No. 1, 1983, pp. 109-117.
Elsevier DOI
0309
BibRef
Saund, E.,
Dimensionality-reduction using connectionist networks,
PAMI(11), No. 3, March 1989, pp. 304-314.
IEEE DOI
0401
BibRef
Buturovic, L.J.,
Toward Bayes-optimal linear dimension reduction,
PAMI(16), No. 4, April 1994, pp. 420-424.
IEEE DOI
0401
BibRef
Earlier:
Near-optimal algorithm for dimension reduction,
ICPR92(II:401-404).
IEEE DOI
9208
BibRef
Heylen, R.[Rob],
Scheunders, P.[Paul],
Nonlinear barycentric dimensionality reduction,
ICIP10(1341-1344).
IEEE DOI
1009
BibRef
Seung, H.S.[H. Sebastian], and
Lee, D.D.[Daniel D.],
The manifold ways of perception,
Science(290), No. 5500, December 2000, pp. 2268-2269.
WWW Link.
BibRef
0012
Lotlikar, R.[Rohit],
Kothari, R.[Ravi],
Adaptive linear dimensionality reduction for classification,
PR(33), No. 2, February 2000, pp. 185-194.
Elsevier DOI
0001
BibRef
Lotlikar, R.[Rohit],
Kothari, R.[Ravi],
Fractional-Step Dimensionality Reduction,
PAMI(22), No. 6, June 2000, pp. 623-627.
IEEE DOI
0008
BibRef
Tenenbaum, J.B.,
de Silva, V., and
Langford, J.C.,
A Global Geometric Framework for Nonlinear
Dimensionality Reduction,
Science(290), No. 5500, 22 December 2000, pp. 2319-2323.
WWW Link.
WWW Link.
BibRef
0012
Wang, X.C.[Xue-Chuan],
Paliwal, K.K.[Kuldip K.],
Feature extraction and dimensionality reduction algorithms and their
applications in vowel recognition,
PR(36), No. 10, October 2003, pp. 2429-2439.
Elsevier DOI
0308
BibRef
Sharma, A.[Alok],
Paliwal, K.K.[Kuldip K.],
A new perspective to null linear discriminant analysis method and its
fast implementation using random matrix multiplication with scatter
matrices,
PR(45), No. 6, June 2012, pp. 2205-2213.
Elsevier DOI
1202
Null LDA, Small Sample Size Problem, Dimensionality Reduction
See also two-stage linear discriminant analysis for face-recognition, A.
BibRef
Rangarajan, L.[Lalitha],
Nagabhushan, P.,
Dimensionality reduction of multidimensional temporal data through
regression,
PRL(25), No. 8, June 2004, pp. 899-910.
Elsevier DOI
0405
BibRef
Bell, I.E.,
Baranoski, G.V.G.,
Reducing the dimensionality of plant spectral databases,
GeoRS(42), No. 3, March 2004, pp. 570-576.
IEEE Abstract.
0407
BibRef
Rangarajan, L.[Lalitha],
Nagabhushan, P.,
Content driven dimensionality reduction at block level in the design of
an efficient classifier for spatial multi spectral images,
PRL(25), No. 16, December 2004, pp. 1833-1844.
Elsevier DOI
0411
BibRef
Sun, Q.S.[Quan-Sen],
Liu, Z.D.[Zheng-Dong],
Heng, P.A.[Pheng-Ann],
Xia, D.S.[De-Sen],
A theorem on the generalized canonical projective vectors,
PR(38), No. 3, March 2005, pp. 449-452.
Elsevier DOI
0412
Feature fusion for character recognition.
BibRef
Donoho, D.L.[David L.],
Grimes, C.[Carrie],
Image Manifolds which are Isometric to Euclidean Space,
JMIV(23), No. 1, July 2005, pp. 5-24.
Springer DOI
0505
Analysis of ISOMap classification.
(
See also Global Geometric Framework for Nonlinear Dimensionality Reduction, A. )
BibRef
Benito, M.[Monica],
Pena, D.[Daniel],
A fast approach for dimensionality reduction with image data,
PR(38), No. 12, December 2005, pp. 2400-2408.
Elsevier DOI
0510
BibRef
Zhang, K.,
Chan, L.W.,
Dimension Reduction as a Deflation Method in ICA,
SPLetters(13), No. 1, January 2006, pp. 45-48.
IEEE DOI
0601
BibRef
Hsieh, P.F.[Pi-Fuei],
Wang, D.S.[Deng-Shiang],
Hsu, C.W.[Chia-Wei],
A Linear Feature Extraction for Multiclass Classification Problems
Based on Class Mean and Covariance Discriminant Information,
PAMI(28), No. 2, February 2006, pp. 223-235.
IEEE DOI
0601
Use pariwise accuracy criterion rather than LDA for dimensionality reduction.
BibRef
Law, M.H.C.[Martin H.C.],
Jain, A.K.[Anil K.],
Incremental Nonlinear Dimensionality Reduction by Manifold Learning,
PAMI(28), No. 3, March 2006, pp. 377-391.
IEEE DOI
0602
BibRef
Hu, Q.H.[Qing-Hua],
Yu, D.R.[Da-Ren],
Xie, Z.X.[Zong-Xia],
Information-preserving hybrid data reduction based on fuzzy-rough
techniques,
PRL(27), No. 5, 1 April 2006, pp. 414-423.
Elsevier DOI
0604
Attribute reduction, Hybrid data, Fuzzy-rough set, Information measure
BibRef
Hu, Q.H.[Qing-Hua],
Xie, Z.X.[Zong-Xia],
Yu, D.R.[Da-Ren],
Hybrid attribute reduction based on a novel fuzzy-rough model and
information granulation,
PR(40), No. 12, December 2007, pp. 3509-3521.
Elsevier DOI
0709
Numerical feature, Categorical feature, Feature selection,
Attribute reduction, Fuzzy set, Rough set, Inclusion degree
BibRef
Zhao, D.L.[De-Li],
Formulating LLE using alignment technique,
PR(39), No. 11, November 2006, pp. 2233-2235.
Elsevier DOI
0608
LLE, LTSA, Nonlinear dimensionality reduction, Manifold learning
BibRef
Lafon, S.[Stephane],
Lee, A.B.[Ann B.],
Diffusion Maps and Coarse-Graining: A Unified Framework for
Dimensionality Reduction, Graph Partitioning, and Data Set
Parameterization,
PAMI(28), No. 9, September 2006, pp. 1393-1403.
IEEE DOI
0608
BibRef
Yu, J.,
Tian, Q.,
Rui, T.,
Huang, T.S.,
Integrating Discriminant and Descriptive Information for Dimension
Reduction and Classification,
CirSysVideo(17), No. 3, March 2007, pp. 372-377.
IEEE DOI
0703
BibRef
Fu, Y.[Yun],
Huang, T.S.[Thomas S.],
Image Classification Using Correlation Tensor Analysis,
IP(17), No. 2, February 2008, pp. 226-234.
IEEE DOI
0801
Correlation-based similarity metric
in supervised multilinear discriminant subspace learning can
improve classification performance.
BibRef
Fu, Y.[Yun],
Yan, S.C.[Shui-Cheng],
Huang, T.S.[Thomas S.],
Correlation Metric for Generalized Feature Extraction,
PAMI(30), No. 12, December 2008, pp. 2229-2235.
IEEE DOI
0811
Alternative to PCA
BibRef
Yang, J.,
Yan, S.C.[Shui-Cheng],
Huang, T.S.[Thomas S.],
Ubiquitously Supervised Subspace Learning,
IP(18), No. 2, February 2009, pp. 241-249.
IEEE DOI
0901
BibRef
Fu, Y.[Yun],
Liu, M.[Ming],
Huang, T.S.[Thomas S.],
Conformal Embedding Analysis with Local Graph Modeling on the Unit
Hypersphere,
ComponentAnalysis07(1-6).
IEEE DOI
0706
project high dimensional data on unit sphere, maintain neighbor relations.
BibRef
Sanguinetti, G.[Guido],
Dimensionality Reduction of Clustered Data Sets,
PAMI(30), No. 3, March 2008, pp. 535-540.
IEEE DOI
0801
BibRef
Xue, H.[Hui],
Chen, S.C.[Song-Can],
Zeng, X.Q.[Xiao-Qin],
Classifier learning with a new locality regularization method,
PR(41), No. 5, May 2008, pp. 1496-1507.
Elsevier DOI
0711
Localized generalization error model, Stochastic sensitivity measure,
Locality regularization (LR), Classifier Learning, Pattern classification
BibRef
Guo, Y.[Yi],
Gao, J.B.[Jun-Bin],
Kwan, P.W.[Paul W.],
Twin Kernel Embedding,
PAMI(30), No. 8, August 2008, pp. 1490-1495.
IEEE DOI
0806
BibRef
Rueda, L.G.[Luis G.],
Herrera, M.[Myriam],
Linear dimensionality reduction by maximizing the Chernoff distance in
the transformed space,
PR(41), No. 10, October 2008, pp. 3138-3152.
Elsevier DOI
0808
BibRef
Earlier:
A New Approach to Multi-class Linear Dimensionality Reduction,
CIARP06(634-643).
Springer DOI
0611
BibRef
And:
A Theoretical Comparison of Two Linear Dimensionality Reduction
Techniques,
CIARP06(624-633).
Springer DOI
0611
Linear dimensionality reduction, Pattern classification, Discriminant analysis
See also On Optimal Pairwise Linear Classifiers for Normal Distributions: The D-Dimensional Case.
BibRef
Rueda, L.G.[Luis G.],
Herrera, M.[Myriam],
A theoretical comparison of two-class Fisher's and heteroscedastic
linear dimensionality reduction schemes,
PRL(29), No. 16, 1 December 2008, pp. 2092-2098.
Elsevier DOI
0811
Linear dimensionality reduction, Heteroscedastic classifiers,
Classification error
BibRef
Rueda, L.G.[Luis G.],
Oommen, B.J.[B. John],
Henriquez, C.[Claudio],
Multi-class pairwise linear dimensionality reduction using
heteroscedastic schemes,
PR(43), No. 7, July 2010, pp. 2456-2465.
Elsevier DOI
1003
BibRef
Earlier: A1, A3, A2:
Chernoff-Based Multi-class Pairwise Linear Dimensionality Reduction,
CIARP08(301-308).
Springer DOI
0809
Linear dimensionality reduction, Fisher's discriminant analysis;
Heteroscedastic discriminant analysis, Chernoff-based dimensionality
reduction, Pairwise multi-class classification
BibRef
Shen, C.H.[Chun-Hua],
Li, H.D.[Hong-Dong],
Brooks, M.J.[Michael J.],
Supervised dimensionality reduction via sequential semidefinite
programming,
PR(41), No. 12, December 2008, pp. 3644-3652.
Elsevier DOI
0810
Dimensionality reduction, Semidefinite programming;
Linear discriminant analysis, Zip codes, faces.
BibRef
Shen, C.H.[Chun-Hua],
Kim, J.[Junae],
Wang, L.[Lei],
A scalable dual approach to semidefinite metric learning,
CVPR11(2601-2608).
IEEE DOI
1106
BibRef
Scoleri, T.,
Chojnacki, W.,
Brooks, M.J.[Michael J.],
Dimensionality reduction for more stable vision parameter estimation,
IET-CV(2), No. 4, December 2008, pp. 218-227.
DOI Link
0905
BibRef
Scoleri, T.,
Post-hoc Correction Techniques for Constrained Parameter Estimation in
Computer Vision,
DICTA08(412-419).
IEEE DOI
0812
BibRef
Nie, F.P.[Fei-Ping],
Xiang, S.M.[Shi-Ming],
Song, Y.Q.[Yang-Qiu],
Zhang, C.S.[Chang-Shui],
Extracting the optimal dimensionality for local tensor discriminant
analysis,
PR(42), No. 1, January 2009, pp. 105-114.
Elsevier DOI
0809
Optimal dimensionality, Local scatter, Tensor discriminant analysis;
Alternating optimization
BibRef
Hou, C.,
Nie, F.P.[Fei-Ping],
Zhang, C.S.[Chang-Shui],
Wu, Y.,
Learning an Orthogonal and Smooth Subspace for Image Classification,
SPLetters(16), No. 4, April 2009, pp. 303-306.
IEEE DOI
0903
BibRef
Hou, C.,
Nie, F.P.,
Yi, D.,
Wu, Y.,
Efficient Image Classification via Multiple Rank Regression,
IP(22), No. 1, January 2013, pp. 340-352.
IEEE DOI
1301
BibRef
Liu, Y.[Yang],
Liu, Y.[Yan],
Chan, K.C.C.[Keith C.C.],
Dimensionality reduction for heterogeneous dataset in rushes editing,
PR(42), No. 2, February 2009, pp. 229-242.
Elsevier DOI
0810
Dimensionality reduction, Rushes editing, Manifold learning, Isometric
feature mapping, Multi-layer Isometric feature mapping
BibRef
Liu, Y.[Yang],
Liu, Y.[Yan],
Chan, K.C.C.[Keith C.C.],
Tensor-based locally maximum margin classifier for image and video
classification,
CVIU(115), No. 3, March 2011, pp. 300-309.
Elsevier DOI
1103
BibRef
Earlier:
Multilinear Isometric Embedding for visual pattern analysis,
Subspace09(212-218).
IEEE DOI
0910
Image and video classification, Local-based method, Maximum margin
classifier, Tensor representation
BibRef
Xu, D.[Dong],
Yan, S.C.[Shui-Cheng],
Lin, S.[Stephen],
Huang, T.S.[Thomas S.],
Convergent 2-D Subspace Learning With Null Space Analysis,
CirSysVideo(18), No. 12, December 2008, pp. 1753-1759.
IEEE DOI
0812
See also Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis.
BibRef
Xu, D.[Dong],
Yan, S.C.[Shui-Cheng],
Lin, S.[Stephen],
Huang, T.S.[Thomas S.],
Chang, S.F.[Shih-Fu],
Enhancing Bilinear Subspace Learning by Element Rearrangement,
PAMI(31), No. 10, October 2009, pp. 1913-1920.
IEEE DOI
0909
BibRef
Yan, S.C.[Shui-Cheng],
Xu, D.[Dong],
Lin, S.[Stephen],
Huang, T.S.[Thomas S.],
Chang, S.F.[Shih-Fu],
Element Rearrangement for Tensor-Based Subspace Learning,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Ge, S.Z.S.[Shu-Zhi Sam],
He, H.S.[Hong-Sheng],
Shen, C.Y.[Cheng-Yao],
Geometrically local embedding in manifolds for dimension reduction,
PR(45), No. 4, April 2012, pp. 1455-1470.
Elsevier DOI
1112
Geometry distance, Dimension reduction, Linear manifolds, GLE
BibRef
Yan, S.C.[Shui-Cheng],
Wang, H.[Huan],
Tu, J.,
Tang, X.[Xiaoou],
Huang, T.S.[Thomas S.],
Mode-kn Factor Analysis for Image Ensembles,
IP(18), No. 3, March 2009, pp. 670-676.
IEEE DOI
0903
BibRef
Wang, H.[Huan],
Yan, S.C.[Shui-Cheng],
Xu, D.[Dong],
Tang, X.[Xiaoou],
Huang, T.S.[Thomas S.],
Trace Ratio vs. Ratio Trace for Dimensionality Reduction,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Renard, N.,
Bourennane, S.,
Dimensionality Reduction Based on Tensor Modeling for Classification
Methods,
GeoRS(47), No. 4, April 2009, pp. 1123-1131.
IEEE DOI
0903
BibRef
Li, J.[Jun],
Hao, P.W.[Peng-Wei],
Finding representative landmarks of data on manifolds,
PR(42), No. 11, November 2009, pp. 2335-2352.
Elsevier DOI
0907
Manifold learning, Data representation, Dimensionality reduction
BibRef
Gullo, F.[Francesco],
Ponti, G.[Giovanni],
Tagarelli, A.[Andrea],
Greco, S.[Sergio],
A time series representation model for accurate and fast similarity
detection,
PR(42), No. 11, November 2009, pp. 2998-3014.
Elsevier DOI
0907
Time series data, Representation models, Similarity detection;
Dimensionality reduction, Clustering, Classification
BibRef
Hu, X.Q.[Xiao-Qin],
Yang, Z.X.[Zhi-Xia],
Jing, L.[Ling],
An incremental dimensionality reduction method on discriminant
information for pattern classification,
PRL(30), No. 15, 1 November 2009, pp. 1416-1423.
Elsevier DOI
0910
Dimensionality reduction, Pattern classification, Discriminant mapping
BibRef
Dianat, R.,
Kasaei, S.,
Dimension Reduction of Optical Remote Sensing Images via Minimum Change
Rate Deviation Method,
GeoRS(48), No. 1, January 2010, pp. 198-206.
IEEE DOI
1001
BibRef
Hsieh, P.F.[Pi-Fuei],
Chou, P.W.[Po-Wen],
Chung, H.Y.[Hsueh-Yi],
An MRF-based kernel method for nonlinear feature extraction,
IVC(28), No. 3, March 2010, pp. 502-517.
Elsevier DOI
1001
Feature extraction, Dimensionality reduction, Kernel trick, Classification
BibRef
Liang, Z.Z.[Zhi-Zheng],
Li, Y.F.[You-Fu],
A regularization framework for robust dimensionality reduction with
applications to image reconstruction and feature extraction,
PR(43), No. 4, April 2010, pp. 1269-1281.
Elsevier DOI
1002
Regularization framework, Nonlinear eigenvalue problem, SCF iteration;
Robust, Feature extraction, Image reconstruction
BibRef
Chu, D.L.[De-Lin],
Thye, G.S.[Goh Siong],
A new and fast implementation for null space based linear discriminant
analysis,
PR(43), No. 4, April 2010, pp. 1373-1379.
Elsevier DOI
1002
Dimensionality reduction, Linear discriminant analysis, Null space
based linear discriminant analysis, QR factorization, Singular value
decomposition
BibRef
Czarnowski, I.[Ireneusz],
Prototype selection algorithms for distributed learning,
PR(43), No. 6, June 2010, pp. 2292-2300.
Elsevier DOI
1003
Distributed data mining, Distributed learning, Data reduction;
Instance selection
BibRef
Lin, B.B.[Bin-Bin],
He, X.F.[Xiao-Fei],
Zhou, Y.[Yuan],
Liu, L.G.[Li-Gang],
Lu, K.[Ke],
Approximately harmonic projection:
Theoretical analysis and an algorithm,
PR(43), No. 10, October 2010, pp. 3307-3313.
Elsevier DOI
1007
Manifold learning, Dimensionality reduction, Linear projection;
Harmonic function
BibRef
Qu, H.N.[Hai-Ni],
Li, G.Z.[Guo-Zheng],
Xu, W.S.[Wei-Sheng],
An asymmetric classifier based on partial least squares,
PR(43), No. 10, October 2010, pp. 3448-3457.
Elsevier DOI
1007
Partial least squares, Dimension reduction, Classification, Unbalanced data
BibRef
Yan, S.C.[Shui-Cheng],
Hu, Y.X.[Yu-Xiao],
Xu, D.[Dong],
Zhang, H.J.[Hong-Jiang],
Zhang, B.Y.[Ben-Yu],
Cheng, Q.S.[Qian-Sheng],
Nonlinear Discriminant Analysis on Embedded Manifold,
CirSysVideo(17), No. 4, April 2007, pp. 468-477.
IEEE DOI
0705
Discriminant analysis problem.
New cluster approach to get balanced clusters.
BibRef
Lee, J.A.[John A.],
Verleysen, M.[Michel],
Scale-independent quality criteria for dimensionality reduction,
PRL(31), No. 14, 15 October 2010, pp. 2248-2257.
Elsevier DOI
1003
Dimensionality reduction, Embedding, Manifold learning, Quality assessment
BibRef
Wang, J.Z.[Jian-Zhong],
Zhang, B.[Baoxue],
Qi, M.[Miao],
Kong, J.[Jun],
Linear discriminant projection embedding based on patches alignment,
IVC(28), No. 12, December 2010, pp. 1624-1636.
Elsevier DOI
1003
Dimensionality reduction, Manifold learning, Patches alignment, Face
recognition, Maximum margin criterion
BibRef
Kaban, A.[Ata],
On the distance concentration awareness of certain data reduction
techniques,
PR(44), No. 2, February 2011, pp. 265-277.
Elsevier DOI
1011
Distance concentration, Dimensionality reduction, Feature selection;
Projection pursuit, Sure independence screening
BibRef
Zhang, P.[Peng],
Qiao, H.[Hong],
Zhang, B.[Bo],
An improved local tangent space alignment method for manifold learning,
PRL(32), No. 2, 15 January 2011, pp. 181-189.
Elsevier DOI
1101
Nonlinear dimensionality reduction, Manifold learning, Data mining
BibRef
Salamo, M.[Maria],
Lopez-Sanchez, M.[Maite],
Rough set based approaches to feature selection for Case-Based
Reasoning classifiers,
PRL(32), No. 2, 15 January 2011, pp. 280-292.
Elsevier DOI
1101
Feature selection, Dimensionality reduction, Classification
techniques, Case-Based Reasoning, Rough Set Theory
BibRef
Villegas, M.[Mauricio],
Paredes, R.[Roberto],
Dimensionality reduction by minimizing nearest-neighbor classification
error,
PRL(32), No. 4, 1 March 2011, pp. 633-639.
Elsevier DOI
1102
Dimensionality reduction, Nearest-neighbor classifier
BibRef
Shang, F.H.[Fan-Hua],
Jiao, L.C.,
Shi, J.R.[Jia-Rong],
Chai, J.[Jing],
Robust Positive semidefinite L-Isomap Ensemble,
PRL(32), No. 4, 1 March 2011, pp. 640-649.
Elsevier DOI
1102
Dimensionality reduction, Manifold learning, Nystrom approximation;
Isomap, Ensemble learning, High dimensional affine transformation
BibRef
Kim, M.Y.[Min-Young],
Pavlovic, V.[Vladimir],
Central Subspace Dimensionality Reduction Using Covariance Operators,
PAMI(33), No. 4, April 2011, pp. 657-670.
IEEE DOI
1103
BibRef
Earlier:
Dimensionality reduction using covariance operator inverse regression,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Kim, M.Y.[Min-Young],
Time-Series Dimensionality Reduction via Granger Causality,
SPLetters(19), No. 10, October 2012, pp. 611-614.
IEEE DOI
1209
BibRef
Gao, X.,
Wang, X.,
Tao, D.,
Li, X.,
Supervised Gaussian Process Latent Variable Model for Dimensionality
Reduction,
SMC-B(41), No. 2, April 2011, pp. 425-434.
IEEE DOI
1103
BibRef
Xiong, H.,
Liu, T.,
Tao, D.,
Shen, H.T.,
Dual Diversified Dynamical Gaussian Process Latent Variable Model for
Video Repairing,
IP(25), No. 8, August 2016, pp. 3626-3637.
IEEE DOI
1608
Gaussian processes
BibRef
Wu, J.,
Zhang, X.L.,
Maximum Margin Clustering Based Statistical VAD With Multiple
Observation Compound Feature,
SPLetters(18), No. 5, May 2011, pp. 283-286.
IEEE DOI
1103
BibRef
Park, H.[Heum],
Kwon, H.C.[Hyuk-Chul],
Improved Gini-Index Algorithm to Correct Feature-Selection Bias in Text
Classification,
IEICE(E94-D), No. 4, April 2011, pp. 855-865.
WWW Link.
1104
Gini-index used for splitting measure in decision tree.
BibRef
Chang, C.I.[Chein-I],
Safavi, H.[Haleh],
Progressive dimensionality reduction by transform for hyperspectral
imagery,
PR(44), No. 10-11, October-November 2011, pp. 2760-2773.
Elsevier DOI
1101
Backward progressive dimensionality reduction by PI-PP (BPDR-PIPP);
Dimensionality reduction by transform (DRT), Forward progressive
dimensionality reduction by PI-PP (FPDR-PIPP), Progressive
dimensionality reduction by projection index-based projection pursuit
(PDR-PIPP), Progressive dimensionality reduction by transform (PDRT);
Projection index-based projection pursuit (PIPP)
BibRef
Wong, W.K.,
Zhao, H.T.,
Supervised optimal locality preserving projection,
PR(45), No. 1, January 2012, pp. 186-197.
Elsevier DOI
1109
Classification, Feature extraction, Dimensionality reduction, Manifold learning
BibRef
Lai, Z.H.[Zhi-Hui],
Jin, Z.[Zhong],
Wong, W.K.,
Tangent space discriminant analysis for feature extraction,
ICIP10(3793-3796).
IEEE DOI
1009
BibRef
van de Ville, D.,
Kocher, M.,
Nonlocal Means With Dimensionality Reduction and SURE-Based Parameter
Selection,
IP(20), No. 9, September 2011, pp. 2683-2690.
IEEE DOI
1109
BibRef
Lázaro-Gredilla, M.[Miguel],
van Vaerenbergh, S.[Steven],
Lawrence, N.D.[Neil D.],
Overlapping Mixtures of Gaussian Processes for the data association
problem,
PR(45), No. 4, April 2012, pp. 1386-1395.
Elsevier DOI
1112
Gaussian Processes, Marginalized variational inference, Bayesian models
BibRef
Urtasun, R.[Raquel],
Quattoni, A.[Ariadna],
Lawrence, N.D.[Neil D.],
Darrell, T.J.[Trevor J.],
Transferring Nonlinear Representations using Gaussian Processes
with a Shared Latent Space,
CSAIL-2008-020, April 2008.
WWW Link.
BibRef
0804
Alvarez, M.A.[Mauricio A.],
Luengo, D.[David],
Lawrence, N.D.[Neil D.],
Linear Latent Force Models Using Gaussian Processes,
PAMI(35), No. 11, 2013, pp. 2693-2705.
IEEE DOI
1309
Gaussian processes.
BibRef
Geiger, A.[Andreas],
Urtasun, R.[Raquel],
Darrell, T.J.[Trevor J.],
Stiefelhagen, R.[Rainer],
Rank Priors for Continuous Non-Linear Dimensionality Reduction,
CSAIL-2008-056, September 2008.
WWW Link.
BibRef
0809
And: A1, A2, A3, Only:
CVPR09(880-887).
IEEE DOI
0906
BibRef
Zhang, Z.[Zhao],
Zhao, M.B.[Ming-Bo],
Chow, T.W.S.[Tommy W.S.],
Constrained large Margin Local Projection algorithms and extensions for
multimodal dimensionality reduction,
PR(45), No. 12, December 2012, pp. 4466-4493.
Elsevier DOI
1208
Dimensionality reduction, Large margin projection, Manifold
visualization, Pairwise constraints, Locality preservation;
Multimodality preservation, Kernel method, Pattern classification
BibRef
Orlov, N.V.[Nikita V.],
Eckley, D.M.[D. Mark],
Shamir, L.[Lior],
Goldberg, I.G.[Ilya G.],
Improving class separability using extended pixel planes:
A comparative study,
MVA(23), No. 5, September 2012, pp. 1047-1058.
WWW Link.
1208
Using transforms.
BibRef
Hacine-Gharbi, A.[Abdenour],
Ravier, P.[Philippe],
Harba, R.[Rachid],
Mohamadi, T.[Tayeb],
Low bias histogram-based estimation of mutual information for feature
selection,
PRL(33), No. 10, 15 July 2012, pp. 1302-1308.
Elsevier DOI
1205
Mutual information, Feature selection, Bias, Dimensionality reduction;
Shannon entropy, Speech recognition
BibRef
Hacine-Gharbi, A.[Abdenour],
Ravier, P.[Philippe],
A binning formula of bi-histogram for joint entropy estimation using
mean square error minimization,
PRL(101), No. 1, 2018, pp. 21-28.
Elsevier DOI
1801
Histogram bin number
BibRef
Mu, T.T.[Ting-Ting],
Goulermas, J.Y.[John Yannis],
Automatic Generation of Co-Embeddings from Relational Data with
Adaptive Shaping,
PAMI(35), No. 10, 2013, pp. 2340-2356.
IEEE DOI
1309
Relational data
BibRef
Hofmeyr, D.P.[David P.],
Clustering by Minimum Cut Hyperplanes,
PAMI(39), No. 8, August 2017, pp. 1547-1560.
IEEE DOI
1707
Clustering algorithms, Clustering methods, Context,
Particle separators, Partitioning algorithms,
Probability distribution, Clustering, asymptotics, hyperplane,
maximum margin, normalised, cut
BibRef
Wu, Y.[Yu],
Mu, T.T.[Ting-Ting],
Liatsis, P.[Panos],
Goulermas, J.Y.[John Y.],
Computation of heterogeneous object co-embeddings from relational
measurements,
PR(65), No. 1, 2017, pp. 146-163.
Elsevier DOI
1702
Co-embedding generation
BibRef
Yu, J.[Jun],
Tao, D.C.[Da-Cheng],
Rui, Y.[Yong],
Cheng, J.[Jun],
Pairwise constraints based multiview features fusion for scene
classification,
PR(46), No. 2, February 2013, pp. 483-496.
Elsevier DOI
1210
Scene classification, Fusion, Multiview dimensionality reduction, User
labeling information
Multiple features from different views.
BibRef
Zhou, T.,
Tao, D.,
Double Shrinking Sparse Dimension Reduction,
IP(22), No. 1, January 2013, pp. 244-257.
IEEE DOI
1301
BibRef
Lai, Z.,
Sparse local discriminant projections for discriminant knowledge
extraction and classification,
IET-CV(6), No. 6, 2012, pp. 551-559.
DOI Link
1301
BibRef
Cevikalp, H.[Hakan],
Triggs, B.[Bill],
Hyperdisk based large margin classifier,
PR(46), No. 6, June 2013, pp. 1523-1531.
Elsevier DOI
1302
BibRef
Earlier:
Large margin classifiers based on convex class models,
Subspace09(101-108).
IEEE DOI
0910
Large margin classifier, Classification, Convex approximation;
Hyperdisk, Kernel method; Support Vector Machine
BibRef
Cevikalp, H.[Hakan],
Triggs, B.[Bill],
Visual Object Detection Using Cascades of Binary and One-Class
Classifiers,
IJCV(123), No. 3, July 2017, pp. 334-349.
Springer DOI
1706
BibRef
Earlier:
Efficient object detection using cascades of nearest convex model
classifiers,
CVPR12(3138-3145).
IEEE DOI
1208
BibRef
Cevikalp, H.[Hakan],
Saglamlar, H.[Halil],
Polyhedral Conic Classifiers for Computer Vision Applications and
Open Set Recognition,
PAMI(43), No. 2, February 2021, pp. 608-622.
IEEE DOI
2101
Support vector machines, Training, Object detection, Visualization,
Neural networks, Face, Dogs, Polyhedral conic classifiers,
open set recognition
BibRef
Cevikalp, H.[Hakan],
Saglamlar, H.[Halil],
Transductive polyhedral conic classifiers for machine learning
applications,
PRL(161), 2022, pp. 1-7.
Elsevier DOI
2209
Transductive learning, Polyhedral conic classifier,
Large-margin classifier, Optimization
BibRef
Cevikalp, H.[Hakan],
Triggs, B.[Bill],
Polyhedral Conic Classifiers for Visual Object Detection and
Classification,
CVPR17(4114-4122)
IEEE DOI
1711
Dogs, Object detection, Robustness, Support vector machines,
Training, Visualization
BibRef
Cevikalp, H.[Hakan],
Best Fitting Hyperplanes for Classification,
PAMI(39), No. 6, June 2017, pp. 1076-1088.
IEEE DOI
1705
BibRef
Earlier:
2-Sided Best Fitting Hyperplane Classifier,
ICPR14(226-231)
IEEE DOI
1412
Accuracy
Eigenvalues and eigenfunctions, Kernel, Object detection,
Optimization, Support vector machines, Testing, Training,
Best fitting hyperlane classifier, kernel methods,
large margin classifier, open set recognition, support, vector, machines
BibRef
Cevikalp, H.[Hakan],
Triggs, B.[Bill],
Face recognition based on image sets,
CVPR10(2567-2573).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Cevikalp, H.[Hakan],
Triggs, B.[Bill],
Jurie, F.[Frederic],
Polikar, R.[Robi],
Margin-based discriminant dimensionality reduction for visual
recognition,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Cevikalp, H.[Hakan],
Yavuz, H.S.[Hasan Serhan],
Large Margin Classifier Based on Affine Hulls,
ICPR10(21-24).
IEEE DOI
1008
BibRef
Cevikalp, H.[Hakan],
Semi-supervised Distance Metric Learning by Quadratic Programming,
ICPR10(3352-3355).
IEEE DOI
1008
BibRef
Meng, D.Y.[De-Yu],
Leung, Y.[Yee],
Xu, Z.B.[Zong-Ben],
Passage method for nonlinear dimensionality reduction of data on
multi-cluster manifolds,
PR(46), No. 8, August 2013, pp. 2175-2186.
Elsevier DOI
1304
Manifold learning; Multi-cluster manifolds; Nonlinear dimensionality
reduction; Passage method
BibRef
Kapoor, R.,
Gupta, R.,
Non-linear dimensionality reduction using fuzzy lattices,
IET-CV(7), No. 3, 2013, pp. -.
DOI Link
1307
BibRef
Kapoor, R.,
Gupta, R.,
Morphological mapping for non-linear dimensionality reduction,
IET-CV(9), No. 2, 2015, pp. 226-233.
DOI Link
1506
data visualisation
BibRef
Gao, Q.,
Gao, F.,
Zhang, H.,
Hao, X.J.,
Wang, X.,
Two-Dimensional Maximum Local Variation Based on Image Euclidean
Distance for Face Recognition,
IP(22), No. 10, 2013, pp. 3807-3817.
IEEE DOI
1309
Dimensionality reduction
BibRef
Tao, D.C.[Da-Cheng],
Jin, L.,
Yang, Z.,
Li, X.L.[Xue-Long],
Rank Preserving Sparse Learning for Kinect Based Scene Classification,
Cyber(43), No. 5, 2013, pp. 1406-1417.
IEEE DOI
1309
Dimension reduction classification. Using depth and low level features.
BibRef
Gonen, M.,
Bayesian Supervised Dimensionality Reduction,
Cyber(43), No. 6, 2013, pp. 2179-2189.
IEEE DOI
1312
Bayes methods
BibRef
Zhu, L.[Lin],
Huang, D.S.[De-Shuang],
A Rayleigh-Ritz style method for large-scale discriminant analysis,
PR(47), No. 4, 2014, pp. 1698-1708.
Elsevier DOI
1402
Dimensionality reduction
BibRef
Wang, S.J.[Su-Jing],
Yan, S.C.[Shui-Cheng],
Yang, J.[Jian],
Zhou, C.G.[Chun-Guang],
Fu, X.L.[Xiao-Lan],
A General Exponential Framework for Dimensionality Reduction,
IP(23), No. 2, February 2014, pp. 920-930.
IEEE DOI
1402
data handling
BibRef
Sun, W.W.[Wei-Wei],
Halevy, A.[Avner],
Benedetto, J.J.[John J.],
Czaja, W.[Wojciech],
Liu, C.[Chun],
Wu, H.B.[Hang-Bin],
Shi, B.Q.[Bei-Qi],
Li, W.Y.[Wei-Yue],
UL-Isomap based nonlinear dimensionality reduction for hyperspectral
imagery classification,
PandRS(89), No. 1, 2014, pp. 25-36.
Elsevier DOI
1403
Nonlinear dimensionality reduction
BibRef
He, J.R.[Jin-Rong],
Ding, L.X.[Li-Xin],
Jiang, L.[Lei],
Li, Z.K.[Zhao-Kui],
Hu, Q.H.[Qing-Hui],
Intrinsic dimensionality estimation based on manifold assumption,
JVCIR(25), No. 5, 2014, pp. 740-747.
Elsevier DOI
1406
Intrinsic dimension estimation
BibRef
Cui, Y.[Yan],
Fan, L.[Liya],
A novel supervised dimensionality reduction algorithm:
Graph-based Fisher analysis,
PR(45), No. 4, 2012, pp. 1471-1481.
Elsevier DOI
1410
Dimensionality reduction
BibRef
Wong, W.K.,
Discover latent discriminant information for dimensionality
reduction: Non-negative Sparseness Preserving Embedding,
PR(45), No. 4, 2012, pp. 1511-1523.
Elsevier DOI
1410
Sparse representation
BibRef
Orsenigo, C.[Carlotta],
An improved set covering problem for Isomap supervised landmark
selection,
PRL(49), No. 1, 2014, pp. 131-137.
Elsevier DOI
1410
Nonlinear dimensionality reduction
BibRef
Wang, B.H.[Bing-Hui],
Lin, C.[Chuang],
Zhao, X.F.[Xue-Feng],
Lu, Z.M.[Zhe-Ming],
Neighbourhood sensitive preserving embedding for pattern
classification,
IET-IPR(8), No. 8, August 2014, pp. 489-497.
DOI Link
1410
face recognition
BibRef
Pang, M.[Meng],
Wang, B.H.[Bing-Hui],
Fan, X.[Xin],
Lin, C.[Chuang],
Discriminant Manifold Learning via Sparse Coding for Image Analysis,
MMMod16(II: 244-255).
Springer DOI
1601
BibRef
Ardeshiri, T.,
Granstrom, K.,
Ozkan, E.,
Orguner, U.,
Greedy Reduction Algorithms for Mixtures of Exponential Family,
SPLetters(22), No. 6, June 2015, pp. 676-680.
IEEE DOI
1411
Approximation methods
BibRef
Johnsson, K.,
Soneson, C.,
Fontes, M.,
Low Bias Local Intrinsic Dimension Estimation from Expected Simplex
Skewness,
PAMI(37), No. 1, January 2015, pp. 196-202.
IEEE DOI
1412
Calibration
BibRef
Song, M.P.[Mei-Ping],
Chang, C.I.[Chein-I],
A Theory of Recursive Orthogonal Subspace Projection for
Hyperspectral Imaging,
GeoRS(53), No. 6, June 2015, pp. 3055-3072.
IEEE DOI
1503
geophysical image processing
BibRef
Zheng, J.W.[Jian-Wei],
Huang, Q.F.[Qiong-Fang],
Chen, S.Y.[Sheng-Yong],
Wang, W.L.[Wan-Liang],
Efficient kernel discriminative common vectors for classification,
VC(31), No. 5, May 2015, pp. 643-655.
Springer DOI
1505
Kernel discriminant analysis (KDA) which operates in the reproducing
kernel Hilbert space (RKHS).
BibRef
Dornaika, F.,
Aldine, I.K.[I. Kamal],
Decremental Sparse Modeling Representative Selection for prototype
selection,
PR(48), No. 11, 2015, pp. 3714-3727.
Elsevier DOI
1506
Prototype selection
BibRef
Lu, G.F.[Gui-Fu],
Zou, J.[Jian],
Incremental maximum margin criterion based on eigenvalue decomposition
updating algorithm,
MVA(26), No. 6, August 2015, pp. 807-817.
Springer DOI
1508
Dimensionality reduction in face recognition.
BibRef
Yamamoto, M.[Michio],
Hayashi, K.[Kenichi],
Clustering of multivariate binary data with dimension reduction via
L1-regularized likelihood maximization,
PR(48), No. 12, 2015, pp. 3959-3968.
Elsevier DOI
1509
Binary data
BibRef
Gao, Q.X.[Quan-Xue],
Wang, Q.Q.[Qian-Qian],
Huang, Y.F.[Yun-Fang],
Gao, X.B.[Xin-Bo],
Hong, X.[Xin],
Zhang, H.L.[Hai-Lin],
Dimensionality Reduction by Integrating Sparse Representation and
Fisher Criterion and its Applications,
IP(24), No. 12, December 2015, pp. 5684-5695.
IEEE DOI
1512
feature extraction
BibRef
Hong, Y.F.[Ying-Fu],
Lee, S.[Sang_Bum],
Oh, S.J.[Se-Jong],
Boosting Multifactor Dimensionality Reduction Using Pre-evaluation,
ETRI(38), No. 1, February 2016, pp. 206-215.
DOI Link
1602
BibRef
Sun, Y.,
Gao, J.,
Hong, X.,
Mishra, B.,
Yin, B.,
Heterogeneous Tensor Decomposition for Clustering via Manifold
Optimization,
PAMI(38), No. 3, March 2016, pp. 476-489.
IEEE DOI
1602
Clustering algorithms
BibRef
Yang, B.[Bo],
Xiang, M.[Ming],
Zhang, Y.[Yupei],
Multi-manifold Discriminant Isomap for visualization and
classification,
PR(55), No. 1, 2016, pp. 215-230.
Elsevier DOI
1604
Multi-manifold learning
BibRef
Liu, F.[Feng],
Zhang, W.J.[Wei-Jie],
Gu, S.C.[Sui-Cheng],
Local linear Laplacian eigenmaps: A direct extension of LLE,
PRL(75), No. 1, 2016, pp. 30-35.
Elsevier DOI
1604
Manifold learning
BibRef
Zhou, Z.J.[Zheng-Juan],
Waqas, J.[Jadoon],
Intrinsic structure based feature transform for image classification,
JVCIR(38), No. 1, 2016, pp. 735-744.
Elsevier DOI
1605
Dimensionality reduction
BibRef
Najafi, A.,
Joudaki, A.,
Fatemizadeh, E.,
Nonlinear Dimensionality Reduction via Path-Based Isometric Mapping,
PAMI(38), No. 7, July 2016, pp. 1452-1464.
IEEE DOI
1606
Approximation algorithms
BibRef
Wen, J.,
Fowler, J.E.,
He, M.,
Zhao, Y.Q.,
Deng, C.,
Menon, V.,
Orthogonal Nonnegative Matrix Factorization Combining Multiple
Features for Spectral-Spatial Dimensionality Reduction of
Hyperspectral Imagery,
GeoRS(54), No. 7, July 2016, pp. 4272-4286.
IEEE DOI
1606
Computers
BibRef
Zhao, W.,
Du, S.,
Spectral-Spatial Feature Extraction for Hyperspectral Image
Classification: A Dimension Reduction and Deep Learning Approach,
GeoRS(54), No. 8, August 2016, pp. 4544-4554.
IEEE DOI
1608
feature extraction
BibRef
Li, J.[Jun],
Kong, Y.[Yu],
Zhao, H.D.[Han-Dong],
Yang, J.[Jian],
Fu, Y.[Yun],
Learning Fast Low-Rank Projection for Image Classification,
IP(25), No. 10, October 2016, pp. 4803-4814.
IEEE DOI
1610
image classification
BibRef
Huang, K.K.[Ke-Kun],
Dai, D.Q.[Dao-Qing],
Ren, C.X.[Chuan-Xian],
Regularized coplanar discriminant analysis for dimensionality
reduction,
PR(62), No. 1, 2017, pp. 87-98.
Elsevier DOI
1705
Dimensionality reduction
BibRef
Casalino, G.[Gabriella],
Gillis, N.[Nicolas],
Sequential dimensionality reduction for extracting localized features,
PR(63), No. 1, 2017, pp. 15-29.
Elsevier DOI
1612
Nonnegative matrix factorization
BibRef
Wang, Y.[Yong],
Xie, J.B.[Jian-Bin],
Wu, Y.[Yi],
Orthogonal discriminant analysis revisited,
PRL(84), No. 1, 2016, pp. 149-155.
Elsevier DOI
1612
Dimensionality reduction
BibRef
Song, S.,
Gong, Y.,
Zhang, Y.,
Huang, G.,
Huang, G.B.,
Dimension Reduction by Minimum Error Minimax Probability Machine,
SMCS(47), No. 1, January 2017, pp. 58-69.
IEEE DOI
1612
Covariance matrices
BibRef
Zhang, C.,
Fu, H.,
Hu, Q.,
Zhu, P.,
Cao, X.,
Flexible Multi-View Dimensionality Co-Reduction,
IP(26), No. 2, February 2017, pp. 648-659.
IEEE DOI
1702
Hilbert spaces
BibRef
Shao, G.W.[Guo-Wan],
Sang, N.[Nong],
Regularized max-min linear discriminant analysis,
PR(66), No. 1, 2017, pp. 353-363.
Elsevier DOI
1704
BibRef
Earlier:
Fractional-step max-min distance analysis for dimension reduction,
ICPR12(396-400).
WWW Link.
1302
Dimensionality reduction
BibRef
Yuan, S.,
Mao, X.,
Chen, L.,
Multilinear Spatial Discriminant Analysis for Dimensionality
Reduction,
IP(26), No. 6, June 2017, pp. 2669-2681.
IEEE DOI
1705
encoding, principal component analysis, MSDA, MSDA model,
Weizmann action database, dimensionality reduction,
encoding multidimensional data, linear projection technique,
multilinear linear discriminant analysis,
multilinear principal component analysis,
multilinear projection technique,
multilinear spatial discriminant analysis,
tensor locality preserving projection, theoretical analysis,
Algorithm design and analysis, Classification algorithms, Face,
Face recognition, Manifolds, Principal component analysis,
Tensile stress, Dimensionality reduction, face recognition,
high-order tensor, multilinear principal component analysis,
spatial, discriminant, characteristic
BibRef
Wong, W.K.,
Lai, Z.,
Wen, J.,
Fang, X.,
Lu, Y.,
Low-Rank Embedding for Robust Image Feature Extraction,
IP(26), No. 6, June 2017, pp. 2905-2917.
IEEE DOI
1705
Algorithm design and analysis, Eigenvalues and eigenfunctions,
Feature extraction, Image reconstruction, Manifolds,
Principal component analysis, Robustness,
Robust linear dimensionality reduction,
image feature extraction, low rank representation, subspace, learning
BibRef
Niu, G.[Guo],
Ma, Z.M.[Zheng-Ming],
Local non-linear alignment for non-linear dimensionality reduction,
IET-CV(11), No. 5, August 2017, pp. 331-341.
DOI Link
1707
BibRef
Liu, H.,
Liu, L.,
Le, T.D.,
Lee, I.,
Sun, S.,
Li, J.,
Nonparametric Sparse Matrix Decomposition for Cross-View
Dimensionality Reduction,
MultMed(19), No. 8, August 2017, pp. 1848-1859.
IEEE DOI
1708
Biological system modeling, Correlation, Covariance matrices,
Learning systems, Matrix decomposition,
Principal component analysis, Sparse matrices, Cross-view data,
dimension reduction, matrix decomposition, sparse learning,
sparsity-inducing, function
BibRef
Wang, R.,
Nie, F.,
Hong, R.,
Chang, X.,
Yang, X.,
Yu, W.,
Fast and Orthogonal Locality Preserving Projections for
Dimensionality Reduction,
IP(26), No. 10, October 2017, pp. 5019-5030.
IEEE DOI
1708
Eigenvalues and eigenfunctions,
Face recognition, Laplace equations, Manifolds, Optimization,
Training data, Dimensionality reduction (DR),
hyperspectral image (HSI) classification, locality preserving
projections, (LPP)
BibRef
Lai, Z.,
Xu, Y.,
Yang, J.,
Shen, L.,
Zhang, D.,
Rotational Invariant Dimensionality Reduction Algorithms,
Cyber(47), No. 11, November 2017, pp. 3733-3746.
IEEE DOI
1710
Feature extraction,
Learning systems, Measurement,
Principal component analysis, Robustness,
Dimensionality reduction,
image feature extraction, rotational, invariant, (RI), subspace, learning
BibRef
Paul, R.[Rahul],
Chalup, S.K.[Stephan K.],
A study on validating non-linear dimensionality reduction using
persistent homology,
PRL(100), No. 1, 2017, pp. 160-166.
Elsevier DOI
1712
Manifold learning
BibRef
Ning, X.,
Li, W.,
Tang, B.,
He, H.,
BULDP: Biomimetic Uncorrelated Locality Discriminant Projection for
Feature Extraction in Face Recognition,
IP(27), No. 5, May 2018, pp. 2575-2586.
IEEE DOI
1804
Dimensionality reduction, Face, Face recognition, Kernel,
Linear programming, Manifolds, Robustness,
uncorrelated space
BibRef
Chen, S.B.[Si-Bao],
Zuo, C.[Chong],
Ding, C.[Chris],
Luo, B.[Bin],
Non-greedy Max-min Large Margin based on L1-norm,
PRL(108), 2018, pp. 38-47.
Elsevier DOI
1805
Max-min, Large margin, L1-norm, Linear projection, Dimensionality reduction
BibRef
López-Sánchez, D.[Daniel],
Arrieta, A.G.[Angélica González],
Corchado, J.M.[Juan M.],
Data-independent Random Projections from the feature-space of the
homogeneous polynomial kernel,
PR(82), 2018, pp. 130-146.
Elsevier DOI
1806
Random Projection, Homogeneous polynomial kernel,
Nonlinear dimensionality reduction
BibRef
Wang, S.J.[Shu-Jian],
Xie, D.[Deyan],
Chen, F.[Fang],
Gao, Q.X.[Quan-Xue],
Dimensionality reduction by LPP-L21,
IET-CV(12), No. 5, August 2018, pp. 659-665.
DOI Link
1807
BibRef
Zhang, H.[Han],
Nie, F.P.[Fei-Ping],
Zhang, R.[Rui],
Li, X.L.[Xue-Long],
Auto-weighted 2-dimensional maximum margin criterion,
PR(83), 2018, pp. 220-229.
Elsevier DOI
1808
Supervised learning, Auto-weighted parameter,
2-dimensional criterion, Dimensionality selection, Classification
BibRef
Wu, S.H.[Shi-Hao],
Bertholet, P.[Peter],
Huang, H.[Hui],
Cohen-Or, D.[Daniel],
Gong, M.L.[Ming-Lun],
Zwicker, M.[Matthias],
Structure-Aware Data Consolidation,
PAMI(40), No. 10, October 2018, pp. 2529-2537.
IEEE DOI
1809
Pre-clustering. Related to mean-shift, except seeks density modes.
Project onto lower dimensional structure.
Manifolds, Noise measurement, Clustering algorithms, Standards,
Noise reduction, Smoothing methods, Data consolidation, filtering,
manifold denoising
BibRef
Xie, L.,
Yin, M.,
Yin, X.,
Liu, Y.,
Yin, G.,
Low-Rank Sparse Preserving Projections for Dimensionality Reduction,
IP(27), No. 11, November 2018, pp. 5261-5274.
IEEE DOI
1809
data reduction, feature extraction,
learning (artificial intelligence), matrix decomposition,
image classification
BibRef
Wang, G.A.[Gao-Ang],
Hwang, J.N.[Jenq-Neng],
Rose, C.[Craig],
Wallace, F.[Farron],
Uncertainty-Based Active Learning via Sparse Modeling for Image
Classification,
IP(28), No. 1, January 2019, pp. 316-329.
IEEE DOI
1810
approximation theory, Gaussian processes, image classification,
image representation, image sampling,
CNN
BibRef
Gajamannage, K.[Kelum],
Paffenroth, R.[Randy],
Bollt, E.M.[Erik M.],
A nonlinear dimensionality reduction framework using smooth geodesics,
PR(87), 2019, pp. 226-236.
Elsevier DOI
1812
Manifold, Nonlinear dimensionality reduction, Smoothing spline,
Geodesics, Noisy measurements
BibRef
Gajamannage, K.[Kelum],
Paffenroth, R.[Randy],
Bounded manifold completion,
PR(111), 2021, pp. 107661.
Elsevier DOI
2012
Manifold, Low-rank matrix completion, Positive semi-definite,
Truncated nuclear norm, Gramian
BibRef
Shi, Y.[Yong],
Lei, M.L.[Ming-Long],
Yang, H.[Hong],
Niu, L.F.[Ling-Feng],
Diffusion network embedding,
PR(88), 2019, pp. 518-531.
Elsevier DOI
1901
Network embedding, Cascades, Diffusion process,
Network inference, Dimension reduction
BibRef
Hoyos-Idrobo, A.[Andrés],
Varoquaux, G.[Gaël],
Kahn, J.[Jonas],
Thirion, B.[Bertrand],
Recursive Nearest Agglomeration (ReNA):
Fast Clustering for Approximation of Structured Signals,
PAMI(41), No. 3, March 2019, pp. 669-681.
IEEE DOI
1902
Dimensionality reduction, Approximation algorithms,
Signal processing algorithms, Feature extraction,
approximation
BibRef
Luo, T.,
Hou, C.,
Nie, F.,
Yi, D.,
Dimension Reduction for Non-Gaussian Data by Adaptive Discriminative
Analysis,
Cyber(49), No. 3, March 2019, pp. 933-946.
IEEE DOI
1902
Face recognition, Dimensionality reduction,
Distributed databases, Convergence, Face,
linear discriminant analysis (LDA)
BibRef
Najafabadi, A.A.S.[Ali Asghar Sharifi],
Azar, F.T.[Farah Torkamani],
Removing redundancy data with preserving the structure and visuality in
a database,
SIViP(13), No. 4, June 2019, pp. 745-752.
Springer DOI
1906
Reduce the database size but keep the essential information. (Faces)
BibRef
Ali, M.[Mohammed],
Jones, M.W.[Mark W.],
Xie, X.H.[Xiang-Hua],
Williams, M.[Mark],
TimeCluster: dimension reduction applied to temporal data for visual
analytics,
VC(35), No. 6-8, June 2018, pp. 1013-1026.
WWW Link.
1906
BibRef
Wu, W.,
Kwong, S.,
Hou, J.,
Jia, Y.,
Ip, H.H.S.,
Simultaneous Dimensionality Reduction and Classification via Dual
Embedding Regularized Nonnegative Matrix Factorization,
IP(28), No. 8, August 2019, pp. 3836-3847.
IEEE DOI
1907
data reduction, data structures, iterative methods,
matrix decomposition, optimisation, pattern classification,
classification
BibRef
Garcia-Vega, S.,
Castellanos-Dominguez, G.,
Similarity preservation in dimensionality reduction using a
kernel-based cost function,
PRL(125), 2019, pp. 318-324.
Elsevier DOI
1909
Sequential learning, Adaptive learning-rate,
Kernel adaptive filters, Correntropy
BibRef
Bai, C.Z.[Cheng-Zu],
Zhang, R.[Ren],
Xu, Z.S.[Ze-Shui],
Cheng, R.[Rui],
Jin, B.G.[Bao-Gang],
Chen, J.[Jian],
L1-norm-based kernel entropy components,
PR(96), 2019, pp. 106990.
Elsevier DOI
1909
Kernel entropy component analysis, Density estimation,
Dimensionality reduction, Feature extraction, L1-norm
BibRef
Shen, X.J.[Xiang-Jun],
Liu, S.X.[Si-Xing],
Bao, B.K.[Bing-Kun],
Pan, C.H.[Chun-Hong],
Zha, Z.J.[Zheng-Jun],
Fan, J.P.[Jian-Ping],
A generalized least-squares approach regularized with graph embedding
for dimensionality reduction,
PR(98), 2020, pp. 107023.
Elsevier DOI
1911
Dimensionality reduction, Graph embedding, Subspace learning, Least-squares
BibRef
Abdi, L.[Lida],
Ghodsi, A.[Ali],
Discriminant component analysis via distance correlation maximization,
PR(98), 2020, pp. 107052.
Elsevier DOI
1911
Dimensionality reduction, Distance correlation (dCor),
Kernel methods, Classification, Regression
BibRef
He, L.[Lulu],
Ye, J.M.[Ji-Min],
E, J.W.[Jian-Wei],
Robust L1-norm two-dimensional collaborative representation-based
projection for dimensionality reduction,
SP:IC(81), 2020, pp. 115684.
Elsevier DOI
1912
Collaborative representation-based projection (CRP), L1-2DCRP,
L1-norm, Face recognition, Dimensionality reduction
BibRef
de Handschutter, P.,
Gillis, N.,
Vandaele, A.,
Siebert, X.,
Near-Convex Archetypal Analysis,
SPLetters(27), 2020, pp. 81-85.
IEEE DOI
2001
Signal processing algorithms, Optimization, Standards, Tuning,
Hyperspectral imaging, Data models, Dimensionality reduction,
optimization
BibRef
Garcia-Vega, S.,
León-Gómez, E.A.,
Castellanos-Dominguez, G.,
A time-series prediction framework using sequential learning
algorithms and dimensionality reduction within a sparsification
approach,
PRL(129), 2020, pp. 287-292.
Elsevier DOI
2001
BibRef
Breger, A.,
Orlando, J.I.,
Harar, P.,
Dörfler, M.,
Klimscha, S.,
Grechenig, C.,
Gerendas, B.S.,
Schmidt-Erfurth, U.,
Ehler, M.,
On Orthogonal Projections for Dimension Reduction and Applications in
Augmented Target Loss Functions for Learning Problems,
JMIV(62), No. 3, April 2020, pp. 376-394.
Springer DOI
2004
BibRef
And:
Correction:
JMIV(62), No. 3, April 2020, pp. 395.
Springer DOI
2004
BibRef
Masoudimansour, W.[Walid],
Bouguila, N.[Nizar],
Supervised dimensionality reduction of proportional data using
mixture estimation,
PR(105), 2020, pp. 107379.
Elsevier DOI
2006
BibRef
Earlier:
Dimensionality Reduction of Proportional Data Through Data Separation
Using Dirichlet Distribution,
ICIAR15(141-149).
Springer DOI
1507
Dimensionality reduction, Feature extraction
BibRef
Zhao, C.,
Mao, X.,
Chen, M.,
Yu, C.,
Continuous Approximation Based Dimension-Reduced Estimation for
Arbitrary Sampling,
SPLetters(27), 2020, pp. 1080-1084.
IEEE DOI
2007
Estimation,
Direction-of-arrival estimation, Manifolds, Arrays, group sparse
BibRef
Long, T.H.[Tian-Hang],
Sun, Y.F.[Yan-Feng],
Gao, J.B.[Jun-Bin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Locality preserving projection based on Euler representation,
JVCIR(70), 2020, pp. 102796.
Elsevier DOI
2007
Locality preserving projection, Euler representation, Dimensionality reduction
BibRef
Luo, F.,
Zhang, L.,
Du, B.,
Zhang, L.,
Dimensionality Reduction With Enhanced Hybrid-Graph Discriminant
Learning for Hyperspectral Image Classification,
GeoRS(58), No. 8, August 2020, pp. 5336-5353.
IEEE DOI
2007
Feature extraction, Hyperspectral imaging,
Dimensionality reduction, Learning systems,
neighborhood margin
BibRef
Atienza, N.[Nieves],
Gonzalez-Díaz, R.[Rocio],
Soriano-Trigueros, M.[Manuel],
On the stability of persistent entropy and new summary functions for
topological data analysis,
PR(107), 2020, pp. 107509.
Elsevier DOI
2008
Persistent homology, Persistent entropy, Stability, Dimensionality reduction
BibRef
Tasoulis, S.[Sotiris],
Pavlidis, N.G.[Nicos G.],
Roos, T.[Teemu],
Nonlinear dimensionality reduction for clustering,
PR(107), 2020, pp. 107508.
Elsevier DOI
2008
Nonlinearity, Dimensionality reduction,
Divisive hierarchical clustering, Manifold clustering
BibRef
Wang, Z.,
Nie, F.,
Zhang, C.,
Wang, R.,
Li, X.,
Capped L_p-Norm LDA for Outliers Robust Dimension Reduction,
SPLetters(27), 2020, pp. 1315-1319.
IEEE DOI
2008
Robustness, Signal processing algorithms, Optimization,
Dimensionality reduction, Training, Iterative algorithms,
image classification
BibRef
Ahmadi, S.[Soheil],
Rezghi, M.[Mansoor],
Generalized low-rank approximation of matrices based on multiple
transformation pairs,
PR(108), 2020, pp. 107545.
Elsevier DOI
2008
Machine learning, Matrix data classification,
Kronecker product, Dimensionality reduction, SVD, GLRAM
BibRef
Eftekhari, A.[Armin],
Hauser, R.A.[Raphael A.],
Grammenos, A.[Andreas],
MOSES: A Streaming Algorithm for Linear Dimensionality Reduction,
PAMI(42), No. 11, November 2020, pp. 2901-2911.
IEEE DOI
2010
Memory-limited Online Subspace Estimation Scheme.
Dimensionality reduction, Estimation, Optimization,
Approximation algorithms, Principal component analysis, Ear,
non-convex optimisation
BibRef
Zhang, S.,
Ma, Z.,
Gan, W.,
Dimensionality Reduction for Tensor Data Based on Local Decision
Margin Maximization,
IP(30), 2021, pp. 234-248.
IEEE DOI
2011
Tensors, Optimization, Principal component analysis, Manifolds,
Data mining, Dimensionality reduction, tensor data, supervised,
local decision margin
BibRef
Hu, H.,
Feng, D.,
Yang, F.,
A Promising Nonlinear Dimensionality Reduction Method: Kernel-Based
Within Class Collaborative Preserving Discriminant Projection,
SPLetters(27), 2020, pp. 2034-2038.
IEEE DOI
2012
Collaborative representation, discriminant projection,
nonlinear dimensionality reduction, small sample size
BibRef
Gao, Y.L.[Yun-Long],
Zhong, S.X.[Shu-Xin],
Hu, K.L.[Kang-Li],
Pan, J.Y.[Jin-Yan],
Robust locality preserving projections using angle-based adaptive
weight method,
IET-CV(14), No. 8, December 2020, pp. 605-613.
DOI Link
2012
BibRef
Wang, Z.[Zheng],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Yang, H.[Hui],
Li, X.L.[Xue-Long],
Local structured feature learning with dynamic maximum entropy graph,
PR(111), 2021, pp. 107673.
Elsevier DOI
2012
Supervised dimensionality reduction,
Local structured feature learning, Dynamic maximum entropy graph
BibRef
Zhao, Y.P.,
Chen, L.,
Chen, C.L.P.,
Laplacian Regularized Nonnegative Representation for Clustering and
Dimensionality Reduction,
CirSysVideo(31), No. 1, January 2021, pp. 1-14.
IEEE DOI
2101
Sparse matrices, Laplace equations, Manifolds,
Dimensionality reduction, Encoding, Task analysis, ADMM
BibRef
Nie, F.P.[Fei-Ping],
Wang, Z.[Zheng],
Wang, R.[Rong],
Wang, Z.[Zhen],
Li, X.L.[Xue-Long],
Towards Robust Discriminative Projections Learning via Non-Greedy
L_2,1-Norm MinMax,
PAMI(43), No. 6, June 2021, pp. 2086-2100.
IEEE DOI
2106
Optimization, Robustness, Iterative algorithms,
Dimensionality reduction, Principal component analysis,
outlier
BibRef
Wang, Z.[Zheng],
Nie, F.P.[Fei-Ping],
Zhang, C.[Canyu],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Worst-Case Discriminative Feature Learning via Max-Min Ratio Analysis,
PAMI(46), No. 1, January 2024, pp. 641-658.
IEEE DOI
2312
BibRef
Lee, J.[Jongmin],
Kim, J.H.[Jang-Hyun],
Oh, H.S.[Hee-Seok],
Spherical Principal Curves,
PAMI(43), No. 6, June 2021, pp. 2165-2171.
IEEE DOI
2106
Manifolds, Dimensionality reduction, Data analysis,
Surface treatment, Analytical models, Data models, Shape,
spherical domain
BibRef
Niu, G.[Guo],
Ma, Z.M.[Zheng-Ming],
Tensor dimensionality reduction via mode product and HSIC,
IET-IPR(15), No. 12, 2021, pp. 2986-3002.
DOI Link
2109
BibRef
Lai, Z.H.[Zhi-Hui],
Yu, Z.[Zhuozhen],
Kong, H.[Heng],
Shen, L.L.[Lin-Lin],
Two-dimensional jointly sparse robust discriminant regression,
SP:IC(98), 2021, pp. 116391.
Elsevier DOI
2109
Ridge regression, Robust dimensionality reduction,
Two-dimensional jointly sparse projection,
Robust discriminant regression (RDR)
BibRef
Chen, J.[Jian],
Liao, L.[Leiyao],
Zhang, W.[Wei],
Du, L.[Lan],
Mixture factor analysis with distance metric constraint for
dimensionality reduction,
PR(121), 2022, pp. 108156.
Elsevier DOI
2109
Dimensionality reduction, Mixture factor analysis,
Distance metric constraint, Classification
BibRef
Islam, M.T.[Md Tauhidul],
Xing, L.[Lei],
Geometry and statistics-preserving manifold embedding for nonlinear
dimensionality reduction,
PRL(151), 2021, pp. 155-162.
Elsevier DOI
2110
Manifold embedding, Dimensionality reduction,
Geometry preservation, Nonlinear mapping
BibRef
Kay, S.[Steven],
Dimensionality Reduction for Signal Detection,
SPLetters(29), 2022, pp. 145-148.
IEEE DOI
2202
Probability density function, Mean square error methods,
Gaussian noise, Dimensionality reduction, Bayes methods, Standards,
inference algorithms
BibRef
Zhou, R.X.[Rui-Xu],
Gao, W.S.[Wen-Sheng],
Ding, D.W.[Deng-Wei],
Liu, W.D.[Wei-Dong],
Supervised dimensionality reduction technology of generalized
discriminant component analysis and its kernelization forms,
PR(124), 2022, pp. 108450.
Elsevier DOI
2203
Dimensionality reduction, Subspace projection,
Generalized discriminant component analysis
BibRef
Xing, S.S.[Samuel S.],
Islam, M.T.[Md Tauhidul],
Utilizing differential characteristics of high dimensional data as a
mechanism for dimensionality reduction,
PRL(157), 2022, pp. 1-7.
Elsevier DOI
2205
Reference data, Differential characteristics,
Manifold embedding, Dimensionality reduction,
Comparative analysis
BibRef
Nie, F.P.[Fei-Ping],
Zhao, X.W.[Xiao-Wei],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Fast Locality Discriminant Analysis With Adaptive Manifold Embedding,
PAMI(44), No. 12, December 2022, pp. 9315-9330.
IEEE DOI
2212
Dimensionality reduction, Principal component analysis,
Feature extraction, Manifolds, Null space, Covariance matrices,
Manifold structure of data
BibRef
Tan, C.[Chao],
Chen, S.[Sheng],
Geng, X.[Xin],
Ji, G.[Genlin],
A label distribution manifold learning algorithm,
PR(135), 2023, pp. 109112.
Elsevier DOI
2212
Multi-label learning, Label distribution learning,
Manifold learning, Dimension reduction, Linear regression
BibRef
Lu, Q.[Qin],
Karanikolas, G.V.[Georgios V.],
Giannakis, G.B.[Georgios B.],
Incremental Ensemble Gaussian Processes,
PAMI(45), No. 2, February 2023, pp. 1876-1893.
IEEE DOI
2301
Kernel, Radio frequency, Dimensionality reduction, Scalability, Training,
Task analysis, Benchmark testing, Gaussian processes, regret analysis
BibRef
Yan, W.Z.[Wen-Zhu],
Yang, M.[Ming],
Li, Y.[Yanmeng],
Robust Low Rank and Sparse Representation for Multiple Kernel
Dimensionality Reduction,
CirSysVideo(33), No. 1, January 2023, pp. 1-15.
IEEE DOI
2301
Kernel, Feature extraction, Dimensionality reduction, Optimization,
Sparse matrices, Task analysis, Support vector machines, 1 norm
BibRef
Li, T.[Tao],
Tan, L.[Lei],
Huang, Z.[Zhehao],
Tao, Q.H.[Qing-Hua],
Liu, Y.P.[Yi-Peng],
Huang, X.L.[Xiao-Lin],
Low Dimensional Trajectory Hypothesis is True: DNNs Can Be Trained in
Tiny Subspaces,
PAMI(45), No. 3, March 2023, pp. 3411-3420.
IEEE DOI
2302
Training, Trajectory, Neural networks, Robustness,
Dimensionality reduction, Visualization, Optimization methods, subspace
BibRef
Qiu, H.Q.[Hai-Quan],
Yang, Y.[Youlong],
Pan, H.[Hua],
Underestimation modification for intrinsic dimension estimation,
PR(140), 2023, pp. 109580.
Elsevier DOI
2305
Intrinsic dimension, Parameter selection, Estimation method,
Underestimation modification, Smooth manifold
BibRef
Wang, X.[Xiang],
Zhu, J.X.[Jun-Xing],
Xu, Z.C.[Zi-Chen],
Ren, K.J.[Kai-Jun],
Liu, X.W.[Xin-Wang],
Wang, F.Y.[Feng-Yun],
Local nonlinear dimensionality reduction via preserving the geometric
structure of data,
PR(143), 2023, pp. 109663.
Elsevier DOI
2310
Dimensionality reduction, Embedding learning, Geometric preservation,
Random walk
BibRef
Tezekbayev, M.[Maxat],
Autoencoders for a manifold learning problem with a Jacobian rank
constraint,
PR(143), 2023, pp. 109777.
Elsevier DOI
2310
Manifold learning, Dimensionality reduction,
Alternating algorithm, Ky fan antinorm, Autoencoders, Rank constraints
BibRef
Nellas, I.A.[Ioannis A.],
Tasoulis, S.K.[Sotiris K.],
Georgakopoulos, S.V.[Spiros V.],
Plagianakos, V.P.[Vassilis P.],
Two phase cooperative learning for supervised dimensionality
reduction,
PR(144), 2023, pp. 109871.
Elsevier DOI
2310
Artificial neural networks, Deep learning,
Dimensionality reduction, Autoencoders, Image classification
BibRef
Pal, S.[Soumyasundar],
Valkanas, A.[Antonios],
Coates, M.[Mark],
Population Monte Carlo With Normalizing Flow,
SPLetters(31), 2024, pp. 16-20.
IEEE DOI
2401
Alternative to Markov Chain Monte Carlo.
BibRef
Lai, Z.H.[Zhi-Hui],
Chen, F.[Foping],
Wen, J.J.[Jia-Jun],
Multi-view robust regression for feature extraction,
PR(149), 2024, pp. 110219.
Elsevier DOI
2403
Image classification, Small-class problem, Linear regression (LR)
BibRef
Bui, A.T.[Anh Tuan],
Dimension Reduction With Prior Information for Knowledge Discovery,
PAMI(46), No. 5, May 2024, pp. 3625-3636.
IEEE DOI
2404
Dimensionality reduction, Manifolds, Measurement, Knowledge discovery,
Task analysis, Principal component analysis, SMACOF
BibRef
Wang, J.Y.[Jing-Yu],
Yin, H.[Hengheng],
Nie, F.P.[Fei-Ping],
Li, X.L.[Xue-Long],
Adaptive and fuzzy locality discriminant analysis for dimensionality
reduction,
PR(151), 2024, pp. 110382.
Elsevier DOI
2404
Adaptive and fuzzy k-means, Discrete fuzzy membership,
Subblock partition, Locality discriminant analysis
BibRef
Gilet, C.[Cyprien],
Deprez, M.[Marie],
Barbry, P.[Pacal],
Caillau, J.B.[Jean-Baptiste],
Barlaud, M.[Michel],
Efficient Clustering Using Alternating Minimization And A
Projection-Gradient Method For Dimension Reduction,
ICIP22(176-180)
IEEE DOI
2211
Dimensionality reduction, Sequential analysis, Costs, RNA,
Minimization, Iterative algorithms
BibRef
Guo, Y.H.[Yun-Hui],
Wang, X.D.[Xu-Dong],
Chen, Y.[Yubei],
Yu, S.X.[Stella X.],
Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers,
CVPR22(1-10)
IEEE DOI
2210
Training, Representation learning, Neural networks, Semantics,
Benchmark testing, Feature extraction, Machine learning, Representation learning
BibRef
Guo, Y.H.[Yun-Hui],
Guo, H.R.[Hao-Ran],
Yu, S.X.[Stella X.],
CO-SNE: Dimensionality Reduction and Visualization for Hyperbolic
Data,
CVPR22(11-20)
IEEE DOI
2210
Representation learning, Dimensionality reduction, Semantics,
Data visualization, Gaussian distribution, Nonhomogeneous media,
Representation learning
BibRef
Sarfraz, M.S.[M. Saquib],
Koulakis, M.[Marios],
Seibold, C.[Constantin],
Stiefelhagen, R.[Rainer],
Hierarchical Nearest Neighbor Graph Embedding for Efficient
Dimensionality Reduction,
CVPR22(336-345)
IEEE DOI
2210
Dimensionality reduction, Measurement, Codes, Data visualization,
Proposals, Machine learning,
grouping and shape analysis
BibRef
Fan, X.[Xiran],
Yang, C.H.[Chun-Hao],
Vemuri, B.C.[Baba C.],
Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic
NN Design,
CVPR22(356-365)
IEEE DOI
2210
Dimensionality reduction, Manifolds, Deep learning,
Extraterrestrial measurements,
Deep learning architectures and techniques
BibRef
Litany, O.[Or],
Morcos, A.[Ari],
Sridhar, S.[Srinath],
Guibas, L.J.[Leonidas J.],
Hoffman, J.[Judy],
Representation Learning Through Latent Canonicalizations,
WACV21(645-654)
IEEE DOI
2106
Training, Dimensionality reduction,
Atmospheric measurements, Linearity, Focusing
BibRef
Jordão, A.[Artur],
Lie, M.[Maiko],
Cunha de Melo, V.H.[Victor Hugo],
Schwartz, W.R.[William Robson],
Covariance-free Partial Least Squares: An Incremental Dimensionality
Reduction Method,
WACV21(1420-1428)
IEEE DOI
2106
Dimensionality reduction, Streaming media,
Feature extraction, Computational efficiency, Task analysis, Covariance matrices
BibRef
Sheikhi, G.[Ghazaal],
Altnçay, H.[Hakan],
Supervised Feature Embedding for Classification by Learning
Rank-based Neighborhoods,
ICPR21(9340-9347)
IEEE DOI
2105
Dimensionality reduction, Neural networks, Encoding,
embedding, representative learning,
hot vectors
BibRef
Becker, M.[Martin],
Lippel, J.[Jens],
Zielke, T.[Thomas],
Dimensionality Reduction for Data Visualization and Linear
Classification, and the Trade-off between Robustness and
Classification Accuracy,
ICPR21(6478-6485)
IEEE DOI
2105
Dimensionality reduction, Neural networks, Data visualization,
Robustness, Linear discriminant analysis, Decoding
BibRef
Jiang, B.,
Shen, M.,
Dimensionality Reduction Via Diffusion Map Improved With Supervised
Linear Projection,
ICIP20(1796-1800)
IEEE DOI
2011
Dimensionality reduction, Feature extraction, Linear programming,
Manifolds, Kernel, Eigenvalues and eigenfunctions,
supervised learning
BibRef
Allaoui, M.[Mebarka],
Kherfi, M.L.[Mohammed Lamine],
Cheriet, A.[Abdelhakim],
Considerably Improving Clustering Algorithms Using Umap Dimensionality
Reduction Technique: A Comparative Study,
ICISP20(317-325).
Springer DOI
2009
BibRef
Kachan, O.,
Persistent Homology-based Projection Pursuit,
Diff-CVML20(3744-3751)
IEEE DOI
2008
Topology, Optimization, Manifolds, Dimensionality reduction,
Loss measurement, Clustering algorithms
BibRef
Gong, S.[Sixue],
Boddeti, V.N.[Vishnu Naresh],
Jain, A.K.[Anil K.],
On the Intrinsic Dimensionality of Image Representations,
CVPR19(3982-3991).
IEEE DOI
2002
BibRef
Zhang, Y.S.[You-Shan],
Xing, J.R.[Jia-Rui],
Zhang, M.M.[Miao-Miao],
Mixture Probabilistic Principal Geodesic Analysis,
MFCA19(196-208).
Springer DOI
1912
BibRef
Zhang, J.,
Wang, J.,
Linear Discriminative Sparsity Preserving Projections for
Dimensionality Reduction,
ICPR18(159-164)
IEEE DOI
1812
Sparse matrices, Manifolds, Dimensionality reduction,
Linear programming, Learning systems, Image recognition, Image reconstruction
BibRef
Luo, X.,
Durrant, R.J.,
Maximum Gradient Dimensionality Reduction,
ICPR18(501-506)
IEEE DOI
1812
Dimensionality reduction, Principal component analysis,
Task analysis, Training data, Linear regression,
Feature extraction
BibRef
Chen, S.,
Lee, Y.,
Wang, J.,
Locality Preserving Discriminative Complex-Valued Latent Variable
Model,
ICPR18(1169-1174)
IEEE DOI
1812
Data models, Linear programming, Principal component analysis,
Dimensionality reduction, Kernel, Computational modeling
BibRef
Liu, X.F.[Xiao-Feng],
Li, Z.F.[Zhao-Feng],
Kong, L.S.[Ling-Sheng],
Diao, Z.H.[Zhi-Hui],
Yan, J.L.[Jun-Liang],
Zou, Y.[Yang],
Yang, C.[Chao],
Jia, P.[Ping],
You, J.[Jane],
A joint optimization framework of low-dimensional projection and
collaborative representation for discriminative classification,
ICPR18(1493-1498)
IEEE DOI
1812
Optimization, Collaboration, Training, Task analysis,
Face recognition, Feature extraction, Dimensionality reduction,
sparse representation
BibRef
Zhang, H.,
Gabbouj, M.[Moncef],
Feature Dimensionality Reduction with Graph Embedding and Generalized
Hamming Distance,
ICIP18(1083-1087)
IEEE DOI
1809
Dimensionality reduction, Principal component analysis,
Hamming distance, Mutual information, Measurement, Dogs,
multilabel
BibRef
Li, Y.,
Locally preserving projection on symmetric positive definite matrix
lie group,
ICIP17(1217-1221)
IEEE DOI
1803
Covariance matrices, Dimensionality reduction, Laplace equations,
Manifolds, Measurement, Silicon, Symmetric matrices,
SPD matrix Lie group
BibRef
Sun, Z.H.,
Hoogs, A.,
Compact image representation by binary component analysis,
ICIP17(2771-2775)
IEEE DOI
1803
Correlation, Dimensionality reduction, Face, Image representation,
Principal component analysis, Quantization (signal), Uncertainty
BibRef
Kloss, R.B.[Ricardo Barbosa],
Jordão, A.[Artur],
Schwartz, W.R.[William Robson],
Boosted Projection: An Ensemble of Transformation Models,
CIARP17(331-338).
Springer DOI
1802
BibRef
Griparis, A.[Andreea],
Faur, D.[Daniela],
Datcu, M.[Mihai],
Evaluation of Dimensionality Reduction Methods for Remote Sensing
Images Using Classification and 3D Visualization,
ACIVS17(203-211).
Springer DOI
1712
BibRef
Mehta, A.[Aditya],
Sekhar, C.C.[C. Chandra],
Kernel Entropy Discriminant Analysis for Dimension Reduction,
PReMI17(35-42).
Springer DOI
1711
BibRef
Yoshiyasu, Y.,
Yoshida, E.,
Nonlinear dimensionality reduction by curvature minimization,
ICPR16(3590-3596)
IEEE DOI
1705
Distortion, Laplace equations, Manifolds, Minimization, Optimization,
Transmission, line, matrix, methods
BibRef
Chung, A.G.,
Shafiee, M.J.,
Wong, A.,
Random feature maps via a Layered Random Projection (LARP) framework
for object classification,
ICIP16(246-250)
IEEE DOI
1610
Databases
BibRef
Rui, L.,
Nejati, H.,
Cheung, N.M.,
Dimensionality reduction of brain imaging data using graph signal
processing,
ICIP16(1329-1333)
IEEE DOI
1610
Brain
BibRef
Huang, S.,
Tran, T.D.,
Dimensionality reduction for image classification via mutual
information maximization,
ICIP16(509-513)
IEEE DOI
1610
Eigenvalues and eigenfunctions
BibRef
Kirishanthy, T.,
Ramanan, A.,
Creating Compact and Discriminative Visual Vocabularies Using Visual
Bits,
DICTA15(1-6)
IEEE DOI
1603
Map the low-level features into a fixed-length vector in histogram space
and applied classifiers.
BibRef
Fang, X.Z.[Xiao-Zhao],
Xu, Y.[Yong],
Zhang, Z.[Zheng],
Lai, Z.H.[Zhi-Hui],
Shen, L.L.[Lin-Lin],
Orthogonal self-guided similarity preserving projections,
ICIP15(344-348)
IEEE DOI
1512
dimensionality reduction; similarity preserving; sparse coding
BibRef
Zhang, L.[Lei],
Peng, P.P.[Pei-Pei],
Xiang, X.Z.[Xue-Zhi],
Zhen, X.T.[Xian-Tong],
Dimensionality reduction by supervised locality analysis,
ICIP15(1488-1492)
IEEE DOI
1512
Dimensionality reduction
BibRef
Czolombitko, M.[Michal],
Stepaniuk, J.[Jaroslaw],
Generating Core Based on Discernibility Measure and MapReduce,
PReMI15(367-376).
Springer DOI
1511
BibRef
Honko, P.[Piotr],
Scalability of Data Decomposition Based Algorithms:
Attribute Reduction Problem,
PReMI15(387-396).
Springer DOI
1511
BibRef
Düntsch, I.[Ivo],
Gediga, G.[Günther],
Simplifying Contextual Structures,
PReMI15(23-32).
Springer DOI
1511
ICRA
BibRef
Campadelli, P.[Paola],
Casiraghi, E.[Elena],
Ceruti, C.[Claudio],
Neighborhood Selection for Dimensionality Reduction,
CIAP15(I:183-191).
Springer DOI
1511
BibRef
Banerjee, M.[Minakshi],
Islam, S.M.[Seikh Mazharul],
Tackling Curse of Dimensionality for Efficient Content Based Image
Retrieval,
PReMI15(149-158).
Springer DOI
1511
BibRef
Wang, S.,
Wang, C.,
Research on dimension reduction method for hyperspectral remote sensing
image based on global mixture coordination factor analysis,
IWIDF15(159-167).
DOI Link
1508
BibRef
Qiu, Q.A.[Qi-Ang],
Sapiro, G.[Guillermo],
Learning compressed image classification features,
ICIP14(5761-5765)
IEEE DOI
1502
Accuracy; Face; Image coding; Optimization; Testing; Training; Transforms
BibRef
Zhao, Z.[Zhong],
Feng, G.[Guocan],
A Dictionary-Based Algorithm for Dimensionality Reduction and Data
Reconstruction,
ICPR14(1556-1561)
IEEE DOI
1412
Algorithm design and analysis
BibRef
Nie, S.Q.[Si-Qi],
Ji, Q.A.[Qi-Ang],
Feature Learning Using Bayesian Linear Regression Model,
ICPR14(1502-1507)
IEEE DOI
1412
Accuracy
BibRef
Huang, P.H.[Pei-Hao],
Huang, Y.[Yan],
Wang, W.[Wei],
Wang, L.[Liang],
Deep Embedding Network for Clustering,
ICPR14(1532-1537)
IEEE DOI
1412
Clustering algorithms
BibRef
Huang, S.[Sheng],
Elgammal, A.M.[Ahmed M.],
Huangfu, L.[Luwen],
Yang, D.[Dan],
Zhang, X.H.[Xiao-Hong],
Globality-Locality Preserving Projections for Biometric Data
Dimensionality Reduction,
Biometrics14(15-20)
IEEE DOI
1409
Dimensionality Reduction
BibRef
Zhao, B.[Bin],
Xing, E.P.[Eric P.],
Hierarchical Feature Hashing for Fast Dimensionality Reduction,
CVPR14(2051-2058)
IEEE DOI
1409
BibRef
Floyd, D.,
Cloutier, R.,
Zigh, T.,
Nonlinear dimensionality reduction for structural discovery in image
processing,
AIPR13(1-6)
IEEE DOI
1408
image processing
BibRef
Turki, T.[Turki],
Roshan, U.[Usman],
Weighted Maximum Variance Dimensionality Reduction,
MCPR14(11-20).
Springer DOI
1407
BibRef
Martin, S.,
Szymanski, L.,
Singularity resolution for dimension reduction,
IVCNZ13(19-24)
IEEE DOI
1402
algebra
BibRef
Su, B.[Bing],
Ding, X.Q.[Xiao-Qing],
Linear Sequence Discriminant Analysis:
A Model-Based Dimensionality Reduction Method for Vector Sequences,
ICCV13(889-896)
IEEE DOI
1403
BibRef
Zhong, G.Q.[Guo-Qiang],
Chherawala, Y.,
Cheriet, M.,
An Empirical Evaluation of Supervised Dimensionality Reduction for
Recognition,
ICDAR13(1315-1319)
IEEE DOI
1312
document image processing
BibRef
Campadelli, P.[Paola],
Casiraghi, E.[Elena],
Local Intrinsic Dimensionality Based Features for Clustering,
CIAP13(I:41-50).
Springer DOI
1311
BibRef
Bull, G.,
Gao, J.B.[Jun-Bin],
Transposed Low Rank Representation for Image Classification,
DICTA12(1-7).
IEEE DOI
1303
BibRef
Hino, H.[Hideitsu],
Wakayama, K.[Keigo],
Murata, N.[Noboru],
Sliced inverse regression with conditional entropy minimization,
ICPR12(1185-1188).
WWW Link.
1302
BibRef
Zheng, Y.[Yali],
Tang, Y.Y.[Yuan Yan],
Fang, B.[Bin],
Zhang, T.P.[Tai-Ping],
Orthogonal Isometric Projection,
ICPR12(405-408).
WWW Link.
1302
Orthogonal Isometric Projection for dimensionality reduction.
BibRef
Liu, X.[Xi],
Liu, R.J.[Ru-Jie],
Li, F.[Fei],
Cao, Q.[Qiong],
Graph-based dimensionality reduction for KNN-based image annotation,
ICPR12(1253-1256).
WWW Link.
1302
BibRef
Liao, W.H.[Wen-Hung],
Commensurate dimensionality reduction for extended local ternary
patterns,
ICPR12(3013-3016).
WWW Link.
1302
BibRef
Zhang, X.Y.[Xu-Yao],
Liu, C.L.[Cheng-Lin],
Confused Distance Maximization for Large Category Dimensionality
Reduction,
FHR12(213-218).
IEEE DOI
1302
BibRef
Xu, B.[Bo],
Huang, K.Z.[Kai-Zhu],
Liu, C.L.[Cheng-Lin],
Dimensionality Reduction by Minimal Distance Maximization,
ICPR10(569-572).
IEEE DOI
1008
BibRef
Raducanu, B.[Bogdan],
Dornaika, F.[Fadi],
Out-of-Sample Embedding by Sparse Representation,
SSSPR12(336-344).
Springer DOI
1211
BibRef
Hariharan, B.[Bharath],
Malik, J.[Jitendra],
Ramanan, D.[Deva],
Discriminative Decorrelation for Clustering and Classification,
ECCV12(IV: 459-472).
Springer DOI
1210
BibRef
Nguyen, H.V.[Hien V.],
Patel, V.M.[Vishal M.],
Nasrabadi, N.M.[Nasser M.],
Chellappa, R.[Rama],
Sparse Embedding:
A Framework for Sparsity Promoting Dimensionality Reduction,
ECCV12(VI: 414-427).
Springer DOI
1210
BibRef
Hong, Y.[Yi],
Li, Q.N.[Quan-Nan],
Jiang, J.Y.[Jia-Yan],
Tu, Z.W.[Zhuo-Wen],
Learning a mixture of sparse distance metrics for classification and
dimensionality reduction,
ICCV11(906-913).
IEEE DOI
1201
neighborhood components analysis. Mixture of sparse metrics
BibRef
Gan, L.[Lu],
Do, T.T.[Thong T.],
Tran, T.D.[Trac D.],
Fast dimension reduction through random permutation,
ICIP10(3353-3356).
IEEE DOI
1009
BibRef
Sankaran, P.[Praveen],
Asari, V.[Vijayan],
A second order polynomial based subspace projection method for
dimensionality reduction,
ICIP10(3857-3860).
IEEE DOI
1009
BibRef
Sulic, V.[Vildana],
Pers, J.[Janez],
Kristan, M.[Matej],
Kovacic, S.[Stanislav],
Dimensionality Reduction for Distributed Vision Systems Using Random
Projection,
ICPR10(380-383).
IEEE DOI
1008
BibRef
Aouada, D.[Djamila],
Baryshnikov, Y.[Yuliy],
Krim, H.[Hamid],
Mahalanobis-based Adaptive Nonlinear Dimension Reduction,
ICPR10(742-745).
IEEE DOI
1008
BibRef
Hussain, S.U.[Sibt-Ul],
Triggs, B.[Bill],
Feature Sets and Dimensionality Reduction for Visual Object Detection,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Shyr, A.[Alex],
Urtasun, R.[Raquel],
Jordan, M.I.[Michael I.],
Sufficient dimension reduction for visual sequence classification,
CVPR10(3610-3617).
IEEE DOI
1006
BibRef
Wang, P.[Peng],
Shen, C.H.[Chun-Hua],
Zheng, H.[Hong],
Ren, Z.[Zhang],
A Variant of the Trace Quotient Formulation for Dimensionality
Reduction,
ACCV09(III: 277-286).
Springer DOI
0909
BibRef
Wu, D.[Di],
Zhou, Z.L.[Zi-Li],
Feng, S.J.[Shui-Juan],
He, Y.[Yong],
Uninformation Variable Elimination and Successive Projections Algorithm
in Mid-Infrared Spectral Wavenumber Selection,
CISP09(1-5).
IEEE DOI
0910
BibRef
Sun, Y.K.[Ying-Kai],
Chen, H.[Hai],
Application of Rough Set in Image's Feature Attributes Reduction,
CISP09(1-4).
IEEE DOI
0910
BibRef
Xu, X.L.[Xiao-Li],
Chen, T.[Tao],
ISOMAP Algorithm-Based Feature Extraction for Electromechanical
Equipment Fault Prediction,
CISP09(1-4).
IEEE DOI
0910
BibRef
Sáenz, C.[Carlos],
Hernández, B.[Begoña],
Alberdi, C.[Coro],
Alfonso, S.[Santiago],
Diñeiro, J.M.[José Manuel],
The Number of Linearly Independent Vectors in Spectral Databases,
SCIA09(570-579).
Springer DOI
0906
BibRef
Gu, G.D.[Guo-Dong],
Zhang, Y.S.[Yong-Shun],
Hu, J.H.[Jun-Hong],
Shen, K.[Kai],
An attribute fast reduction algorithm based on modified discernable
matrix of S-rough sets,
IASP09(366-368).
IEEE DOI
0904
BibRef
Jeong, S.D.[Seung-Do],
Kim, S.W.[Sang-Wook],
Kim, W.Y.[Whoi-Yul],
Choi, B.U.[Byung-Uk],
Effective dimensionality reduction in multimedia applications,
CIIP09(82-87).
IEEE DOI
0903
BibRef
Kashima, H.[Hisashi],
Yamasaki, K.[Kazutaka],
Inokuchi, A.[Akihiro],
Saigo, H.[Hiroto],
Regression with interval output values,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jia, Y.Q.[Yang-Qing],
Zhang, C.S.[Chang-Shui],
Local Regularized Least-Square Dimensionality Reduction,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mahmoudi, M.[Mona],
Vandergheynst, P.[Pierre],
Sorci, M.[Matteo],
On the estimation of geodesic paths on sampled manifolds under random
projections,
ICIP08(1840-1843).
IEEE DOI
0810
BibRef
Ribeiro, B.[Bernardete],
Vieira, A.[Armando],
Carvalho das Neves, J.[João],
Supervised Isomap with Dissimilarity Measures in Embedding Learning,
CIARP08(389-396).
Springer DOI
0809
BibRef
Shen, C.H.[Chun-Hua],
Li, H.D.[Hong-Dong],
Brooks, M.J.[Michael J.],
A Convex Programming Approach to the Trace Quotient Problem,
ACCV07(II: 227-235).
Springer DOI
0711
Apply to manifold learning, low-dimension embedding.
BibRef
Li, J.[Jun],
Hao, P.W.[Peng-Wei],
Reliable Representation of Data on Manifolds,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Earlier:
Hierarchical Structuring of Data on Manifolds,
CVPR07(1-8).
IEEE DOI
0706
For new sample, find landmark points for classification.
BibRef
Chen, J.H.[Jian-Hui],
Ye, J.P.[Jie-Ping],
Li, Q.[Qi],
Integrating Global and Local Structures:
A Least Squares Framework for Dimensionality Reduction,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Yang, Z.R.[Zhi-Rong],
Laaksonen, J.T.[Jorma T.],
Regularized Neighborhood Component Analysis,
SCIA07(253-262).
Springer DOI
0706
Neighborhood Component Analysis and Relevant Component Analysis.
BibRef
Li, Y.Z.[Yong-Zhi],
Ming, F.[Feng],
Yang, J.Y.[Jing-Yu],
Pan, R.L.[Ren-Liang],
An Efficient Method of Nonlinear Feature Extraction Based on SVM,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Song, F.X.[Feng-Xi],
Zhang, D.[David],
Chen, Q.L.[Qing-Long],
Yang, J.Y.[Jing-Yu],
A Novel Supervised Dimensionality Reduction Algorithm for Online Image
Recognition,
PSIVT06(198-207).
Springer DOI
0612
BibRef
Yan, S.C.[Shui-Cheng],
Tang, X.[Xiaoou],
Dimensionality Reduction with Adaptive Kernels,
ICPR06(II: 626-629).
IEEE DOI
0609
BibRef
Chen, H.F.[Hai-Feng],
Jiang, G.F.[Guo-Fei],
Yoshihira, K.[Kenji],
Robust Nonlinear Dimensionality Reduction for Manifold Learning,
ICPR06(II: 447-450).
IEEE DOI
0609
BibRef
Yu, K.[Kai],
Yu, S.P.[Shi-Peng],
Tresp, V.[Volker],
Multi-Output Regularized Projection,
CVPR05(II: 597-602).
IEEE DOI
0507
BibRef
Wolf, L.B.[Lior B.],
Bileschi, S.M.[Stan M.],
Combining Variable Selection with Dimensionality Reduction,
CVPR05(II: 801-806).
IEEE DOI
0507
BibRef
And:
CSAIL-2005-019, March 2005.
WWW Link.
BibRef
Andersson, F.[Fredrik],
Nilsson, J.[Jens],
Nonlinear Dimensionality Reduction Using Circuit Models,
SCIA05(950-959).
Springer DOI
0506
BibRef
Trujillo, M.,
Sadki, M.,
Correspondence analysis applied to textural features recognition,
Southwest04(119-123).
IEEE DOI
0411
Correspondencde Analysis for dimensionality reduction.
BibRef
Brown, M.,
Costen, N.P.,
Akamatsu, S.,
Efficient calculation of the complete optimal classification set,
ICPR04(II: 307-310).
IEEE DOI
0409
BibRef
Shimano, M.,
Nagao, K.,
Simultaneous optimization of class configuration and feature space for
object recognition,
ICPR04(II: 7-10).
IEEE DOI
0409
BibRef
Wang, J.[Jia],
Lu, H.Q.[Han-Qing],
Liu, Q.S.[Qing-Shan],
Feature space analysis using low-order tensor voting,
ICIP04(IV: 2681-2684).
IEEE DOI
0505
BibRef
And:
Tensor voting toward feature space analysis,
ICPR04(III: 462-465).
IEEE DOI
0409
BibRef
Dasarathy, B.V.,
Sánchez, J.S.,
Tandem Fusion of Nearest Neighbor Editing and Condensing Algorithms:
Data Dimensionality Effects,
ICPR00(Vol II: 692-695).
IEEE DOI
0009
BibRef
Piper, J.,
Poole, I.,
Carothers, A.,
Stein's paradox and improved quadratic discrimination of real and
simulated data by covariance weighting,
ICPR94(B:529-532).
IEEE DOI
9410
Stein's paradox -- 1956.
BibRef
Valev, V.,
On the representation of training tables in a K-valued code and the
construction of empirical regularities,
ICPR88(II: 779-781).
IEEE DOI
8811
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Semi-Supervised, Unsupervised Dimensionality Reduction .