7.3.2 Use of Skeletons for Recognition and Representation

Chapter Contents (Back)
Skeletons. Features.

Calabi, L., Hartnett, W.E.,
Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons,
AMM(75), 1968, pp. 335-342. BibRef 6800

Maragos, P.A., Schafer, R.W.,
Morphological Skeleton Representation and Coding of Binary Images,
ASSP(34), October 1986, pp. 1228-1244.
See also Two-Dimensional Linear Prediction and Its Application to Adaptive Predictive Coding of Images. BibRef 8610

Sinha, R.M.K.,
A Width-Independent Algorithm for Character Skeleton Estimation,
CVGIP(40), No. 3, December 1987, pp. 388-397.
Elsevier DOI Skeletons of thick characters. BibRef 8712

Goutsias, J., Schonfeld, D.,
Morphological Representation of Discrete and Binary Images,
TSP(39), June 1991, pp. 1369-1379.
See also Morphological Analysis of Discrete Random Shapes. BibRef 9106

Schonfeld, D., Goutsias, J.,
On the Morphological Representation of Binary Images in a Noisy Environment,
JVCIR(2), 1991, pp. 17-30. Restoration:
See also Optimal Morphological Pattern Restoration from Noisy Binary Images. Representation:
See also On the Invertibility of the Morphological Representation of Binary Images. BibRef 9100

Trahanias, P.E.,
Binary Shape Recognition Using the Morphological Skeleton Transform,
PR(25), No. 11, November 1992, pp. 1277-1288.
Elsevier DOI BibRef 9211

Mayya, N., Rijan, V.T.,
An Efficient Shape Representation Scheme Using Voronoi Skeletons,
PRL(16), No. 2, February 1995, pp. 147-160. BibRef 9502

Chen, S.S., Shih, F.Y.,
Skeletonization for Fuzzy Degraded Character Images,
IP(5), No. 10, October 1996, pp. 1481-1485.
IEEE DOI 9610
OCR. BibRef

Ahuja, N., Chuang, J.H.[Jen-Hui],
Shape Representation Using a Generalized Potential-Field Model,
PAMI(19), No. 2, February 1997, pp. 169-176.
IEEE DOI 9703
Efficient derivation of the MAT using a potential field model.
See also Skeletonization of Three-Dimensional Object Using Generalized Potential Field. BibRef

Amenta, N.[Nina], Bern, M.[Marshall], Eppstein, D.[David],
The Crust and the -Skeleton: Combinatorial Curve Reconstruction,
GMIP(60), No. 2, March 1998, pp. 125-135. BibRef 9803

Rocha, J., Bernardino, R.,
Singularities and Regularities on Line Pictures via Symmetrical Trapezoids,
PAMI(20), No. 4, April 1998, pp. 391-395.
IEEE DOI 9806
BibRef
Earlier: ICDAR97(809-812).
IEEE DOI 9708
Generate a skeleton of the character using pieces of ribbons. BibRef

Foresti, G.L., Regazzoni, C.S.,
Statistical morphological skeleton for representing and coding noisy shapes,
VISP(146), No. 2, April 1999, pp. 85. BibRef 9904

Regazzoni, C.S., Foresti, G.L., Venetsanopoulos, A.N.,
3D pose estimation and shape coding of moving objects based on statistical morphological skeleton,
ICIP95(III: 612-615).
IEEE DOI 9510
BibRef
Earlier:
Shape representation from image sequences by using binary statistical morphology,
ICIP94(II: 106-110).
IEEE DOI 9411
BibRef

Mukherjee, J.[Jayanta], Kumar, M.A.[M. Aswatha], Das, P.P., Chatterji, B.N.,
Fast computation of cross-sections of 3D objects from their Medial Axis Transforms,
PRL(21), No. 6-7, June 2000, pp. 605-613. 0006
BibRef

Mukherjee, J., Kumar, M.A.[M. Aswatha], Das, P.P., Chatterji, B.N.,
Use of medial axis transforms for computing normals at boundary points,
PRL(23), No. 14, December 2002, pp. 1649-1656.
Elsevier DOI 0208
BibRef

Cloppet, F.[Florence], Oliva, J.M.[Jean-Michel], Stamon, G.[George],
Angular Bisector Network, a Simplified Generalized Voronoi Diagram: Application to Processing Complex Intersections in Biomedical Images,
PAMI(22), No. 1, January 2000, pp. 120-128.
IEEE DOI 0003
Generating descriptions of shapes (e.g. cells) where there are overlaps. BibRef

El-Kwae, E.A.[Essam A.], Kabuka, M.R.[Mansur R.],
Binary object representation and recognition using the Hilbert morphological skeleton transform,
PR(33), No. 10, October 2000, pp. 1621-1636.
Elsevier DOI 0006
BibRef

Kégl, B.[Balazs], Krzyzak, A.[Adam],
Piecewise Linear Skeletonization Using Principal Curves,
PAMI(24), No. 1, January 2002, pp. 59-74.
IEEE DOI 0201
BibRef
Earlier: ICPR00(Vol III: 131-134).
IEEE DOI 0009
OCR BibRef

Pizer, S.M.[Stephen M.],
Guest Editorial Medial and Medical: A Good Match for Image Analysis,
IJCV(55), No. 2-3, November-December 2003, pp. 79-84.
DOI Link 0310
BibRef

Pizer, S.M.[Stephen M.], Fletcher, P.T.[P. Thomas], Joshi, S.C.[Sarang C.], Thall, A.[Andrew], Chen, J.Z.[James Z.], Fridman, Y.[Yonatan], Fritsch, D.S.[Daniel S.], Gash, A.G.[A. Graham], Glotzer, J.M.[John M.], Jiroutek, M.R.[Michael R.], Lu, C.L.[Cong-Lin], Muller, K.E.[Keith E.], Tracton, G.[Gregg], Yushkevich, P.A.[Paul A.], Chaney, E.L.[Edward L.],
Deformable M-Reps for 3D Medical Image Segmentation,
IJCV(55), No. 2-3, November-December 2003, pp. 85-106.
DOI Link 0310
BibRef

Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.C.,
Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape,
MedImg(23), No. 8, August 2004, pp. 995-1005.
IEEE Abstract. 0409
BibRef

Fletcher, P.T.[P. Thomas], Venkatasubramanian, S.[Suresh], Joshi, S.C.[Sarang C.],
Robust statistics on Riemannian manifolds via the geometric median,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Fletcher, P.T., Lu, C.L.[Cong-Lin], Joshi, S.C.,
Statistics of shape via principal geodesic analysis on lie groups,
CVPR03(I: 95-101).
IEEE DOI 0307
medial descriptions are in fact elements of a Lie group. Use this to design recognition method. BibRef

Pizer, S.M.[Stephen M.], Fletcher, P.T.[P. Thomas], Thall, A.[Andrew], Styner, M.[Martin], Gerig, G.[Guido], Joshi, S.C.[Sarang C.],
Object models in multiscale intrinsic coordinates via m-reps,
IVC(21), No. 1, January 2003, pp. 5-15.
Elsevier DOI 0301
BibRef

Styner, M.[Martin], Gerig, G.[Guido], Joshi, S.C.[Sarang C.], Pizer, S.M.[Stephen M.],
Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability,
IJCV(55), No. 2-3, November-December 2003, pp. 107-122.
DOI Link 0310
BibRef

Lu, C.L.[Cong-Lin], Pizer, S.M.[Stephen M.], Joshi, S.C.[Sarang C.], Jeong, J.Y.[Ja-Yeon],
Statistical Multi-Object Shape Models,
IJCV(75), No. 3, December 2007, pp. 387-404.
Springer DOI 0710
BibRef

di Ruberto, C.[Cecilia],
Recognition of shapes by attributed skeletal graphs,
PR(37), No. 1, January 2004, pp. 21-31.
Elsevier DOI 0311
Object shape and topology from skeleton. BibRef

Sebastian, T.B.[Thomas B.], Klein, P.N.[Philip N.], Kimia, B.B.[Benjamin B.],
Recognition of shapes by editing their shock graphs,
PAMI(26), No. 5, May 2004, pp. 550-571.
IEEE Abstract. 0404
BibRef
Earlier:
Recognition of Shapes by Editing Shock Graphs,
ICCV01(I: 755-762).
IEEE DOI 0106
BibRef
Earlier:
Alignment-Based Recognition of Shape Outlines,
VF01(606 ff.).
Springer DOI 0209
Variant of MAT. Use for recognition. BibRef

Torsello, A.[Andrea], Hancock, E.R.[Edwin R.],
A Skeletal Measure of 2D Shape Similarity,
CVIU(95), No. 1, July 2004, pp. 1-29.
Elsevier DOI 0407
BibRef
Earlier: VF01(260 ff.).
Springer DOI 0209
Similarity measure using skeleton.
See also Learning Shape-Classes Using a Mixture of Tree-Unions. BibRef

Torsello, A.[Andrea], Hancock, E.R.[Edwin R.],
Correcting Curvature-Density Effects in the Hamilton-Jacobi Skeleton,
IP(15), No. 4, April 2006, pp. 877-891.
IEEE DOI 0604
BibRef
Earlier:
Curvature correction of the Hamilton-Jacobi skeleton,
CVPR03(I: 828-834).
IEEE DOI 0307
BibRef
And:
Curvature Dependent Skeletonization,
SCIA03(200-207).
Springer DOI 0310
BibRef
And: ICIP03(I: 337-340).
IEEE DOI 0312
BibRef

Torsello, A.[Andrea], Robles-Kelly, A.[Antonio], Hancock, E.R.[Edwin R.],
Discovering Shape Classes using Tree Edit-Distance and Pairwise Clustering,
IJCV(72), No. 3, May 2007, pp. 259-285.
Springer DOI 0702
Shape classes from shock trees. Transform the tree edit distance problem into a series of maximum weight clique problems. Relaxation labeling to find solution.
See also Graph embedding using tree edit-union. BibRef

Luo, B., Robles-Kelly, A., Torsello, A., Wilson, R.C., Hancock, E.R.,
Discovering Shape Categories by Clustering Shock Trees,
CAIP01(152-160).
Springer DOI 0210
BibRef
And:
Learning Shape Categories by Clustering Shock Trees,
ICIP01(III: 672-675).
IEEE DOI 0108
BibRef

Damon, J.N.[James N.],
Determining the Geometry of Boundaries of Objects from Medial Data,
IJCV(63), No. 1, June 2005, pp. 45-64.
Springer DOI 0501
A region with a smooth boundary and a medial axis, determine the region. BibRef

Damon, J.N.[James N.],
On the Smoothness and Geometry of Boundaries Associated to Skeletal Structures I: Sufficient Conditions for Smoothness,
Annales Inst. Fourier(53), 2003, pp. 1941-1985. BibRef 0300

Damon, J.N.[James N.],
Tree Structure for Contractible Regions in R3,
IJCV(74), No. 2, August 2007, pp. 103-116.
Springer DOI 0705
Derive Blum medial axis, attach parts along fin curves. BibRef

Mosorov, V.[Volodymyr],
A main stem concept for image matching,
PRL(26), No. 8, June 2005, pp. 1105-1117.
Elsevier DOI 0506
The main stem is a global image feature defined as a tree of reduced components without redundant and noise components. BibRef

Yushkevich, P.A.[Paul A.], Zhang, H.[Hui], Gee, J.C.[James C.],
Continuous Medial Representation for Anatomical Structures,
MedImg(25), No. 12, December 2006, pp. 1547-1564.
IEEE DOI 0701
BibRef

Yushkevich, P.A.[Paul A.], Zhang, H.[Hui], Simon, T.J.[Tony J.], Gee, J.C.[James C.],
Structure-Specific Statistical Mapping of White Matter Tracts using the Continuous Medial Representation,
MMBIA07(1-8).
IEEE DOI 0710
BibRef

Tang, Y.Y.[Yuan Yan], You, X.G.[Xin-Ge],
Skeletonization of ribbon-like shapes based on a new wavelet function,
PAMI(25), No. 9, September 2003, pp. 1118-1133.
IEEE Abstract. 0309
Finding the two parallel sides. BibRef

You, X.G.[Xin-Ge], Tang, Y.Y.[Yuan Yan],
Wavelet-Based Approach to Character Skeleton,
IP(16), No. 5, May 2007, pp. 1220-1231.
IEEE DOI 0704
BibRef

You, X.G.[Xin-Ge], Fang, B.[Bin], Tang, Y.Y.[Yuan Yan],
Wavelet-Based Approach for Skeleton Extraction,
WACV05(I: 228-233).
IEEE DOI 0502
BibRef

You, X.G.[Xin-Ge], Tang, Y.Y.[Yuan Y.], Zhang, W.P.[Wei-Peng], Sun, L.[Lu],
Skeletonization of Character Based on Wavelet Transform,
CAIP03(140-148).
Springer DOI 0311
BibRef

Demirci, M.F.[M. Fatih], Shokoufandeh, A.[Ali], Dickinson, S.J.[Sven J.],
Skeletal Shape Abstraction from Examples,
PAMI(31), No. 5, May 2009, pp. 944-952.
IEEE DOI 0903
Learning an abstract shape prototype using medial axis graphs. BibRef

Akimaliev, M.[Marlen], Demirci, M.F.[M. Fatih],
Improving skeletal shape abstraction using multiple optimal solutions,
PR(48), No. 11, 2015, pp. 3504-3515.
Elsevier DOI 1506
BibRef
Earlier:
Shape Abstraction through Multiple Optimal Solutions,
ISVC11(II: 588-596).
Springer DOI 1109
Shape abstraction BibRef

Lee, T.S.H.[Tom S.H.], Fidler, S.[Sanja], Levinshtein, A.[Alex], Dickinson, S.J.[Sven J.],
Learning Categorical Shape from Captioned Images,
CRV12(228-235).
IEEE DOI 1207
BibRef

Macrini, D.[Diego], Dickinson, S.J.[Sven J.], Fleet, D.J.[David J.], Siddiqi, K.[Kaleem],
Object categorization using bone graphs,
CVIU(115), No. 8, August 2011, pp. 1187-1206.
Elsevier DOI 1101
Medial shape representation; Graph-based shape representation; Inexact graph matching; Object categorization
See also Optimal Image and Video Closure by Superpixel Grouping. BibRef

van Eede, M., Macrini, D., Telea, A.C., Sminchisescu, C., Dickinson, S.J.,
Canonical Skeletons for Shape Matching,
ICPR06(II: 64-69).
IEEE DOI 0609
BibRef

Telea, A.C., Sminchisescu, C.[Cristian], Dickinson, S.J.[Sven J.],
Optimal inference for hierarchical skeleton abstraction,
ICPR04(IV: 19-22).
IEEE DOI 0409
BibRef

Ramanan, D.[Deva], Sminchisescu, C.[Cristian],
Training Deformable Models for Localization,
CVPR06(I: 206-213).
IEEE DOI 0606
BibRef

Liu, H.Z.[Hong-Zhi], Wu, Z.H.[Zhong-Hai], Hsu, D.F.[D. Frank], Peterson, B.S.[Bradley S.], Xu, D.R.[Dong-Rong],
On the generation and pruning of skeletons using generalized Voronoi diagrams,
PRL(33), No. 16, 1 December 2012, pp. 2113-2119.
Elsevier DOI 1210
Skeletonization; Generalized Voronoi diagram; Skeleton pruning; Reconstruction contribution; Visual contribution; Generalized Voronoi skeleton (GVS) BibRef

Liu, H.Z.[Hong-Zhi], Wu, Z.H.[Zhong-Hai], Zhang, X.[Xing], Hsu, D.F.[D. Frank],
A skeleton pruning algorithm based on information fusion,
PRL(34), No. 10, 15 July 2013, pp. 1138-1145.
Elsevier DOI 1306
Skeleton pruning; Multi-objective decision-making; Information fusion; Combinatorial fusion; Cognitive diversity BibRef

Leborgne, A.[Aurélie], Mille, J.[Julien], Tougne, L.[Laure],
Noise-resistant Digital Euclidean Connected Skeleton for graph-based shape matching,
JVCIR(31), No. 1, 2015, pp. 165-176.
Elsevier DOI 1508
BibRef
Earlier:
Extracting Noise-Resistant Skeleton on Digital Shapes for Graph Matching,
ISVC14(I: 293-302).
Springer DOI 1501
Skeletonization BibRef

Liu, Y.,
Semi-Continuity of Skeletons in Two-Manifold and Discrete Voronoi Approximation,
PAMI(37), No. 9, September 2015, pp. 1938-1944.
IEEE DOI 1508
Approximation methods BibRef

Saha, P.K.[Punam Kumar], Borgefors, G.[Gunilla],
Skeletonization and its application,
PRL(76), No. 1, 2016, pp. 1-2.
Elsevier DOI 1605
Special section introduction. BibRef

Chatbri, H.[Houssem], Kameyama, K.[Keisuke], Kwan, P.[Paul],
A comparative study using contours and skeletons as shape representations for binary image matching,
PRL(76), No. 1, 2016, pp. 59-66.
Elsevier DOI 1605
Skeletonization BibRef

Xu, C.[Chao], Zhou, D.X.[Dong-Xiang], Liu, Y.H.[Yun-Hui],
An Algorithm of Connecting Broken Objects Based on the Skeletons,
IEICE(E99-D), No. 11, November 2016, pp. 2832-2835.
WWW Link. 1611
BibRef

Shen, W.[Wei], Jiang, Y.[Yuan], Gao, W.J.[Wen-Jing], Zeng, D.[Dan], Wang, X.G.[Xing-Gang],
Shape recognition by bag of skeleton-associated contour parts,
PRL(83, Part 3), No. 1, 2016, pp. 321-329.
Elsevier DOI 1609
Shape recognition BibRef

Shen, W.[Wei], Du, C.[Chenting], Jiang, Y.[Yuan], Zeng, D.[Dan], Zhang, Z.J.[Zhi-Jiang],
Bag of Shape Features with a learned pooling function for shape recognition,
PRL(106), 2018, pp. 33-40.
Elsevier DOI 1804
BibRef

Shen, W.[Wei], Gao, W.J.[Wen-Jing], Jiang, Y.[Yuan], Zeng, D.[Dan], Zhang, Z.J.[Zhi-Jiang],
Shape recognition by bag of contour fragments with a learned pooling function,
ICIP17(1037-1041)
IEEE DOI 1803
Animals, Feature extraction, Histograms, Quantization (signal), Shape, Support vector machines, Visualization, max pooling BibRef


Ngo, P.[Phuc], Passat, N.[Nicolas], Kenmochi, Y.[Yukiko],
Quasi-Regularity Verification for 2d Polygonal Objects Based on Medial Axis Analysis,
ICIP21(1584-1588)
IEEE DOI 2201
Maintain connectivity in digitizing continuous objects. Sufficient conditions, Morphological operations, Quasi-regularity, polygonal objects, medial axis, rigid motion BibRef

Lomov, N., Arseev, S.,
Neural Networks for Shape Recognition By Medial Representation,
PTVSBB19(137-142).
DOI Link 1912
BibRef

Durix, B.[Bastien], Chambon, S.[Sylvie], Leonard, K.[Kathryn], Mari, J.L.[Jean-Luc], Morin, G.[Géraldine],
The Propagated Skeleton: A Robust Detail-Preserving Approach,
DGCI19(343-354).
Springer DOI 1905
BibRef

Willaume, P., Parrend, P., Gancel, E., Deruyver, A.,
Skeletonization and 3D graph approach for thin objects recognition in pick and place tasks,
MVA17(121-124)
DOI Link 1708
Cameras, Image edge detection, Robots, Shape, Skeleton, Solid modeling, Three-dimensional, displays BibRef

Beumier, C., Neyt, X.,
Camera motion compensation from T-junctions in distance map skeleton,
WSSIP17(1-5)
IEEE DOI 1707
Cameras, Feature extraction, Image edge detection, Image registration, Image sequences, Skeleton, Camera motion compensation, Distance map, Image registration, Skeleton, T-junction BibRef

Leborgne, A., Mille, J., Tougne, L.,
Hierarchical skeleton for shape matching,
ICIP16(3603-3607)
IEEE DOI 1610
Databases BibRef

Durix, B., Morin, G., Chambon, S., Roudet, C., Garnier, L.,
Skeleton-based multiview reconstruction,
ICIP16(4047-4051)
IEEE DOI 1610
Extremities BibRef

Brianskiy, S.A., Sidyakin, S.V., Vizilter, Y.V.,
Orientation Spectrum Algorithm Development,
PTVSBB15(13-18).
DOI Link 1508
Maragos pattern spectra. continuous skeletons. BibRef

Youssef, R.[Rabaa], Kacem, A.[Anis], Sevestre-Ghalila, S.[Sylvie], Chappard, C.[Christine],
Graph Structuring of Skeleton Object for Its High-Level Exploitation,
ICIAR15(419-426).
Springer DOI 1507
BibRef

Feng, C.[Cong], Jalba, A.C.[Andrei C.], Telea, A.C.[Alexandru C.],
Part-Based Segmentation by Skeleton Cut Space Analysis,
ISMM15(607-618).
Springer DOI 1506
BibRef

Serino, L.[Luca], Arcelli, C.[Carlo],
Approximating the Skeleton for Fine-to-Coarse Shape Representation,
CIAP13(I:111-120).
Springer DOI 1311

See also Distance-Driven Skeletonization in Voxel Images. BibRef

Serino, L.[Luca], di Baja, G.S.[Gabriella Sanniti],
Skeleton Pruning Based on Elongation and Size of Object's Limbs and Boundary's Convexities,
CIARP17(609-617).
Springer DOI 1802
BibRef

Serino, L.[Luca], Sanniti di Baja, G.[Gabriella],
Using local convexities as anchor points for 3D curve skeletonization,
ICPR16(2854-2859)
IEEE DOI 1705
Filtering, Shape, Skeleton, Surface treatment, Topology, Transforms, 3D object, curve skeleton, local convexity, pruning BibRef

Serino, L.[Luca], Arcelli, C.[Carlo], Sanniti di Baja, G.[Gabriella],
From the Zones of Influence of Skeleton Branch Points to Meaningful Object Parts,
DGCI13(131-142).
Springer DOI 1304
BibRef

Bougleux, S.[Sébastien], Dupé, F.X.[François-Xavier], Brun, L.[Luc], Mokhtari, M.[Myriam],
Shape Similarity Based on a Treelet Kernel with Edition,
SSSPR12(199-207).
Springer DOI 1211
BibRef

Dupe, F.X.[Francois Xavier], Bougleux, S.[Sebastien], Brun, L.[Luc], Lezoray, O.[Olivier], El Moataz, A.[Abderahim],
Kernel-Based Implicit Regularization of Structured Objects,
ICPR10(2142-2145).
IEEE DOI 1008
BibRef

Dupé, F.X.[François-Xavier], Brun, L.[Luc],
Shape Classification Using a Flexible Graph Kernel,
CAIP09(705-713).
Springer DOI 0909
BibRef
And:
Tree Covering within a Graph Kernel Framework for Shape Classification,
CIAP09(278-287).
Springer DOI 0909
BibRef
And:
Edition within a Graph Kernel Framework for Shape Recognition,
GbRPR09(11-20).
Springer DOI 0905
BibRef
And:
Hierarchical Bag of Paths for Kernel Based Shape Classification,
SSPR08(227-236).
Springer DOI 0812
BibRef

Ito, M.,
On the Properties of Morphological Skeletons of Discrete Binary Image Using Double Structuring Elements,
Southwest06(26-30).
IEEE DOI 0603
BibRef

Brostow, G.J.[Gabriel J.], Essa, I.A.[Irfan A.], Steedly, D.[Drew], Kwatra, V.[Vivek],
Novel Skeletal Representation for Articulated Creatures,
ECCV04(Vol III: 66-78).
Springer DOI 0405
Build on skeletons. BibRef

Dawoud, A., Kamel, M.,
New approach for the skeletonization of handwritten characters in gray-scale images,
ICDAR03(1233-1237).
IEEE DOI 0311
BibRef

di Ruberto, C.,
Attributed skeletal graphs for shape modelling and matching,
CIAP03(554-559).
IEEE DOI 0310
BibRef

He, L.[Lei], Han, C.Y., Wang, X.[Xun], Li, X.K.[Xiao-Kun], Wee, W.G.,
A skeleton based shape matching and recovery approach,
ICIP02(III: 789-792).
IEEE DOI 0210
BibRef

Rabatel, G.[Gilles], Manh, A.G.[Anne-Gaëlle], Aldon, M.J.[Marie-José], Bonicelli, B.[Bernard],
Skeleton-Based Shape Models with Pressure Forces: Application to Segmentation of Overlapping Leaves,
VF01(249 ff.).
Springer DOI 0209
BibRef

Vidal, S.F.[Sara Fernandez], Bardinet, E.[Eric], Malandain, G.[Gregoire], Damas, S.[Sergio], de la Blanca Capilla, N.P.[Nicolas Pérez],
Object Representation and Comparison Inferred from Its Medial Axis,
ICPR00(Vol I: 712-715).
IEEE DOI 0009
BibRef

Jaillet, F., Doudane, Y.G.[Y. Ghamri], Melkemi, M., Baskurt, A.,
Adaptive Contour Sampling and Coding Using Skeleton and Curvature,
ICIP00(Vol II: 899-902).
IEEE DOI 0008
BibRef

Syrjasuo, M.T., Pulkkinen, T.I.,
Determining the skeletons of the auroras,
CIAP99(1063-1066).
IEEE DOI 9909
BibRef

Choras, R.S.[Ryszard S.],
Image coding by morphological skeleton transformation,
CAIP93(216-222).
Springer DOI 9309
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Medial Axis Transform, MAT, Skeletons in Three Dimensions .


Last update:Mar 16, 2024 at 20:36:19