Yan, S.C.[Shui-Cheng],
Xu, D.[Dong],
Zhang, B.Y.[Ben-Yu],
Zhang, H.J.[Hong-Jiang],
Yang, Q.A.[Qi-Ang],
Lin, S.,
Graph Embedding and Extensions: A General Framework for Dimensionality
Reduction,
PAMI(29), No. 1, January 2007, pp. 40-51.
IEEE DOI
0701
Graph embedding formulation to unify various dimensionality reduction
techniques.
An intrinsic graph and a penalty graph to implement Marginal Fisher Analysis.
Overcome limitations of LDA.
BibRef
Yan, S.C.[Shui-Cheng],
Xu, D.[Dong],
Zhang, B.Y.[Ben-Yu],
Zhang, H.J.[Hong-Jiang],
Graph Embedding: A General Framework for Dimensionality Reduction,
CVPR05(II: 830-837).
IEEE DOI
0507
BibRef
Han, L.[Lin],
Escolano, F.[Francisco],
Hancock, E.R.[Edwin R.],
Wilson, R.C.[Richard C.],
Graph characterizations from von Neumann entropy,
PRL(33), No. 15, 1 November 2012, pp. 1958-1967.
Elsevier DOI
1210
BibRef
Earlier: A3, A1, A4, Only:
Information theoretic methods for learning generative models for
relational structures,
SIG11(692-693).
IEEE DOI
1201
BibRef
Earlier: A2, A3, Only:
The Mutual Information between Graphs,
ICPR14(94-99)
IEEE DOI
1412
Graph characterizations; Von Neumann entropy; Estrada's heterogeneity
index; Thermodynamic depth complexity.
Entropy
BibRef
Han, L.[Lin],
Hancock, E.R.[Edwin R.],
Wilson, R.C.[Richard C.],
Characterizing Graphs Using Approximate von Neumann Entropy,
IbPRIA11(484-491).
Springer DOI
1106
BibRef
And:
Entropy versus Heterogeneity for Graphs,
GbRPR11(32-41).
Springer DOI
1105
BibRef
And:
Learning Generative Graph Prototypes Using Simplified von Neumann
Entropy,
GbRPR11(42-51).
Springer DOI
1105
BibRef
Earlier: A1, A3, A2:
A Supergraph-based Generative Model,
ICPR10(1566-1569).
IEEE DOI
1008
From supergraph via edit operations.
BibRef
Ye, C.[Cheng],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
A Jensen-Shannon Divergence Kernel for Directed Graphs,
SSSPR16(196-206).
Springer DOI
1611
BibRef
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Graph Kernels from the Jensen-Shannon Divergence,
JMIV(47), No. 1-2, September 2013, pp. 60-69.
WWW Link.
1307
BibRef
And:
A Fast Jensen-Shannon Subgraph Kernel,
CIAP13(I:181-190).
Springer DOI
1311
BibRef
Earlier:
Graph Complexity from the Jensen-Shannon Divergence,
SSSPR12(79-88).
Springer DOI
1211
BibRef
Earlier:
Graph Clustering Using the Jensen-Shannon Kernel,
CAIP11(I: 394-401).
Springer DOI
1109
BibRef
Bai, L.[Lu],
Bunke, H.[Horst],
Hancock, E.R.[Edwin R.],
An Attributed Graph Kernel from the Jensen-Shannon Divergence,
ICPR14(88-93)
IEEE DOI
1412
Accuracy
BibRef
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Han, L.[Lin],
A Graph Embedding Method Using the Jensen-Shannon Divergence,
CAIP13(102-109).
Springer DOI
1308
BibRef
Bai, L.[Lu],
Rossi, L.[Luca],
Cui, L.X.[Li-Xin],
Zhang, Z.H.[Zhi-Hong],
Ren, P.[Peng],
Bai, X.[Xiao],
Hancock, E.R.[Edwin R.],
Quantum kernels for unattributed graphs using discrete-time quantum
walks,
PRL(87), No. 1, 2017, pp. 96-103.
Elsevier DOI
1703
BibRef
Earlier: A1, A4, A5, A2, A7, Only
An Edge-Based Matching Kernel Through Discrete-Time Quantum Walks,
CIAP15(I:27-38).
Springer DOI
1511
BibRef
And: A1, A2, A5, A4, A7, Only:
A Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks,
GbRPR15(252-261).
Springer DOI
1511
Graph kernels
BibRef
Bai, L.[Lu],
Rossi, L.[Luca],
Torsello, A.[Andrea],
Hancock, E.R.[Edwin R.],
A quantum Jensen-Shannon graph kernel for unattributed graphs,
PR(48), No. 2, 2015, pp. 344-355.
Elsevier DOI
1411
BibRef
Earlier: A2, A3, A4, Only:
Manifold Learning and the Quantum Jensen-Shannon Divergence Kernel,
CAIP13(62-69).
Springer DOI
1308
Graph kernels
See also Clustering and Embedding Using Commute Times.
BibRef
Bai, L.[Lu],
Ren, P.[Peng],
Hancock, E.R.[Edwin R.],
A Hypergraph Kernel from Isomorphism Tests,
ICPR14(3880-3885)
IEEE DOI
1412
Accuracy
BibRef
Earlier: A1, A3, A2:
A Jensen-Shannon Kernel for Hypergraphs,
SSSPR12(181-189).
Springer DOI
1211
BibRef
And: A1, A3, A2:
Jensen-Shannon graph kernel using information functionals,
ICPR12(2877-2880).
WWW Link.
1302
BibRef
Wu, M.H.[Mei-Hong],
Zeng, Y.B.[Yang-Bin],
Zhang, Z.H.[Zhi-Hong],
Hong, H.Y.[Hai-Yun],
Xu, Z.B.[Zhuo-Bin],
Cui, L.X.[Li-Xin],
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Directed Network Analysis Using Transfer Entropy Component Analysis,
SSSPR18(491-500).
Springer DOI
1810
BibRef
Cui, L.X.[Li-Xin],
Bai, L.[Lu],
Rossi, L.[Luca],
Zhang, Z.H.[Zhi-Hong],
Xu, L.X.[Li-Xiang],
Hancock, E.R.[Edwin R.],
A Mixed Entropy Local-Global Reproducing Kernel for Attributed Graphs,
SSSPR18(501-511).
Springer DOI
1810
BibRef
Bai, L.[Lu],
Zhang, Z.H.[Zhi-Hong],
Wang, C.Y.[Chao-Yan],
Hancock, E.R.[Edwin R.],
An Edge-Based Matching Kernel for Graphs Through the Directed Line
Graphs,
CAIP15(II:85-95).
Springer DOI
1511
BibRef
Bai, L.[Lu],
Rossi, L.[Luca],
Cui, L.X.[Li-Xin],
Hancock, E.R.,
A transitive aligned Weisfeiler-Lehman subtree kernel,
ICPR16(396-401)
IEEE DOI
1705
Convolution, Entropy, Indexes, Kernel, Reliability, Standards, Steady-state
BibRef
Bai, L.[Lu],
Rossi, L.[Luca],
Cui, L.X.[Li-Xin],
Hancock, E.R.,
A novel entropy-based graph signature from the average mixing matrix,
ICPR16(1339-1344)
IEEE DOI
1705
Eigenvalues and eigenfunctions, Entropy, Kernel, Laplace equations,
Probability distribution, Quantum, computing
BibRef
Bai, L.[Lu],
Cui, L.X.[Li-Xin],
Wang, Y.[Yue],
Jin, X.[Xin],
Bai, X.[Xiao],
Hancock, E.R.,
Shape classification with a vertex clustering graph kernel,
ICPR16(2634-2639)
IEEE DOI
1705
Digital images, Kernel, Shape,
Time complexity, Videos
BibRef
Zhang, Z.H.[Zhi-Hong],
Ren, P.[Peng],
Hancock, E.R.[Edwin R.],
Unsupervised Feature Selection Via Hypergraph Embedding,
BMVC12(39).
DOI Link
1301
BibRef
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Han, L.[Lin],
Ren, P.[Peng],
Graph clustering using graph entropy complexity traces,
ICPR12(2881-2884).
WWW Link.
1302
BibRef
Bai, L.[Lu],
Ren, P.[Peng],
Bai, X.[Xiao],
Hancock, E.R.[Edwin R.],
A Graph Kernel from the Depth-Based Representation,
SSSPR14(1-11).
Springer DOI
1408
BibRef
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Fast depth-based subgraph kernels for unattributed graphs,
PR(50), No. 1, 2016, pp. 233-245.
Elsevier DOI
1512
Depth-based representations
BibRef
Qiu, H.J.[Huai-Jun],
Hancock, E.R.[Edwin R.],
Graph simplification and matching using commute times,
PR(40), No. 10, October 2007, pp. 2874-2889.
Elsevier DOI
0707
BibRef
Earlier:
Spanning Trees from the Commute Times of Random Walks on Graphs,
ICIAR06(II: 375-385).
Springer DOI
0610
BibRef
And:
Graph Embedding Using Commute Time,
SSPR06(441-449).
Springer DOI
0608
BibRef
And:
Graph Matching using Commute Time Spanning Trees,
ICPR06(III: 1224-1227).
IEEE DOI
0609
BibRef
And:
ICPR06(IV: 955).
IEEE DOI
0609
BibRef
And:
Robust Multi-body Motion Tracking Using Commute Time Clustering,
ECCV06(I: 160-173).
Springer DOI
0608
Graph-matching; Graph simplification; Commute time; Graph spectrum
BibRef
Bai, L.[Lu],
Cui, L.X.[Li-Xin],
Escolano, F.,
Hancock, E.R.[Edwin R.],
An Edge-Based Matching Kernel on Commute-Time Spanning Trees,
ICPR16(2103-2108)
IEEE DOI
1705
Computational complexity, Convolution, Hafnium, Kernel,
Pattern matching, Standards
BibRef
Qiu, H.J.[Huai-Jun],
Hancock, E.R.[Edwin R.],
Clustering and Embedding Using Commute Times,
PAMI(29), No. 11, November 2007, pp. 1873-1890.
IEEE DOI
0711
BibRef
Earlier:
Commute Times, Discrete Green's Functions and Graph Matching,
CIAP05(454-462).
Springer DOI
0509
BibRef
And:
Commute Times for Graph Spectral Clustering,
CAIP05(128).
Springer DOI
0509
See also quantum Jensen-Shannon graph kernel for unattributed graphs, A.
BibRef
Robles-Kelly, A.[Antonio],
Hancock, E.R.[Edwin R.],
A Riemannian approach to graph embedding,
PR(40), No. 3, March 2007, pp. 1042-1056.
Elsevier DOI
0611
Graph embedding; Riemannian geometry; Combinatorial Laplacian
BibRef
Robles-Kelly, A.[Antonio],
Hancock, E.R.[Edwin R.],
Graph Matching using Adjacency Matrix Markov Chains,
BMVC01(Session 5: Matching & Retrieval).
HTML Version. University of York
0110
BibRef
Torsello, A.[Andrea],
Hancock, E.R.[Edwin R.],
Graph embedding using tree edit-union,
PR(40), No. 5, May 2007, pp. 1393-1405.
Elsevier DOI
0702
2D shape; Skeleton; Tree-union; Embedding
See also Discovering Shape Classes using Tree Edit-Distance and Pairwise Clustering.
BibRef
Torsello, A.[Andrea],
An importance sampling approach to learning structural representations
of shape,
CVPR08(1-7).
IEEE DOI
0806
BibRef
Xiao, B.[Bai],
Hancock, E.R.[Edwin R.],
Wilson, R.C.[Richard C.],
A generative model for graph matching and embedding,
CVIU(113), No. 7, July 2009, pp. 777-789.
Elsevier DOI
0905
BibRef
And: A1, A3, A2:
Quantitative Evaluation on Heat Kernel Permutation Invariants,
SSPR08(217-226).
Springer DOI
0812
BibRef
Earlier: A1, A3, A2:
Object recognition using graph spectral invariants,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And: A2, A3, A1:
Characterising Graphs using the Heat Kernel,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Earlier: A2, A3, A1:
Graph Clustering using Symmetric Polynomials and Local Linear Embedding,
BMVC03(xx-yy).
HTML Version.
0409
Graph embedding; Shape analysis; Generative model; Heat-kernel analysis
BibRef
Xiao, B.[Bai],
Hancock, E.R.[Edwin R.],
Wilson, R.C.[Richard C.],
Graph characteristics from the heat kernel trace,
PR(42), No. 11, November 2009, pp. 2589-2606.
Elsevier DOI
0907
Heat kernel trace; Graph invariants; Image clustering and recognition
BibRef
Xiao, B.[Bai],
Hancock, E.R.[Edwin R.],
Wilson, R.C.[Richard C.],
Geometric characterization and clustering of graphs using heat kernel
embeddings,
IVC(28), No. 6, June 2010, pp. 1003-1021.
Elsevier DOI
1003
Graph spectra; Kernel methods; Graph embedding; Differential geometry;
Graph clustering
BibRef
Xiao, B.[Bai],
Hancock, E.R.[Edwin R.],
A Spectral Generative Model for Graph Structure,
SSPR06(173-181).
Springer DOI
0608
BibRef
Earlier:
Geometric Characterisation of Graphs,
CIAP05(471-478).
Springer DOI
0509
BibRef
Xiao, B.[Bai],
Hancock, E.R.[Edwin R.],
Clustering Shapes Using Heat Content Invariants,
ICIP05(I: 1169-1172).
IEEE DOI
0512
BibRef
Earlier:
Graph Clustering Using Heat Content Invariants,
IbPRIA05(II:123).
Springer DOI
0509
BibRef
Xiao, B.[Bai],
Hancock, E.R.[Edwin R.],
Trace Formula Analysis of Graphs,
SSPR06(306-313).
Springer DOI
0608
BibRef
Xiao, B.[Bai],
Yu, H.[Hang],
Hancock, E.R.[Edwin R.],
Graph Matching Using Manifold Embedding,
ICIAR04(I: 352-359).
Springer DOI
0409
BibRef
And:
Graph matching using spectral embedding and alignment,
ICPR04(III: 398-401).
IEEE DOI
0409
BibRef
And:
Graph Matching using Spectral Embedding and Semidefinite Programming,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Luo, B.[Bin],
Wilson, R.C.,
Hancock, E.R.,
Graph manifolds from spectral polynomials,
ICPR04(III: 402-405).
IEEE DOI
0409
BibRef
Zhao, H.F.[Hai-Feng],
Robles-Kelly, A.[Antonio],
Zhou, J.[Jun],
Lu, J.F.[Jian-Feng],
Yang, J.Y.[Jing-Yu],
Graph attribute embedding via Riemannian submersion learning,
CVIU(115), No. 7, July 2011, pp. 962-975.
Elsevier DOI
1106
Graph embedding; Riemannian geometry; Relational matching
BibRef
Zhao, H.F.[Hai-Feng],
Robles-Kelly, A.,
Zhou, J.[Jun],
On the Use of the Chi-Squared Distance for the Structured Learning of
Graph Embeddings,
DICTA11(422-428).
IEEE DOI
1205
BibRef
Czech, W.W.[Wojciech W.],
Invariants of distance k-graphs for graph embedding,
PRL(33), No. 15, 1 November 2012, pp. 1968-1979.
Elsevier DOI
1210
BibRef
Earlier:
Graph Descriptors from B-Matrix Representation,
GbRPR11(12-21).
Springer DOI
1105
Based on distances between graph vertices.
Graph embedding; Graph invariants; B-matrix
BibRef
Liu, X.,
Yan, S.,
Jin, H.,
Projective Nonnegative Graph Embedding,
IP(19), No. 5, May 2010, pp. 1126-1137.
IEEE DOI
1004
BibRef
Jouili, S.[Salim],
Tabbone, S.A.[Salvatore A.],
Hypergraph-based image retrieval for graph-based representation,
PR(45), No. 11, November 2012, pp. 4054-4068.
Elsevier DOI
1206
BibRef
Earlier:
Towards Performance Evaluation of Graph-Based Representation,
GbRPR11(72-81).
Springer DOI
1105
BibRef
Earlier:
Graph Embedding Using Constant Shift Embedding,
ICPR-Contests10(83-92).
Springer DOI
1008
Graph indexing; Graph retrieval; CBIR
BibRef
Jouili, S.[Salim],
Tabbone, S.A.[Salvatore A.],
Graph Matching Based on Node Signatures,
GbRPR09(154-163).
Springer DOI
0905
BibRef
Jouili, S.[Salim],
Tabbone, S.A.[Salvatore A.],
Lacroix, V.[Vinciane],
Median Graph Shift: A New Clustering Algorithm for Graph Domain,
ICPR10(950-953).
IEEE DOI
1008
BibRef
Jouili, S.[Salim],
Mili, I.[Ines],
Tabbone, S.A.[Salvatore A.],
Attributed Graph Matching Using Local Descriptions,
ACIVS09(89-99).
Springer DOI
0909
BibRef
Fu, Y.[Yun],
Ma, Y.Q.[Yun-Qian], (Eds.)
Graph Embedding for Pattern Analysis,
Springer2013.
ISBN: 978-1-4614-4456-5
Hancock, E.R.[Edwin R.],
Wilson, R.C.[Richard C.],
Pattern analysis with graphs: Parallel work at Bern and York,
PRL(33), No. 7, 1 May 2012, pp. 833-841.
Elsevier DOI
1203
Award, King Sun Fu, Related. An invited related paper.
Graph matching; Edit distance; Graph clustering; Graph embedding
BibRef
Sun, C.[Chao],
Bao, B.K.[Bing-Kun],
Xu, C.S.[Chang-Sheng],
Inductive hierarchical nonnegative graph embedding for 'verb-object'
image classification,
MVA(25), No. 7, October 2014, pp. 1647-1659.
Springer DOI
1410
Objects and relations.
BibRef
Zhang, H.W.[Han-Wang],
Zha, Z.J.[Zheng-Jun],
Yang, Y.,
Yan, S.C.[Shui-Cheng],
Chua, T.S.[Tat-Seng],
Robust (Semi) Nonnegative Graph Embedding,
IP(23), No. 7, July 2014, pp. 2996-3012.
IEEE DOI
1407
Image reconstruction
BibRef
Zhang, H.W.[Han-Wang],
Zha, Z.J.[Zheng-Jun],
Yan, S.C.[Shui-Cheng],
Wang, M.[Meng],
Chua, T.S.[Tat-Seng],
Robust Non-negative Graph Embedding:
Towards noisy data, unreliable graphs, and noisy labels,
CVPR12(2464-2471).
IEEE DOI
1208
BibRef
Shi, X.,
Guo, Z.,
Lai, Z.,
Yang, Y.,
Bao, Z.,
Zhang, D.,
A Framework of Joint Graph Embedding and Sparse Regression for
Dimensionality Reduction,
IP(24), No. 4, April 2015, pp. 1341-1355.
IEEE DOI
1503
Algorithm design and analysis
BibRef
Xue, Z.H.[Zhao-Hui],
Du, P.J.[Pei-Jun],
Li, J.[Jun],
Su, H.J.[Hong-Jun],
Simultaneous Sparse Graph Embedding for Hyperspectral Image
Classification,
GeoRS(53), No. 11, November 2015, pp. 6114-6133.
IEEE DOI
1509
feature extraction
BibRef
Xue, Z.H.[Zhao-Hui],
Du, P.J.[Pei-Jun],
Li, J.[Jun],
Su, H.J.[Hong-Jun],
Sparse Graph Regularization for Hyperspectral Remote Sensing Image
Classification,
GeoRS(55), No. 4, April 2017, pp. 2351-2366.
IEEE DOI
1704
geophysical image processing
BibRef
Maronidis, A.,
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Subclass Graph Embedding and a Marginal Fisher Analysis paradigm,
PR(48), No. 12, 2015, pp. 4024-4035.
Elsevier DOI
1509
Dimensionality reduction
BibRef
Iosifidis, A.[Alexandros],
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Sparse extreme learning machine classifier exploiting intrinsic
graphs,
PRL(65), No. 1, 2015, pp. 192-196.
Elsevier DOI
1511
Sparse extreme learning machine
BibRef
Vretos, N.,
Tefas, A.,
Pitas, I.,
A novel dimensionality reduction technique based on kernel optimization
through graph embedding,
SIViP(9), No. 1 Supp, December 2015, pp. 3-10.
WWW Link.
1601
BibRef
Huang, S.[Sheng],
Yu, Y.[Yang],
Yang, D.[Dan],
Elgammal, A.M.[Ahmed M.],
Yang, D.[Dong],
Collaborative Graph Embedding: A Simple Way to Generally Enhance
Subspace Learning Algorithms,
CirSysVideo(26), No. 10, October 2016, pp. 1835-1845.
IEEE DOI
1610
Algorithm design and analysis
BibRef
Huang, S.[Sheng],
Elgammal, A.E.[Ahmed E.],
Yang, D.[Dan],
On the effect of hyperedge weights on hypergraph learning,
IVC(57), No. 1, 2017, pp. 89-101.
Elsevier DOI
1702
Hypergraph learning
BibRef
Jian, M.[Meng],
Jung, C.[Cheolkon],
Zheng, Y.G.[Yao-Guo],
Discriminative Structure Learning for Semantic Concept Detection With
Graph Embedding,
MultMed(16), No. 2, February 2014, pp. 413-426.
IEEE DOI
1404
content management
BibRef
Jian, M.[Meng],
Jung, C.[Cheolkon],
Semi-Supervised Bi-Dictionary Learning for Image Classification With
Smooth Representation-Based Label Propagation,
MultMed(18), No. 3, March 2016, pp. 458-473.
IEEE DOI
1603
Bridges
BibRef
Vento, M.[Mario],
A long trip in the charming world of graphs for Pattern Recognition,
PR(48), No. 2, 2015, pp. 291-301.
Elsevier DOI
1411
Graph clustering
BibRef
Foggia, P.[Pasquale],
Vento, M.[Mario],
Graph Embedding for Pattern Recognition,
ICPR-Contests10(75-82).
Springer DOI
1008
BibRef
Chen, Y.L.[Yi-Lei],
Hsu, C.T.[Chiou-Ting],
Multilinear Graph Embedding:
Representation and Regularization for Images,
IP(23), No. 2, February 2014, pp. 741-754.
IEEE DOI
1402
graph theory
BibRef
Mousavi, S.F.[Seyedeh Fatemeh],
Safayani, M.[Mehran],
Mirzaei, A.[Abdolreza],
Bahonar, H.[Hoda],
Hierarchical graph embedding in vector space by graph pyramid,
PR(61), No. 1, 2017, pp. 245-254.
Elsevier DOI
1705
Graph embedding
BibRef
Sun, Y.[Yubao],
Wang, S.J.[Su-Juan],
Liu, Q.S.[Qing-Shan],
Hang, R.L.[Ren-Long],
Liu, G.C.[Guang-Can],
Hypergraph Embedding for Spatial-Spectral Joint Feature Extraction in
Hyperspectral Images,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Wang, X.D.[Xiao-Dong],
Chen, R.C.[Rung-Ching],
Hong, C.Q.[Chao-Qun],
Zeng, Z.Q.[Zhi-Qiang],
Zhou, Z.L.[Zhi-Li],
Semi-supervised multi-label feature selection via label correlation
analysis with L1-norm graph embedding,
IVC(63), No. 1, 2017, pp. 10-23.
Elsevier DOI
1706
Semi-supervised, learning
BibRef
Jansen, A.[Aren],
Sell, G.[Gregory],
Lyzinski, V.[Vince],
Scalable out-of-sample extension of graph embeddings using deep
neural networks,
PRL(94), No. 1, 2017, pp. 1-6.
Elsevier DOI
1708
Deep neural networks
BibRef
Bahonar, H.[Hoda],
Mirzaei, A.[Abdolreza],
Wilson, R.C.[Richard C.],
Diffusion wavelet embedding: A multi-resolution approach for graph
embedding in vector space,
PR(74), No. 1, 2018, pp. 518-530.
Elsevier DOI
1711
Spectral graph embedding.
BibRef
Wang, Y.,
Zhang, L.,
Tong, X.,
Nie, F.,
Huang, H.,
Mei, J.,
LRAGE: Learning Latent Relationships With Adaptive Graph Embedding
for Aerial Scene Classification,
GeoRS(56), No. 2, February 2018, pp. 621-634.
IEEE DOI
1802
Feature extraction, Kernel, Learning systems, Linear programming,
Measurement, Principal component analysis, Satellites,
latent relationship learning
BibRef
Yuan, Y.H.[Yun-Hao],
Sun, Q.S.[Quan-Sen],
Graph regularized multiset canonical correlations with applications
to joint feature extraction,
PR(47), No. 12, 2014, pp. 3907-3919.
Elsevier DOI
1410
Pattern recognition
BibRef
Yuan, Y.H.[Yun-Hao],
Sun, Q.S.[Quan-Sen],
Ge, H.W.[Hong-Wei],
Fractional-order embedding canonical correlation analysis and its
applications to multi-view dimensionality reduction and recognition,
PR(47), No. 3, 2014, pp. 1411-1424.
Elsevier DOI
1312
Pattern recognition
BibRef
Su, S.Z.[Shu-Zhi],
Ge, H.W.[Hong-Wei],
Yuan, Y.H.[Yun-Hao],
Multi-patch embedding canonical correlation analysis for multi-view
feature learning,
JVCIR(41), No. 1, 2016, pp. 47-57.
Elsevier DOI
1612
Multi-view feature learning
BibRef
Su, S.Z.[Shu-Zhi],
Ge, H.W.[Hong-Wei],
Tong, Y.B.[Yu-Bing],
Multi-graph embedding discriminative correlation feature learning for
image recognition,
SP:IC(60), No. 1, 2018, pp. 173-182.
Elsevier DOI
1712
Image recognition
BibRef
Wang, S.,
Zhu, W.,
Sparse Graph Embedding Unsupervised Feature Selection,
SMCS(48), No. 3, March 2018, pp. 329-341.
IEEE DOI
1802
Algorithm design and analysis, Clustering algorithms,
Dictionaries, Encoding, Machine learning algorithms, Optimization,
unsupervised learning
BibRef
Cui, P.[Peng],
Liu, S.W.[Shao-Wei],
Zhu, W.W.[Wen-Wu],
General Knowledge Embedded Image Representation Learning,
MultMed(20), No. 1, January 2018, pp. 198-207.
IEEE DOI
1801
common-sense reasoning, convolution, graph theory,
image representation, knowledge based systems,
multirelational graph embedding
BibRef
Liu, T.[Tianchi],
Lekamalage, C.K.L.[Chamara Kasun Liyanaarachchi],
Huang, G.B.[Guang-Bin],
Lin, Z.P.[Zhi-Ping],
An adaptive graph learning method based on dual data representations
for clustering,
PR(77), 2018, pp. 126-139.
Elsevier DOI
1802
Graph-based clustering, Constrained Laplacian rank,
Extreme learning machine, Embedding, Graph Laplacian
BibRef
Abeo, T.A.[Timothy Apasiba],
Shen, X.J.[Xiang-Jun],
Gou, J.P.[Jian-Ping],
Mao, Q.R.[Qi-Rong],
Bao, B.K.[Bing-Kun],
Li, S.Y.[Shu-Ying],
Dictionary-induced least squares framework for multi-view
dimensionality reduction with multi-manifold embeddings,
IET-CV(13), No. 2, March 2019, pp. 97-108.
DOI Link
BibRef
1903
Abeo, T.A.[Timothy Apasiba],
Shen, X.J.[Xiang-Jun],
Bao, B.K.[Bing-Kun],
Zha, Z.J.[Zheng-Jun],
Fan, J.P.[Jian-Ping],
A generalized multi-dictionary least squares framework regularized
with multi-graph embeddings,
PR(90), 2019, pp. 1-11.
Elsevier DOI
1903
Multi-view dimension reduction, Least squares, Multiple graphs,
Feature extraction, Classification
BibRef
Wang, S.S.[Shang-Si],
Arroyo, J.[Jesús],
Vogelstein, J.T.[Joshua T.],
Priebe, C.E.[Carey E.],
Joint Embedding of Graphs,
PAMI(43), No. 4, April 2021, pp. 1324-1336.
IEEE DOI
2103
Feature extraction, Symmetric matrices, Numerical models,
Task analysis, Inference algorithms, Stochastic processes,
statistical inference
BibRef
Shen, C.C.[Cen-Cheng],
Wang, S.S.[Shang-Si],
Badea, A.[Alexandra],
Priebe, C.E.[Carey E.],
Vogelstein, J.T.[Joshua T.],
Discovering the signal subgraph:
An iterative screening approach on graphs,
PRL(184), 2024, pp. 97-102.
Elsevier DOI
2408
Iterative screening, Distance correlation, Graph classification
BibRef
França, G.[Guilherme],
Rizzo, M.L.[Maria L.],
Vogelstein, J.T.[Joshua T.],
Kernel k-Groups via Hartigan's Method,
PAMI(43), No. 12, December 2021, pp. 4411-4425.
IEEE DOI
2112
Energy efficiency, Hilbert space, Probability distribution,
Extraterrestrial measurements, Machine learning,
stochastic block model
BibRef
Lu, J.L.[Jiang-Lin],
Wang, H.L.[Hai-Ling],
Zhou, J.[Jie],
Chen, Y.D.[Yu-Dong],
Lai, Z.H.[Zhi-Hui],
Hu, Q.H.[Qing-Hua],
Low-rank adaptive graph embedding for unsupervised feature extraction,
PR(113), 2021, pp. 107758.
Elsevier DOI
2103
Low-rank regression, Jointly sparse learning,
Adaptive graph embedding, Unsupervised feature extraction
BibRef
Zhang, B.[Bin],
Qiang, Q.Y.[Qian-Yao],
Wang, F.[Fei],
Nie, F.P.[Fei-Ping],
Flexible Multi-View Unsupervised Graph Embedding,
IP(30), 2021, pp. 4143-4156.
IEEE DOI
2104
Dimensionality reduction, Task analysis,
Principal component analysis, Sparse matrices, Laplace equations,
graph embedding
BibRef
Yang, H.[Hong],
Chen, L.[Ling],
Pan, S.R.[Shi-Rui],
Wang, H.S.[Hai-Shuai],
Zhang, P.[Peng],
Discrete embedding for attributed graphs,
PR(123), 2022, pp. 108368.
Elsevier DOI
2112
Attributed graphs, Graph embedding,
Weisfeiler-Lehman graph kernels, Learning to hash, Low-bit quantization
BibRef
Guo, L.[Lin],
Dai, Q.[Qun],
Graph Clustering via Variational Graph Embedding,
PR(122), 2022, pp. 108334.
Elsevier DOI
2112
Graph convolution neural network, Variational graph embedding,
Graph clustering, Variational graph auto-encoder
BibRef
Wan, M.H.[Ming-Hua],
Chen, X.Y.[Xue-Yu],
Zhan, T.M.[Tian-Ming],
Yang, G.[Guowei],
Tan, H.[Hai],
Zheng, H.[Hao],
Low-rank 2D local discriminant graph embedding for robust image
feature extraction,
PR(133), 2023, pp. 109034.
Elsevier DOI
2210
Feature extraction, Two-dimensional locality preserving projections (2DLPP),
Discrimination information
BibRef
Agibetov, A.[Asan],
Neural graph embeddings as explicit low-rank matrix factorization for
link prediction,
PR(133), 2023, pp. 108977.
Elsevier DOI
2210
Graph embedding, Random walks, Matrix factorization,
Information theory, Link prediction
BibRef
Hu, L.C.[Liang-Chen],
Dai, Z.L.[Zhen-Lei],
Tian, L.[Lei],
Zhang, W.S.[Wen-Sheng],
Class-Oriented Self-Learning Graph Embedding for Image Compact
Representation,
CirSysVideo(33), No. 1, January 2023, pp. 74-87.
IEEE DOI
2301
Sparse matrices, Manifolds, Machine learning algorithms,
Laplace equations, Heuristic algorithms, Data models, Data mining,
compact representation
BibRef
Yuan, R.W.[Rui-Wen],
Tang, Y.Q.[Yong-Qiang],
Xiao, Y.H.[Yang-Hao],
Zhang, W.S.[Wen-Sheng],
IBCS: Learning Information Bottleneck-Constrained Denoised Causal
Subgraph for Graph Classification,
PAMI(47), No. 3, March 2025, pp. 1627-1643.
IEEE DOI
2502
Noise measurement, Noise, Training, Feature extraction, Data mining,
Correlation, Automation, Vectors, Semantics, Object recognition,
information bottleneck
BibRef
Riba, P.[Pau],
Lladós, J.[Josep],
Fornés, A.[Alicia],
Dutta, A.[Anjan],
Large-Scale Graph Indexing Using Binary Embeddings of Node Contexts,
GbRPR15(208-217).
Springer DOI
1511
BibRef
Naeemi, M.A.,
Mohseni, H.,
Evaluation of graph embedding approach for dimensionality reduction
using different kernels,
IPRIA17(69-74)
IEEE DOI
1712
data analysis, geometry, graph theory, image classification,
linearisation techniques, statistical analysis,
similarity graph
BibRef
Robles-Kelly, A.,
Wei, R.[Ran],
Semi-supervised image labelling using barycentric graph embeddings,
ICPR16(1518-1523)
IEEE DOI
1705
Cost function, Eigenvalues and eigenfunctions,
Image color analysis, Image edge detection, Labeling,
Laplace equations, Mathematical, model
BibRef
Fukui, K.,
Okuno, A.,
Shimodaira, H.,
Image and tag retrieval by leveraging image-group links with
multi-domain graph embedding,
ICIP16(221-225)
IEEE DOI
1610
Correlation
BibRef
Jiménez-Guarneros, M.[Magdiel],
Carrasco-Ochoa, J.A.[Jesús Ariel],
Martínez-Trinidad, J.F.[José Francisco],
Prototype Selection for Graph Embedding Using Instance Selection,
MCPR15(84-92).
Springer DOI
1506
See also Empirical Study of Oversampling and Undersampling for Instance Selection Methods on Imbalance Datasets, An.
BibRef
Aydos, F.[Fahri],
Soran, A.[Ahmet],
Demirci, M.F.[M. Fatih],
Class Representative Computation Using Graph Embedding,
CIAP13(I:452-461).
Springer DOI
1311
BibRef
Huang, Z.W.[Zhi-Wu],
Shan, S.G.[Shi-Guang],
Zhang, H.H.[Hai-Hong],
Lao, S.H.[Shi-Hong],
Chen, X.L.[Xi-Lin],
Cross-view Graph Embedding,
ACCV12(II:770-781).
Springer DOI
1304
face recognition across poses and face recognition across resolutions.
BibRef
Olvera-López, J.A.[J. Arturo],
Carrasco-Ochoa, J.A.[J. Ariel],
Martínez-Trinidad, J.F.[José Francisco],
Prototype Selection Via Prototype Relevance,
CIARP08(153-160).
Springer DOI
0809
BibRef
Yang, J.C.[Jian-Chao],
Yang, S.C.[Shui-Cheng],
Fu, Y.[Yun],
Li, X.L.[Xue-Long],
Huang, T.S.[Thomas S.],
Non-negative graph embedding,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Linear Prediction Techniques .