4.3.2 Morphology - Theory

Chapter Contents (Back)
Morphology.

Stevenson, R.L., and Arce, G.R.,
Morphological Filters: Statistical and Further Syntactic Properties,
CirSys(34), No. 11, November 1987, pp. 1292-1305. BibRef 8711

Hazout, S., Nguyen, N.Q.,
Image Analysis by Morphological Automata,
PR(24), No. 5, 1991, pp. 401-408.
Elsevier DOI BibRef 9100

Heijmans, H.J.A.M.,
Discretization of Morphological Operators,
JVCIR(3), 1992, pp. 182-193. BibRef 9200

Heijmans, H.J.A.M., Nacken, P., Toet, A., Vincent, L.,
Graph Morphology,
JVCIR(3), 1992, pp. 24-38. BibRef 9200

Heijmans, H.J.A.M., Serra, J.,
Convergence, Continuity, and Iteration in Mathematical Morphology,
JVCIR(3), 1992, pp. 84-102. BibRef 9200

Heijmans, H.J.A.M.[Henk J.A.M.],
Connected Morphological Operators for Binary Images,
CVIU(73), No. 1, January 1999, pp. 99-120.
DOI Link BibRef 9901
Earlier:
Connected Morphological Operators and Filters for Binary Images,
ICIP97(II: 211-214).
IEEE DOI BibRef

Heijmans, H.J.A.M.,
On the construction of morphological operators which are self-dual and activity-extensive,
SP(38), No. 1, 1994, pp. 13-19. BibRef 9400
Earlier:
Construction of self-dual morphological operators and modifications of the median,
ICIP94(II: 492-496).
IEEE DOI 9411
BibRef

Heijmans, H.J.A.M.,
Self-Dual Morphological Operators and Filters,
JMIV(6), No. 1, January 1996, pp. 15-36. 9608
BibRef

Heijmans, H.J.A.M.[Henk J.A.M.], Keshet, R.[Renato],
Inf-Semilattice Approach to Self-Dual Morphology,
JMIV(17), No. 1, July 2002, pp. 55-80.
DOI Link 0211
BibRef

Keshet, R.[Renato],
Shape-Tree Semilattice,
JMIV(22), No. 2-3, May 2005, pp. 309-331.
Springer DOI 0505
BibRef

Keshet, R.[Renato],
Adjacency lattices and shape-tree semilattices,
IVC(25), No. 4, April 2007, pp. 436-446.
Elsevier DOI 0702
Complete inf-semilattices; Self-dual operators; Tree of shapes; Fillhole BibRef

Heijmans, H.J.A.M.,
Composing Morphological Filters,
IP(6), No. 5, May 1997, pp. 713-723.
IEEE DOI 9705
BibRef

Heijmans, H.J.A.M.,
First Steps Towards a Self-dual Morphology,
ICIP00(Vol II: 934-937).
IEEE DOI 0008
BibRef

Sand, F., Dougherty, E.R.,
Statistics of the Morphological Pattern-Spectrum Moments for a Random Grain Model,
JMIV(1), 1992, pp. 121-135. BibRef 9200

Dougherty, E.R., and Sand, F.,
Representation of Linear Granulometric Moments for Deterministic and Random Binary Euclidean Images,
JVCIR(6), 1995, pp. 69-79. BibRef 9500

Bettoli, B.[Bruno], Dougherty, E.R.,
Linear Granulometric Moments of Noisy Binary Images,
JMIV(3), No. 4, 1993, pp. 299-319. BibRef 9300

Salembier, P.,
Structuring Element Adaptation for Morphological Filters,
JVCIR(3), 1992, pp. 115-136. BibRef 9200

Salembier, P.[Philippe],
Study on nonlocal morphological operators,
ICIP09(2269-2272).
IEEE DOI 0911
BibRef

Salembier, P., Serra, J.,
Flat zones filtering, connected operators, and filters by reconstruction,
IP(4), No. 8, August 1995, pp. 1153-1160.
IEEE DOI 0402
BibRef

Koskinen, L., Astola, J.T.,
Asymptotic Behavior of Morphological Filters,
JMIV(2), 1992, pp. 117-135. BibRef 9200

Wang, Q., Gabbouj, M., Neuvo, Y.,
Root-Signal Sets of Morphological Filters and Their Use in Variable-Length BTC Image Coding,
JMIV(2), 1992, pp. 155-171. BibRef 9200

Goutsias, J.,
Morphological Analysis of Discrete Random Shapes,
JMIV(2), 1992, pp. 193-215. See also Morphological Representation of Discrete and Binary Images. BibRef 9200

Ronse, C.[Christian],
Lattice-Theoretical Fixpoint Theorems in Morphological Image Filtering,
JMIV(4), 1994, pp. 19-41. See also Order-Configuration Functions: Mathematical Characterizations and Applications to Digital Signal and Image Processing. BibRef 9400

Ronse, C.[Christian],
A Lattice-Theoretical Morphological View on Template Extraction in Images,
JVCIR(7), 1996, pp. 273-295. BibRef 9600

Ronse, C.[Christian], Agnus, V.[Vincent],
Morphology on Label Images: Flat-Type Operators and Connections,
JMIV(22), No. 2-3, May 2005, pp. 283-307.
Springer DOI 0505
BibRef

Ronse, C.[Christian],
Partial Partitions, Partial Connections and Connective Segmentation,
JMIV(32), No. 2, October 2008, pp. xx-yy.
Springer DOI 0804
BibRef

Ronse, C.[Christian],
Ordering Partial Partitions for Image Segmentation and Filtering: Merging, Creating and Inflating Blocks,
JMIV(49), No. 1, May 2014, pp. 202-233.
WWW Link. 1404
BibRef

Ronse, C.[Christian],
Orders for Simplifying Partial Partitions,
JMIV(58), No. 3, July 2017, pp. 382-410.
Springer DOI 1706
BibRef

Ronse, C.[Christian],
Flat Morphology on Power Lattices,
JMIV(26), No. 1-2, November 2006, pp. 185-216.
Springer DOI 0701
BibRef
Earlier:
Flat Morphological Operatorson Arbitrary Power Lattices,
WTRCV02(17-26). 0204
BibRef

Charif-Chefchaouni, M.[Mohammed], Schonfeld, D.[Dan],
Morphological Representation of Nonlinear Filters,
JMIV(4), 1994, pp. 215-232. BibRef 9400

Charif-Chefchaouni, M.[Mohammed], Schonfeld, D.[Dan],
On the Invertibility of the Morphological Representation of Binary Images,
IP(3), No. 6, November 1994, pp. 847-849.
IEEE DOI BibRef 9411 IP(5), No. 3, March 1996, pp. 529-532.
IEEE DOI BibRef
Earlier:
Spatially-variant mathematical morphology,
ICIP94(II: 555-559).
IEEE DOI 9411
BibRef

Bouaynaya, N.[Nidhal], Charif-Chefchaouni, M.[Mohammed], Schonfeld, D.[Dan],
Theoretical Foundations of Spatially-Variant Mathematical Morphology Part I: Binary Images,
PAMI(30), No. 5, May 2008, pp. 823-836.
IEEE DOI 0803
BibRef

Bouaynaya, N.[Nidhal], Schonfeld, D.[Dan],
Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images,
PAMI(30), No. 5, May 2008, pp. 837-850.
IEEE DOI 0803
BibRef

Bouaynaya, N.[Nidhal], Schonfeld, D.[Dan],
Adaptive mathematical morphology: A unified representation theory,
ICIP09(2265-2268).
IEEE DOI 0911
BibRef

Schonfeld, D.,
Optimal Structuring Elements for the Morphological Pattern Restoration of Binary Images,
PAMI(16), No. 6, June 1994, pp. 589-601.
IEEE DOI BibRef 9406
Earlier:
Optimal nonlinear pattern restoration from noisy binary figures,
CVPR92(579-584).
IEEE DOI 0403
BibRef

Schonfeld, D., and Goutsias, J.,
Optimal Morphological Pattern Restoration from Noisy Binary Images,
PAMI(13), No. 1, January 1991, pp. 14-29.
IEEE DOI Representation: See also On the Morphological Representation of Binary Images in a Noisy Environment. BibRef 9101

Banerjee, S., Sahasrabudhe, S.C.,
C-Factor: A Morphological Shape Descriptor,
JMIV(4), 1994, pp. 43-55. BibRef 9400

Svalbe, I.D.,
The Geometry of Basis Sets for Morphologic Closing,
PAMI(13), No. 12, December 1991, pp. 1214-1224.
IEEE DOI BibRef 9112

Karinthi, R.R., and Nau, D.,
An Algebraic Approach to Feature Interactions,
PAMI(14), No. 4, April 1992, pp. 469-484.
IEEE DOI Not really morphology, but a similar concept applied to 3-D models. BibRef 9204

Wilson, S.S.,
Theory of Matrix Morphology,
PAMI(14), No. 6, June 1992, pp. 636-652.
IEEE DOI Morphology with a set of structuring elements (for 3-D set of data). BibRef 9206

Dougherty, E.R., Haralick, R.M.,
Unification of Nonlinear Filtering in the Context of Binary Logical Calculus, Part I: Binary Filters,
JMIV(2), 1992, pp. 173-183. See also Unification of Nonlinear Filtering in the Context of Binary Logical Calculus, Part II: Gray-Scale Filters. BibRef 9200

Maragos, P.,
A Representation Theory for Morphological Image and Signal Processing,
PAMI(11), No. 6, June 1989, pp. 586-599.
IEEE DOI Unifying theory for image analysis. BibRef 8906

Maragos, P.,
Pattern Spectrum and Multiscale Shape Representation,
PAMI(11), No. 7, July 1989, pp. 701-716.
IEEE DOI Use of morphological operators. BibRef 8907

Sinha, D., Dougherty, E.R.,
Fuzzy Mathematical Morphology,
JVCIR(3), 1992, pp. 286-302. BibRef 9200

Liang, E.H., Wong, E.K.,
Hierarchical Algorithms for Morphological Image Processing,
PR(26), No. 4, April 1993, pp. 511-529.
Elsevier DOI BibRef 9304

Schmitt, M.,
Variations on a Theme in Binary Mathematical Morphology,
JVCIR(2), 1991, pp. 244-258. BibRef 9100

Nacken, P.F.M.,
Openings Can Introduce Zero Crossings in Boundary Curvature,
PAMI(16), No. 6, June 1994, pp. 656-658.
IEEE DOI See also Multiscaling Approach Based on Morphological Filtering, A. and See also On the Scale-Space Theorem of Chen and Yan. BibRef 9406

van den Boomgaard, R., Smeulders, A.W.M.,
The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space,
PAMI(16), No. 11, November 1994, pp. 1101-1113.
IEEE DOI BibRef 9411

van den Boomgaard, R.[Rein], and Smeulders, A.W.M.[Arnold W.M.],
Towards a Morphological Scale-Space Theory,
MDSG94(631-640) BibRef 9400

van den Boomgaard, R.[Rein],
Mathematical Morphology: Extensions towards Computer Vision,
Ph.D.Thesis, Univ. Amsterdam, 1992. BibRef 9200

Heijmans, H.J.A.M.[Henk J.A.M.], van den Boomgaard, R.[Rein],
Algebraic Framework for Linear and Morphological Scale-Spaces,
JVCIR(13), No. 1/2, March/June 2002, pp. 269-301.
DOI Link 0204
BibRef

Rahmati, M., Hassebrook, L.G.,
Intensity-Invariant and Distortion-Invariant Pattern-Recognition with Complex Linear Morphology,
PR(27), No. 4, April 1994, pp. 549-568.
Elsevier DOI BibRef 9404

Shin, F.Y.C., Mitchell, O.R.,
A Mathematical Morphology Approach to Euclidean Distance Transformation,
IP(1), No. 2, April 1992, pp. 197-204.
IEEE DOI BibRef 9204

Haralick, R.M., Dougherty, E.R., Chen, Y., Agerskov, C., Jacobi, U., and Sloth, P.H.,
Estimation of Optimal Morphological TAU-opening Parameters Based on Independent Observation of Signal and Noise Pattern Spectra,
SP(29), No. 3, December, 1992, pp. 265-281. BibRef 9212

Haralick, R.M., Joughin, I.R., Dougherty, E.R.,
A Model-Based Algorithm for Designing Suboptimal Morphological Filters for Restoring Subtractive-Noise-Corrupted Images,
JEI(2), No. 4, October, 1993. BibRef 9310

Haralick, R.M., Katz, P.L., Dougherty, E.R.,
Model-Based Morphology: The Opening Spectrum,
GMIP(57), No. 1, January 1995, pp. 1-12. BibRef 9501

Bloch, I.[Isabelle], Maitre, H.[Henri],
Fuzzy mathematical morphologies: A comparative study,
PR(28), No. 9, September 1995, pp. 1341-1387.
Elsevier DOI 0401
BibRef

Jiang, X.Y., Bunke, H.,
Optimal Implementation of Morphological Operations on Neighborhood-Connected Parallel Computers,
AMAI(13), No. 3-4, 1995, pp. 301-315. BibRef 9500

Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.,
Morphological Operators for Image Sequences,
CVIU(62), No. 3, November 1995, pp. 326-346.
DOI Link BibRef 9511

Goutsias, J., Heijmans, H.J.A.M.,
An axiomatic approach to multiresolution signal decomposition,
ICIP98(II: 237-241).
IEEE DOI 9810
BibRef

Sivakumar, K., Goutsias, J.,
On the Discretization of Morphological Operators,
JVCIR(8), No. 1, March 1997, pp. 39-49. 9708
BibRef

Jackway, P.T., Deriche, M.,
Scale-Space Properties of the Multiscale Morphological Dilation Erosion,
PAMI(18), No. 1, January 1996, pp. 38-51.
IEEE DOI Scale Space. BibRef 9601

Jackway, P.T.[Paul Thomas],
On Dimensionality in Multiscale Morphological Scale-Space with Elliptic Poweroid Structuring Functions,
JVCIR(6), 1995, pp. 189-195. BibRef 9500
And:
Morphological Multiscale Gradient Watershed Image Analysis,
SCIA95(87-94). BibRef
Earlier:
Morphological scale-space,
ICPR92(III:252-255).
IEEE DOI 9208
BibRef

Jackway, P.T.[Paul Thomas],
Morphological Scale-Space with Application to Three-Dimensional Object Recognition,
Ph.D.1995, BibRef 9500 Queensland Univ. BibRef

Beare, R., Jackway, P.T.,
On Computing Greyscale Morphology with Large Exact Spheres in Arbitrary Dimensions via 1-D Distance Transforms,
DICTA12(1-7).
IEEE DOI 1303
BibRef
Earlier:
Parallel Algorithms via Scaled Paraboloid Structuring Functions for Spatially-Variant and Label-Set Dilations and Erosions,
DICTA11(180-185).
IEEE DOI 1205
BibRef

Loce, R.P., Dougherty, E.R.,
Mean-Absolute-Error Representation and Optimization of Computational-Morphological Filters,
GMIP(57), No. 1, 1995, pp. 27-yy. BibRef 9500
Earlier:
The use of first-order structuring-element libraries to design morphological filters,
ICPR92(III:256-259).
IEEE DOI 9208
BibRef

Noble, J.A.,
The Effect of Morphological Filters on Texture Boundary Localization,
PAMI(18), No. 5, May 1996, pp. 554-561.
IEEE DOI 9606
Edges, Evaluation. Build on theoretical analysis to analyze edge positions. BibRef

Soille, P., Breen, E.J., Jones, R.,
Recursive Implementation of Erosions and Dilations Along Discrete Lines at Arbitrary Angles,
PAMI(18), No. 5, May 1996, pp. 562-567.
IEEE DOI 9606
BibRef

Soille, P.[Pierre],
Beyond self-duality in morphological image analysis,
IVC(23), No. 2, 1 February 2004, pp. 249-257.
Elsevier DOI 0412
BibRef

Sivakumar, K., Goutsias, J.,
Binary Random-Fields, Random Closed-Sets, and Morphological Sampling,
IP(5), No. 6, June 1996, pp. 899-912.
IEEE DOI 9607
BibRef

Ko, S.J., Morales, A., Lee, K.H.,
Fast Recursive Algorithms for Morphological Operators Based on the Basis Matrix Representation,
IP(5), No. 6, June 1996, pp. 1073-1077.
IEEE DOI 9607
BibRef

Sidiropoulos, N.D., Meleas, D., Stragas, T.,
MAP Signal Estimation in Noisy Sequences of Morphologically Smooth Images,
IP(5), No. 6, June 1996, pp. 1088-1093.
IEEE DOI 9607
BibRef

Wilson, G.R.,
Morphological Operations on Crack Coded Binary Images,
VISP(143), No. 3, June 1996, pp. 171-176. 9608
BibRef

Zmuda, M.A., Tamburino, L.A.,
Efficient Algorithms for the Soft Morphological Operators,
PAMI(18), No. 11, November 1996, pp. 1142-1147.
IEEE DOI 9612
BibRef

Breen, E.J., Jones, R.,
Attribute Openings, Thinnings, and Granulometries,
CVIU(64), No. 3, November 1996, pp. 377-389.
DOI Link 9612
Morphological filter. BibRef

Coltuc, D., Pitas, I.,
Morphological Residual Representations of Signals,
IP(5), No. 11, November 1996, pp. 1569-1572.
IEEE DOI 9611
BibRef

Svalbe, I., Jones, R.,
The Design of Morphological Filters Using Multiple Structuring Elements, Part I: Openings and Closings,
PRL(13), 1992, pp. 123-129. BibRef 9200
And:
The Design of Morphological Filters Using Multiple Structuring Elements, Part II: Open (Close) and Close (Open),
PRL(13), 1992, pp. 175-181. BibRef

Maragos, P., Schafer, R.W.,
Morphological Filters. Part I: Their Set-Theoretic Analysis and Relations to Linear Shift-Invariant Filters,
ASSP(35), 1987, pp. 1153-1169, BibRef 8700
And:
Morphological Filters. Part II: Their Relations to Median, Order-Statistic, and Stack Filters,
ASSP(35), 1987, pp. 1170-1184. BibRef

Maragos, P., Schafer, R.W.,
Morphological Systems for Multidimensional Signal Processing,
PIEEE(78), 1990, pp. 690-710. BibRef 9000

Jang, B.K., Chin, R.T.,
On the Invertibility of Morphological Representation of Binary Images: Comments,
IP(5), No. 3, March 1996, pp. 529-532.
IEEE DOI BibRef 9603

Soille, P.,
Morphological Partitioning of Multispectral Images,
JEI(5), No. 3, July 1996, pp. 252-265. 9703
BibRef

Soille, P.[Pierre],
Morphological carving,
PRL(25), No. 5, 5 April 2004, pp. 543-550.
Elsevier DOI 0403
BibRef

Chen, Y.D., Dougherty, E.R.,
Adaptive Reconstructive Tau-Openings: Convergence and the Steady-State Distribution,
JEI(5), No. 3, July 1996, pp. 266-282. 9703
BibRef

Koivisto, P., Huttunen, H., Kuosmanen, P.,
Training-Based Optimization of Soft Morphological Filters,
JEI(5), No. 3, July 1996, pp. 300-322. 9703
BibRef

Atourian, S.M., Gevorkian, D.Z., Egiazarian, K.O., Astola, J.T.,
Efficient Nonlinear Transform Methods for Image-Processing,
JEI(5), No. 3, July 1996, pp. 323-334. 9703
BibRef

Barrera, J., Salas, G.P.,
Set Operations on Closed Intervals and Their Applications to the Automatic Programming of Morphological Machines,
JEI(5), No. 3, July 1996, pp. 335-352. 9703
BibRef

Popov, A.T.,
Convexity Indicators Based On Fuzzy Morphology,
PRL(18), No. 3, March 1997, pp. 259-267. 9706
BibRef
Earlier:
Fuzzy Morphology and Fuzzy Convexity Measures,
ICPR96(II: 611-614).
IEEE DOI 9608
(St.Kliment Ohridski Univ., BG) BibRef

Dougherty, E.R.,
Optimal Binary Morphological Bandpass-Filters Induced by Granulometric Spectral Representation,
JMIV(7), No. 2, March 1997, pp. 175-192.
DOI Link 9705
See also Optimal Conjunctive Granulometric Bandpass Filters. BibRef

Das, A.K., Chanda, B.,
Adjacency Matrix Generation from the Image of Graphs: A Morphological Approach,
MVA(10), No. 1, 1997, pp. 9-16.
Springer DOI 9705
BibRef

Bookstein, F.L.,
Shape And the Information in Medical Images: A Decade of the Morphometric Synthesis,
CVIU(66), No. 2, May 1997, pp. 97-118.
DOI Link 9705
BibRef

Crespo, J.[Jose], Maojo, V.[Victor],
New Results on the Theory of Morphological Filters by Reconstruction,
PR(31), No. 4, April 1998, pp. 419-429.
Elsevier DOI 9803
BibRef

Crespo, J.[Jose], Maojo, V.[Victor],
The Strong Property of Morphological Connected Alternated Filters,
JMIV(32), No. 3, November 2008, pp. xx-yy.
Springer DOI 0810
BibRef

Gasteratos, A., Andreadis, I., Tsalides, P.,
Fuzzy Soft Mathematical Morphology,
VISP(145), No. 1, February 1998, pp. 41-49. 9804
BibRef

Gasteratos, A., Andreadis, I., Tsalides, P.,
A new hardware structure for implementation of soft morphological filters,
CAIP97(488-494).
Springer DOI 9709
BibRef

Serra, J.,
Equicontinuous Random Functions,
JEI(6), No. 1, January 1997, pp. 7-15. 9807
BibRef

Hsueh, Y.C.,
Mathematical Morphology on L-Images,
SP(26), No. 2, 1992, pp. 221-241. BibRef 9200

Tocnaye, J.L., Hillion, A.,
Optical modeling of mathematical morphology: A link between convolution of images, dilation and erosion,
SP(26), No. 2, 1992, pp. 243-246. BibRef 9200

Dougherty, E.R., Sinha, D.,
Computational mathematical morphology,
SP(38), No. 1, 1994, pp. 21-29. BibRef 9400

Chen, Y.D.[Yi-Dong], Dougherty, E.R.[Edward R.],
Markovian Analysis of Adaptive Reconstructive Multiparameter t-Openings,
JMIV(10), No. 3, May 1999, pp. 253-267.
DOI Link BibRef 9905

Daz de Len S., J.L., Sossa-Azuela, J.H.,
Mathematical Morphology Based on Linear Combined Metric Spaces on Z2 (Part I): Fast Distance Transforms,
JMIV(12), No. 2, April 2000, pp. 137-154.
DOI Link 0002
BibRef

Daz de Len S., J.L., Sossa-Azuela, J.H.,
Mathematical Morphology Based on Linear Combined Metric Spaces on Z2 (Part II): Constant Time Morphological Operations,
JMIV(12), No. 2, April 2000, pp. 155-168.
DOI Link 0002
BibRef

Shih, F.Y.C.[Frank Y.C.], Gaddipati, V.[Vijayalakshmi],
General sweep mathematical morphology,
PR(36), No. 7, July 2003, pp. 1489-1500.
Elsevier DOI 0304
BibRef

Cousty, J.[Jean], Najman, L.[Laurent], Dias, F.[Fbio], Serra, J.[Jean],
Morphological filtering on graphs,
CVIU(117), No. 4, April 2013, pp. 370-385.
Elsevier DOI 1303
BibRef
Earlier: A1, A2, A4, Only:
Some Morphological Operators in Graph Spaces,
ISMM09(149-160).
Springer DOI 0908
Graphs; Mathematical morphology; Adjunctions; Spatially variant morphology BibRef

Dias, F.[Fbio], Cousty, J.[Jean], Najman, L.[Laurent],
Dimensional operators for mathematical morphology on simplicial complexes,
PRL(47), No. 1, 2014, pp. 111-119.
Elsevier DOI 1408
BibRef
Earlier:
Some Morphological Operators on Simplicial Complex Spaces,
DGCI11(441-452).
Springer DOI 1104
Mathematical morphology BibRef

Najman, L.[Laurent], Cousty, J.[Jean], Perret, B.[Benjamin],
Playing with Kruskal: Algorithms for Morphological Trees in Edge-Weighted Graphs,
ISMM13(135-146).
Springer DOI 1305
BibRef

Najman, L.[Laurent], Cousty, J.[Jean],
A graph-based mathematical morphology reader,
PRL(47), No. 1, 2014, pp. 3-17.
Elsevier DOI 1408
Graphs BibRef

Cousty, J.[Jean], Najman, L.[Laurent], Perret, B.[Benjamin],
Constructive Links between Some Morphological Hierarchies on Edge-Weighted Graphs,
ISMM13(86-97).
Springer DOI 1305
BibRef

Caliman, A.[Alexandru], Ivanovici, M.[Mihai], Richard, N.[Nol],
Probabilistic pseudo-morphology for grayscale and color images,
PR(47), No. 2, 2014, pp. 721-735.
Elsevier DOI 1311
Mathematical morphology BibRef

Caliman, A.[Alexandru], Ivanovici, M.[Mihai], Richard, N.[Nel], Toacse, G.[Gheorghe],
A Multivariate Mathematical Morphology Based on Orthogonal Transformation, Probabilistic Extrema Estimation and Distance Optimization,
ISMM13(255-266).
Springer DOI 1305
BibRef

Dorini, F.A.[Fabio Antonio], Dorini, L.B.[Leyza Baldo], Lesinhovski, W.C.[Willian Carlos],
A mathematical analysis of the Tensorial Morphological Gradient approach,
PRL(68, Part 1), No. 1, 2015, pp. 97-102.
Elsevier DOI 1512
Color images BibRef

Schmidt, M.[Martin], Weickert, J.[Joachim],
Morphological Counterparts of Linear Shift-Invariant Scale-Spaces,
JMIV(56), No. 2, October 2016, pp. 352-366.
WWW Link. 1609
BibRef
Earlier:
The Morphological Equivalents of Relativistic and Alpha-Scale-Spaces,
SSVM15(28-39).
Springer DOI 1506
BibRef

Bouchet, A.[Agustina], Alonso, P.[Pedro], Pastore, J.I.[Juan Ignacio], Montes, S.[Susana], Daz, I.[Irene],
Fuzzy mathematical morphology for color images defined by fuzzy preference relations,
PR(60), No. 1, 2016, pp. 720-733.
Elsevier DOI 1609
Mathematical Morphology BibRef

Bouchet, A.[Agustina], Pastore, J.I.[Juan I.], Brun, M.[Marcel], Ballarin, V.L.[Virginia L.],
Compensatory fuzzy mathematical morphology,
SIViP(11), No. 6, September 2017, pp. 1065-1072.
Springer DOI 1708
BibRef


Voiron-Canicio, C.[Christine],
Geography, Mathematics and Mathematical Morphology,
ISMM13(520-530).
Springer DOI 1305
BibRef

Potluri, A.[Anupama], Bhagvati, C.[Chakravarthy],
Novel Morphological Algorithms for Dominating Sets on Graphs with Applications to Image Analysis,
IWCIA12(249-262).
Springer DOI 1211
BibRef

Sedaaghi, M., Daj, R., Khosravi, M.,
Mediated Morphological Filters,
ICIP01(III: 692-695).
IEEE DOI 0108
BibRef

Franke, K.[Katrin], Kppen, M.[Mario], Nickolay, B.[Bertram],
Fuzzy Image Processing by Using Dubois and Prade Fuzzy Norms,
ICPR00(Vol III: 514-517).
IEEE DOI 0009
BibRef

Grossert, S., Kppen, M., Nickolay, B.,
A New Approach to Fuzzy Morphology Based on Fuzzy Integral and Its Application in Image Processing,
ICPR96(II: 625-630).
IEEE DOI 9608
(Fraunhofer Institute IPK Berl., D) BibRef

Maragos, P.,
A PDE Approach to Nonlinear Image Simplification Via Levelings and Reconstruction Filters,
ICIP00(Vol II: 938-941).
IEEE DOI 0008
BibRef

Yamamoto, S., Matsumoto, M., Tateno, Y., Iinuma, T., Matsumoto, T.,
Quoit Filter: A New Filter Based on Mathematical Morphology to Extract the Isolated Shadow, and Its Application to Automatic Detection of Lung Cancer in X-Ray CT,
ICPR96(II: 3-7).
IEEE DOI 9608
(Toyohashi Univ., J) BibRef

Said, J., Cheriet, M., Suen, C.,
Dynamical Morphological Processing: A Fast Method for Base Line Extraction,
ICPR96(II: 8-12).
IEEE DOI 9608
(Ecole de Technologie Super., CDN) BibRef

Okada, M., Shridhar, M.,
A Morphological Subtraction Scheme for Form Analysis,
ICPR96(III: 190-194).
IEEE DOI 9608
(Univ. of Michigan-, USA) BibRef

Regazzoni, C.S., Foresti, G.L.,
Properties of Binary Statistical Morphology,
ICPR96(II: 631-635).
IEEE DOI 9608
(Univ. di Genova, I) BibRef

Karasik, Y.B.,
On a Planar Representation of 3D Figures Commutative with Respect to Set and Morphological Operations,
ICPR96(II: 615-619).
IEEE DOI 9608
(Univ. of Ottawa, CDN) BibRef

Karasik, Y.B.,
Towards 3-dimensional optical image processing,
ICIP95(III: 440-443).
IEEE DOI 9510
BibRef
Earlier:
On implementation of adaptive local coordinate transformations in optical image processing,
ICIP94(III: 319-323).
IEEE DOI 9411
BibRef

Georgis, N., Petrou, M., Kittler, J.V.,
A Morphological Approach to the Generalised 2-Stage Stock-Cutting Problem,
CAIP93(309-316).
Springer DOI 9309
BibRef

Bhagvati, C., Skolnick, M.M., Grivas, D.A.,
Gaussian Normalization of Morphological Size Distributions for Increasing Sensitivity to Texture Variations and its Application to Pavement Distress Classification,
CVPR94(700-703).
IEEE DOI BibRef 9400

Haralick, R.M., Chen, S., Zhuang, X.H.[Xin-Hua],
Finite random sets and morphology,
ICPR94(B:62-66).
IEEE DOI 9410
BibRef

Fejes, S., Vajda, F.,
Simplified adaptive approach to efficient morphological image analysis,
ICPR94(C:257-261).
IEEE DOI 9410
BibRef

Joo, H., Haralick, R.M., Shapiro, L.G.,
Toward the Automating of Mathematical Morphology Procedures Using Predicate Logic,
ICCV90(156-165).
IEEE DOI BibRef 9000

Vogt, R.C.,
Automatic Generation of Simple Morphological Algorithms,
CVPR88(760-765).
IEEE DOI See also Role of Performance Evaluation in Automated Image Algorithm Generation, The. BibRef 8800

Haralick, R.M., Zhuang, X., Lin, C., Lee, J.,
Binary Morphology: Working in the Sampled Domain,
CVPR88(780-791).
IEEE DOI BibRef 8800

Skolnick, M.M., Kim, S., O'Bara, R.,
Morphological Algorithms for Computing Non-Planar Point Neighborhoods on Cellular Automata,
ICCV88(106-111).
IEEE DOI BibRef 8800

Noble, J.A.,
Morphological Feature Detection,
ICCV88(112-116).
IEEE DOI BibRef 8800

Maragos, P.,
Optimal Morphological Approaches to Image Matching and Object Detection,
ICCV88(695-699).
IEEE DOI BibRef 8800

Sato, M., Wada, T., Kawarada, H.,
A morphological study on structure line,
ICPR88(I: 559-562).
IEEE DOI 8811
BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Morphological Operator Decomposition, Implementation .


Last update:Nov 18, 2017 at 20:56:18