Pearson, K.[Karl],
On lines and planes of closest fit to systems of points in space,
Other JournalThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Volume 2, No. 11, 1901, pp. 559-572.
DOI Link
BibRef
0100
Jolliffe, I.T.,
Principal Component Analysis,
SpringerNew-York, 2002.
ISBN: 978-0-387-95442-4.
WWW Link.
Buy this book: Principal Component Analysis
BibRef
0200
Earlier:
First edition:
Springer-VerlagNew-York, 1986.
Survey, PCA. The Book, overview.
BibRef
Shimura, M.[Masamichi],
Imai, T.[Toshio],
Nonsupervised classification using the principal component,
PR(5), No. 4, December 1973, pp. 353-363.
Elsevier DOI
0309
BibRef
Wold, S.[Svante],
Pattern recognition by means of disjoint principal components models,
PR(8), No. 3, July 1976, pp. 127-139.
Elsevier DOI
0309
BibRef
Chang, C.C.,
Chen, Y.W.,
Buehrer, D.J.,
A Two-Dimensional Shape Recognition Scheme Based on
Principal Component Analysis,
PRAI(8), 1994, pp. 859-875.
BibRef
9400
Chen, C.Y.,
Chang, C.C., and
Lee, R.C.T.,
A Near Pattern-Matching Scheme Based upon Principal Component Analysis,
PRL(16), 1995, pp. 339-345.
See also Exact Match Retrieval Scheme Based Upon Principal Component Analysis, An.
BibRef
9500
Chang, C.I.[C. I],
Du, Q.,
Interference and Noise-Adjusted Principal Components Analysis,
GeoRS(37), No. 5, September 1999, pp. 2387.
IEEE Top Reference.
BibRef
9909
Weingessel, A.[Andreas],
Bischof, H.[Horst],
Hornik, K.[Kurt],
Leisch, F.[Friedrich],
Adaptive Combination of PCA and VQ Networks,
TNN(8), No. 5, 1997, pp. 1208-1211.
BibRef
9700
Earlier:
Hierarchies of Autoassociators,
ICPR96(IV: 200-204).
IEEE DOI
9608
(Technical Univ. of Vienna, A)
BibRef
Crowley, J.L.,
Pourraz, F.,
Continuity properties of the appearance manifold for mobile robot
position estimation,
IVC(19), No. 11, September 2001, pp. 741-752.
Elsevier DOI PCA. Orthogonal basis to represent appearance from different positions.
0108
BibRef
Twining, C.J.,
Taylor, C.J.,
The use of kernel principal component analysis to model data
distributions,
PR(36), No. 1, January 2003, pp. 217-227.
Elsevier DOI
0210
BibRef
Glendinning, R.H.,
Herbert, R.A.,
Shape classification using smooth principal components,
PRL(24), No. 12, August 2003, pp. 2021-2030.
Elsevier DOI
0304
BibRef
de la Torre, F.[Fernando],
Black, M.J.[Michael J.],
Robust Parameterized Component Analysis:
Theory and Applications to 2D Facial Appearance Models,
CVIU(91), No. 1-2, July-August 2003, pp. 53-71.
Elsevier DOI
PDF File.
0309
BibRef
Earlier:
Robust Parameterized Component Analysis,
ECCV02(IV: 653 ff.).
Springer DOI
0205
BibRef
Earlier:
Robust Principal Component Analysis for Computer vision,
ICCV01(I: 362-369).
IEEE DOI
0106
BibRef
And:
Dynamic Coupled Component Analysis,
CVPR01(II:643-650).
IEEE DOI
0110
BibRef
de la Torre, F.,
Kanade, T.,
Oriented Discriminant Analysis,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Chen, Y.[Ying],
de la Torre, F.[Fernando],
Active conditional models,
FG11(137-142).
IEEE DOI
1103
Faces with different pose and expression.
ACM: combine features and ASM
BibRef
Sengel, M.,
Bischof, H.,
Efficient representation of in-plane rotation within a PCA framework,
IVC(23), No. 12, 1 November 2005, pp. 1051-1059.
Elsevier DOI
0510
BibRef
Vidal, R.,
Ma, Y.[Yi],
Sastry, S.,
Generalized Principal Component Analysis (GPCA),
PAMI(27), No. 12, December 2005, pp. 1945-1959.
IEEE DOI
0512
BibRef
Earlier:
CVPR03(I: 621-628).
IEEE DOI
0307
BibRef
Vidal, R.,
Ma, Y.[Yi],
Piazzi, J.,
A new GPCA algorithm for clustering subspaces by fitting,
differentiating and dividing polynomials,
CVPR04(I: 510-517).
IEEE DOI
0408
BibRef
Nagabhushan, P.,
Guru, D.S.,
Shekar, B.H.,
Visual learning and recognition of 3D objects using two-dimensional
principal component analysis: A robust and an efficient approach,
PR(39), No. 4, April 2006, pp. 721-725.
Elsevier DOI Principal component analysis; Appearance based model; Object recognition
0604
BibRef
Earlier: A3, A2, A1:
Object Recognition Through the Principal Component Analysis of Spatial
Relationship Amongst Lines,
ACCV06(I:170-179).
Springer DOI
0601
BibRef
Shekar, B.H.,
Guru, D.S.,
Nagabhushan, P.,
Two-Dimensional Optimal Transform for Appearance Based Object
Recognition,
ICCVGIP06(650-661).
Springer DOI
0612
BibRef
Irpino, A.[Antonio],
'Spaghetti' PCA analysis: An extension of principal components analysis
to time dependent interval data,
PRL(27), No. 5, 1 April 2006, pp. 504-513.
Elsevier DOI
0604
Interval data; Time dependent; Oriented intervals
BibRef
Sharma, A.[Alok],
Paliwal, K.K.[Kuldip K.],
Onwubolu, G.C.[Godfrey C.],
Class-dependent PCA, MDC and LDA:
A combined classifier for pattern classification,
PR(39), No. 7, July 2006, pp. 1215-1229.
Elsevier DOI
0606
Classification accuracy; Total parameter requirement; Processing time;
Class-dependent PCA; LDA
BibRef
Sharma, A.[Alok],
Paliwal, K.K.[Kuldip K.],
Subspace independent component analysis using vector kurtosis,
PR(39), No. 11, November 2006, pp. 2227-2232.
Elsevier DOI
0608
Blind source separation; Subspace ICA; Vector kurtosis
BibRef
Sharma, A.[Alok],
Paliwal, K.K.[Kuldip K.],
Fast principal component analysis using fixed-point algorithm,
PRL(28), No. 10, 15 July 2007, pp. 1151-1155.
Elsevier DOI
0706
Fast PCA; Eigenvalue decomposition; Mean squared error
BibRef
Sharma, A.[Alok],
Paliwal, K.K.[Kuldip K.],
A two-stage linear discriminant analysis for face-recognition,
PRL(33), No. 9, 1 July 2012, pp. 1157-1162.
Elsevier DOI
1202
Two-stage linear discriminant analysis; Small sample size problem;
Classification accuracy
See also new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices, A.
BibRef
Vaswani, N.,
Chellappa, R.,
Principal Components Null Space Analysis for Image and Video
Classification,
IP(15), No. 7, July 2006, pp. 1816-1830.
IEEE DOI
0606
BibRef
Earlier:
Classification probability analysis of principal component null space
analysis,
ICPR04(I: 240-243).
IEEE DOI
0409
BibRef
Wu, F.C.,
Hu, Z.Y.,
The LLE and a linear mapping,
PR(39), No. 9, September 2006, pp. 1799-1804.
Elsevier DOI
0606
Locally linear embedding (LLE); Linear mapping;
Principal component analysis
BibRef
Tao, Q.[Qing],
Wu, G.W.[Gao-Wei],
Wang, J.[Jue],
Learning linear PCA with convex semi-definite programming,
PR(40), No. 10, October 2007, pp. 2633-2640.
Elsevier DOI
0707
Principal component analysis; Statistical learning theory;
Support vector machines; Margin; Maximal margin algorithm;
Semi-definite programming; Robustness
BibRef
Tzimiropoulos, G.,
Mitianoudis, N.,
Stathaki, T.,
Robust Recognition of Planar Shapes Under Affine Transforms Using
Principal Component Analysis,
SPLetters(14), No. 10, October 2007, pp. 723-726.
IEEE DOI
0711
BibRef
Kumar, K.V.[Kadappagari Vijaya],
Negi, A.[Atul],
SubXPCA and a generalized feature partitioning approach to principal
component analysis,
PR(41), No. 4, April 2008, pp. 1398-1409.
Elsevier DOI
0801
Dimensionality reduction; Principal component analysis;
Sub-pattern based PCA; Feature partitioning
BibRef
Kumar, K.V.[Kadappagari Vijaya],
Negi, A.[Atul],
Novel approaches to principal component analysis of image data based on
feature partitioning framework,
PRL(29), No. 3, 1 February 2008, pp. 254-264.
Elsevier DOI
0801
Dimensionality reduction; PCA; Image principal component analysis;
Feature partitioning; Face recognition
BibRef
Dambreville, S.[Samuel],
Rathi, Y.[Yogesh],
Tannenbaum, A.[Allen],
A Framework for Image Segmentation Using Shape Models and Kernel Space
Shape Priors,
PAMI(30), No. 8, August 2008, pp. 1385-1399.
IEEE DOI
0806
BibRef
Earlier:
Shape-Based Approach to Robust Image Segmentation using Kernel PCA,
CVPR06(I: 977-984).
IEEE DOI
0606
BibRef
And:
A Shape-Based Approach to Robust Image Segmentation,
ICIAR06(I: 173-183).
Springer DOI
0610
BibRef
And: A2, A1, A3:
Comparative Analysis of Kernel Methods for Statistical Shape Learning,
CVAMIA06(96-107).
Springer DOI
0605
BibRef
Majumdar, A.,
Image compression by sparse PCA coding in curvelet domain,
SIViP(3), No. 1, January 2009, pp. xx-yy.
Springer DOI
0902
BibRef
Majumdar, A.[Angshul],
Ward, R.K.[Rabab K.],
Improved Group Sparse Classifier,
PRL(31), No. 13, 1 October 2010, pp. 1959-1964.
Elsevier DOI
1003
Classification; Quasi-convex optimization; Face recognition; Character
recognition
BibRef
Urdiales García, C.[Cristina],
Dominguez, M.,
de Trazegnies, C.,
Sandoval Hernández, F.[Francisco],
A new pyramid-based color image representation for visual localization,
IVC(28), No. 1, Januray 2010, pp. 78-91.
Elsevier DOI
1001
Localization; Color histogram; Principal components; Hierarchical
segmentation; Spatial graph
BibRef
Wang, H.X.[Hai-Xian],
Structural two-dimensional principal component analysis for image
recognition,
MVA(22), No. 2, March 2011, pp. 433-438.
WWW Link.
1103
BibRef
Earlier:
A new feature extraction method for image recognition using structural
two-dimensional locality preserving projections,
ICIP09(2037-2040).
IEEE DOI
0911
BibRef
Wang, H.X.[Hai-Xian],
Block principal component analysis with L1-norm for image analysis,
PRL(33), No. 5, 1 April 2012, pp. 537-542.
Elsevier DOI
1202
PCA; 2DPCA; BPCA; L1-norm; Outlier
BibRef
Barshan, E.[Elnaz],
Ghodsi, A.[Ali],
Azimifar, Z.[Zohreh],
Jahromi, M.Z.[Mansoor Zolghadri],
Supervised principal component analysis: Visualization, classification
and regression on subspaces and submanifolds,
PR(44), No. 7, July 2011, pp. 1357-1371.
Elsevier DOI
1103
Dimensionality reduction; Principal component analysis (PCA); Kernel
methods; Supervised learning; Visualization; Classification;
Regression
BibRef
He, R.[Ran],
Hu, B.G.[Bao-Gang],
Zheng, W.S.[Wei-Shi],
Kong, X.W.,
Robust Principal Component Analysis Based on Maximum Correntropy
Criterion,
IP(20), No. 6, June 2011, pp. 1485-1494.
IEEE DOI
1106
BibRef
He, R.[Ran],
Zheng, W.S.[Wei-Shi],
Hu, B.G.[Bao-Gang],
Maximum Correntropy Criterion for Robust Face Recognition,
PAMI(33), No. 8, August 2011, pp. 1561-1576.
IEEE DOI
1107
compute sparse representation of face images for recogntion.
correntropy more insensitive to outliers.
BibRef
Shao, J.[Jian],
Wu, F.[Fei],
Ouyang, C.[Chuanfei],
Zhang, X.[Xiao],
Sparse spectral hashing,
PRL(33), No. 3, 1 February 2012, pp. 271-277.
Elsevier DOI
1201
Semantic hashing; Sparse principal component analysis; Laplacian
eigenmap; AdaBoost
BibRef
Li, J.[Jun],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
A probabilistic model for image representation via multiple patterns,
PR(45), No. 11, November 2012, pp. 4044-4053.
Elsevier DOI
1206
Principal component analysis; Probabilistic model
BibRef
Bao, B.K.,
Liu, G.,
Xu, C.,
Yan, S.C.,
Inductive Robust Principal Component Analysis,
IP(21), No. 8, August 2012, pp. 3794-3800.
IEEE DOI
1208
BibRef
Bao, B.K.,
Zhu, G.,
Shen, J.,
Yan, S.C.[Shui-Cheng],
Robust Image Analysis With Sparse Representation on Quantized Visual
Features,
IP(22), No. 3, March 2013, pp. 860-871.
IEEE DOI
1302
BibRef
Zhang, Z.[Zhao],
Zhang, Y.[Yan],
Li, F.Z.[Fan-Zhang],
Zhao, M.B.[Ming-Bo],
Zhang, L.[Li],
Yan, S.C.[Shui-Cheng],
Discriminative sparse flexible manifold embedding with novel graph
for robust visual representation and label propagation,
PR(61), No. 1, 2017, pp. 492-510.
Elsevier DOI
1705
Flexible manifold embedding
BibRef
Liwicki, S.[Stephan],
Tzimiropoulos, G.[Georgios],
Zafeiriou, S.P.[Stefanos P.],
Pantic, M.[Maja],
Euler Principal Component Analysis,
IJCV(101), No. 3, February 2013, pp. 498-518.
WWW Link.
1303
robust dissimilarity based on Euler representation of complex
numbers.
BibRef
Panagakis, Y.[Yannis],
Nicolaou, M.A.,
Zafeiriou, S.P.[Stefanos P.],
Pantic, M.,
Robust Correlated and Individual Component Analysis,
PAMI(38), No. 8, August 2016, pp. 1665-1678.
IEEE DOI
1608
correlation methods
BibRef
Papamakarios, G.[Georgios],
Panagakis, Y.[Yannis],
Zafeiriou, S.P.[Stefanos P.],
Generalised Scalable Robust Principal Component Analysis,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Bahri, M.,
Panagakis, Y.[Yannis],
Zafeiriou, S.P.[Stefanos P.],
Robust Kronecker-Decomposable Component Analysis for Low-Rank
Modeling,
ICCV17(3372-3381)
IEEE DOI
1802
image denoising, learning (artificial intelligence),
Tensile stress
BibRef
Xue, N.,
Panagakis, Y.[Yannis],
Zafeiriou, S.P.[Stefanos P.],
Side Information in Robust Principal Component Analysis:
Algorithms and Applications,
ICCV17(4327-4335)
IEEE DOI
1802
face recognition, image denoising,
image motion analysis, learning (artificial intelligence),
Sparse matrices
BibRef
Kallas, M.[Maya],
Honeine, P.[Paul],
Richard, C.[Cédric],
Francis, C.[Clovis],
Amoud, H.[Hassan],
Non-negativity constraints on the pre-image for pattern recognition
with kernel machines,
PR(46), No. 11, November 2013, pp. 3066-3080.
Elsevier DOI
1306
Kernel machines; Machine learning; SVM; Kernel PCA; Pre-image
problem; Non-negativity constraints; Nonlinear denoising; Pattern
recognition
BibRef
Qian, J.J.[Jian-Jun],
Yang, J.[Jian],
Gao, G.[Guangwei],
Discriminative histograms of local dominant orientation (D-HLDO) for
biometric image feature extraction,
PR(46), No. 10, October 2013, pp. 2724-2739.
Elsevier DOI
1306
Feature extraction; Principal component analysis (PCA);
Biometrics; Image representation; Linear discriminant analysis (LDA)
BibRef
Candès, E.J.[Emmanuel J.],
Li, X.D.[Xiao-Dong],
Ma, Y.[Yi],
Wright, J.[John],
Robust principal component analysis?,
JACM(58), No. 3, 2011, 11.
1402
BibRef
Zeng, X.Q.A.[Xue-Qi-Ang],
Li, G.Z.[Guo-Zheng],
Incremental partial least squares analysis of big streaming data,
PR(47), No. 11, 2014, pp. 3726-3735.
Elsevier DOI
1407
Feature extraction
BibRef
Han, F.[Fang],
Liu, H.[Han],
High Dimensional Semiparametric Scale-Invariant Principal Component
Analysis,
PAMI(36), No. 10, October 2014, pp. 2016-2032.
IEEE DOI
1410
Gaussian distribution
BibRef
Hasanbelliu, E.[Erion],
Giraldo, L.S.[Luis Sanchez],
Principe, J.C.[Jose C.],
Information Theoretic Shape Matching,
PAMI(36), No. 12, December 2014, pp. 2436-2451.
IEEE DOI
1411
BibRef
Earlier:
A Recursive Online Kernel PCA Algorithm,
ICPR10(169-172).
IEEE DOI
1008
Accuracy
BibRef
Vonesch, C.[Cédric],
Stauber, F.[Frédéric],
Unser, M.[Michael],
Steerable PCA for Rotation-Invariant Image Recognition,
SIIMS(8), No. 3, 2015, pp. 1857-1873.
DOI Link
1511
BibRef
Hauberg, S.[Soren],
Feragen, A.[Aasa],
Enficiaud, R.,
Black, M.J.[Michael J.],
Scalable Robust Principal Component Analysis Using Grassmann Averages,
PAMI(38), No. 11, November 2016, pp. 2298-2311.
IEEE DOI
1610
BibRef
Earlier: A1, A2, A4, Only:
Grassmann Averages for Scalable Robust PCA,
CVPR14(3810-3817)
IEEE DOI
1409
Approximation methods.
Grassmann manifold
BibRef
Wang, Z.H.[Zhen-Hua],
Fan, B.[Bin],
Wang, G.,
Wu, F.C.[Fu-Chao],
Exploring Local and Overall Ordinal Information for Robust Feature
Description,
PAMI(38), No. 11, November 2016, pp. 2198-2211.
IEEE DOI
1610
BibRef
Earlier: A1, A2, A4, Only:
Affine Subspace Representation for Feature Description,
ECCV14(VII: 94-108).
Springer DOI
1408
Distortion.
Affine distortions due to viewpoint changes.
PCA on patches.
BibRef
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Pattern recognition in multilinear space and its applications:
mathematics, computational algorithms and numerical validations,
MVA(27), No. 8, November 2016, pp. 1259-1273.
Springer DOI
1612
BibRef
Earlier:
Low-Dimensional Tensor Principle Component Analysis,
CAIP15(I:715-726).
Springer DOI
1511
See also Dimension Reduction and Construction of Feature Space for Image Pattern Recognition.
BibRef
Landa, B.[Boris],
Shkolnisky, Y.[Yoel],
Steerable Principal Components for Space-Frequency Localized Images,
SIIMS(10), No. 2, 2017, pp. 508-534.
DOI Link
1708
BibRef
Puggini, L.[Luca],
McLoone, S.[Seán],
Forward Selection Component Analysis: Algorithms and Applications,
PAMI(39), No. 12, December 2017, pp. 2395-2408.
IEEE DOI
1711
Input variables, Matching pursuit algorithms, Power capacitors,
Principal component analysis, Signal processing algorithms,
Unsupervised dimensionality reduction, feature selection, subset, selection
BibRef
Wang, Q.,
Gao, Q.,
Gao, X.,
Nie, F.,
L_2,p-Norm Based PCA for Image Recognition,
IP(27), No. 3, March 2018, pp. 1336-1346.
IEEE DOI
1801
Covariance matrices, Feature extraction, Image reconstruction,
Linear programming, Measurement, Principal component analysis,
dimensionality reduction
BibRef
Fan, C.X.[Chun-Xiao],
Hong, X.P.[Xiao-Peng],
Tian, L.[Lei],
Ming, Y.[Yue],
Pietikäinen, M.[Matti],
Zhao, G.Y.[Guo-Ying],
PCANet-II: When PCANet Meets the Second Order Pooling,
IEICE(E101-D), No. 8, August 2018, pp. 2159-2162.
WWW Link.
1808
BibRef
Lu, Y.,
Lai, Z.,
Li, X.,
Wong, W.K.,
Yuan, C.,
Zhang, D.,
Low-Rank 2-D Neighborhood Preserving Projection for Enhanced Robust
Image Representation,
Cyber(49), No. 5, May 2019, pp. 1859-1872.
IEEE DOI
1903
Robustness, Principal component analysis, Sparse matrices,
Image representation, Convergence, Noise measurement, Optimization,
robust feature extraction
BibRef
Nie, F.,
Zhang, H.,
Zhang, R.,
Li, X.,
Robust Multiple Rank-k Bilinear Projections for Unsupervised Learning,
IP(28), No. 5, May 2019, pp. 2574-2583.
IEEE DOI
1903
Feature extraction, Linear programming,
Principal component analysis, Image reconstruction,
nearest reconstruction
BibRef
Lai, Z.,
Mo, D.,
Wen, J.,
Shen, L.,
Wong, W.K.,
Generalized Robust Regression for Jointly Sparse Subspace Learning,
CirSysVideo(29), No. 3, March 2019, pp. 756-772.
IEEE DOI
1903
Robustness, Feature extraction, Radio frequency, Face recognition,
Dimensionality reduction, Principal component analysis,
small-class problem
BibRef
Wang, W.Q.[Wen-Qi],
Aggarwal, V.[Vaneet],
Aeron, S.C.[Shu-Chin],
Principal component analysis with tensor train subspace,
PRL(122), 2019, pp. 86-91.
Elsevier DOI
1904
BibRef
Zhou, N.,
Cheng, H.,
Qin, J.,
Du, Y.,
Chen, B.,
Robust High-Order Manifold Constrained Sparse Principal Component
Analysis for Image Representation,
CirSysVideo(29), No. 7, July 2019, pp. 1946-1961.
IEEE DOI
1907
Principal component analysis, Robustness, Manifolds, Kernel,
Image reconstruction, Task analysis, Correntropy,
high-order manifold
BibRef
Sun, Y.Q.[Yao-Qi],
Li, L.[Liang],
Zheng, L.[Liang],
Hu, J.[Ji],
Li, W.C.[Wen-Chao],
Jiang, Y.T.[Ya-Tong],
Yan, C.G.[Cheng-Gang],
Image Classification Base on PCA of Multi-View Deep Representation,
JVCIR(62), 2019, pp. 253-258.
Elsevier DOI
1908
Depth, RGB, use PCA.
Image classification, Principal component analysis, Multi-view depth characters
BibRef
Vargas, H.,
Arguello, H.,
A Low-Rank Model for Compressive Spectral Image Classification,
GeoRS(57), No. 12, December 2019, pp. 9888-9899.
IEEE DOI
1912
Image coding, Hyperspectral imaging, Feature extraction,
Image reconstruction, Principal component analysis,
total variation (TV)
BibRef
Gelvez, T.,
Arguello, H.,
Nonlocal Low-Rank Abundance Prior for Compressive Spectral Image
Fusion,
GeoRS(59), No. 1, January 2021, pp. 415-425.
IEEE DOI
2012
Image coding, Inverse problems, Image fusion, Mathematical model,
Silicon, Spatial resolution,
nonlocal self-similarities
BibRef
Dadon, A.[Alon],
Mandelmilch, M.[Moshe],
Ben-Dor, E.[Eyal],
Sheffer, E.[Efrat],
Sequential PCA-based Classification of Mediterranean Forest Plants
using Airborne Hyperspectral Remote Sensing,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ren, Z.,
Sun, Q.,
Wu, B.,
Zhang, X.,
Yan, W.,
Learning Latent Low-Rank and Sparse Embedding for Robust Image
Feature Extraction,
IP(29), 2020, pp. 2094-2107.
IEEE DOI
2001
Feature extraction, Principal component analysis,
Sparse matrices, Learning systems, Dictionaries, Task analysis,
face recognition
BibRef
Xiao, W.,
Huang, X.,
He, F.,
Silva, J.,
Emrani, S.,
Chaudhuri, A.,
Online Robust Principal Component Analysis With Change Point
Detection,
MultMed(22), No. 1, January 2020, pp. 59-68.
IEEE DOI
2001
Principal component analysis, Sparse matrices,
Matrix decomposition, Surveillance, Big Data,
principal component analysis
BibRef
Chen, X.H.[Xiu-Hong],
Sun, H.Q.[Hui-Qiang],
Joint low-rank project embedding and optimal mean principal component
analysis,
IET-IPR(14), No. 8, 19 June 2020, pp. 1457-1466.
DOI Link
2005
BibRef
Machidon, A.L.[Alina L.],
del Frate, F.[Fabio],
Picchiani, M.[Matteo],
Machidon, O.M.[Octavian M.],
Ogrutan, P.L.[Petre L.],
Geometrical Approximated Principal Component Analysis for
Hyperspectral Image Analysis,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Park, C.H.[Cheong Hee],
Lee, G.H.[Gyeong-Hoon],
Comparison of incremental linear dimension reduction methods for
streaming data,
PRL(135), 2020, pp. 15-21.
Elsevier DOI
2006
Concept drift, Incremental dimension reduction method,
Linear discriminant analysis, Principal component analysis, Streaming data
BibRef
Zarmehi, N.,
Amini, A.,
Marvasti, F.,
Low Rank and Sparse Decomposition for Image and Video Applications,
CirSysVideo(30), No. 7, July 2020, pp. 2046-2056.
IEEE DOI
2007
Approximation algorithms, Sparse matrices, Optimization,
Principal component analysis, Video surveillance, Convergence,
video surveillance
BibRef
Bueso, D.,
Piles, M.,
Camps-Valls, G.,
Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data,
GeoRS(58), No. 8, August 2020, pp. 5752-5763.
IEEE DOI
2007
Principal component analysis, Feature extraction, Earth, Kernel,
Meteorology, Data mining, Dimensionality reduction,
spatio-temporal data
BibRef
Tran, T.P.T.[Thi Phuong Thao],
Douzal-Chouakria, A.[Ahlame],
Yazdi, S.V.[Saeed Varasteh],
Honeine, P.[Paul],
Gallinari, P.[Patrick],
Interpretable time series kernel analytics by pre-image estimation,
AI(286), 2020, pp. 103342.
Elsevier DOI
2008
Pre-image problem, Time series, Kernel machinery,
Time series averaging, Kernel PCA, Dictionary learning, Representation learning
BibRef
Yang, F.[Feng],
Ma, Z.[Zheng],
Xie, M.[Mei],
Visual Recognition Method Based on Hybrid KPCA Network,
IEICE(E103-D), No. 9, September 2020, pp. 2015-2018.
WWW Link.
2009
BibRef
Wu, D.,
Zhang, H.,
Nie, F.,
Wang, R.,
Yang, C.,
Jia, X.,
Li, X.,
Double-Attentive Principle Component Analysis,
SPLetters(27), 2020, pp. 1814-1818.
IEEE DOI
2011
Principal component analysis, Analytical models,
Image reconstruction, Signal processing algorithms, Convergence,
image reconstruction
BibRef
Cai, H.,
Hamm, K.,
Huang, L.,
Li, J.,
Wang, T.,
Rapid Robust Principal Component Analysis:
CUR Accelerated Inexact Low Rank Estimation,
SPLetters(28), 2021, pp. 116-120.
IEEE DOI
2101
Sparse matrices, Principal component analysis,
Signal processing algorithms, Matrix decomposition, Tools,
outlier removal
BibRef
Dong, Y.N.[Yan-Ni],
Liang, T.Y.[Tian-Yang],
Zhang, Y.X.[Yu-Xiang],
Du, B.[Bo],
Spectral-Spatial Weighted Kernel Manifold Embedded Distribution
Alignment for Remote Sensing Image Classification,
Cyber(51), No. 6, June 2021, pp. 3185-3197.
IEEE DOI
2106
Remote sensing, Kernel, Manifolds, Distortion,
Support vector machines, Principal component analysis, weighted kernel
BibRef
Zhang, F.[Feng],
Wang, J.J.[Jian-Jun],
Wang, W.D.[Wen-Dong],
Xu, C.[Chen],
Low-Tubal-Rank Plus Sparse Tensor Recovery With Prior Subspace
Information,
PAMI(43), No. 10, October 2021, pp. 3492-3507.
IEEE DOI
2109
Tensile stress, Robustness, Principal component analysis,
Convex functions, Face, Data models, Singular value decomposition,
ADMM
BibRef
Kong, W.C.[Wei-Chao],
Zhang, F.[Feng],
Qin, W.J.[Wen-Jin],
Wang, J.J.[Jian-Jun],
Low-Tubal-Rank tensor recovery with multilayer subspace prior
learning,
PR(140), 2023, pp. 109545.
Elsevier DOI
2305
Tensor robust principal component analysis, Tensor completion,
Multilayer subspace prior information, ADMM, T-SVD
BibRef
Hou, J.Y.[Jing-Yao],
Zhang, F.[Feng],
Qiu, H.Q.[Hai-Quan],
Wang, J.J.[Jian-Jun],
Wang, Y.[Yao],
Meng, D.Y.[De-Yu],
Robust Low-Tubal-Rank Tensor Recovery From Binary Measurements,
PAMI(44), No. 8, August 2022, pp. 4355-4373.
IEEE DOI
2207
Tensors, Synthetic aperture radar, Quantization (signal),
Image reconstruction, Matrix decomposition, Electron tubes,
adaptivity
BibRef
Nie, F.P.[Fei-Ping],
Wu, D.Y.[Dan-Yang],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Truncated Robust Principle Component Analysis With A General
Optimization Framework,
PAMI(44), No. 2, February 2022, pp. 1081-1097.
IEEE DOI
2201
Robustness, Principal component analysis, Analytical models,
Optimization, Image reconstruction, Data models, Adaptive optics,
non-convex optimization
BibRef
Qiu, Y.N.[Yu-Ning],
Zhou, G.X.[Guo-Xu],
Huang, Z.H.[Zhen-Hao],
Zhao, Q.B.[Qi-Bin],
Xie, S.L.[Sheng-Li],
Efficient Tensor Robust PCA Under Hybrid Model of Tucker and Tensor
Train,
SPLetters(29), 2022, pp. 627-631.
IEEE DOI
2203
Tensors, Matrix decomposition, Computational modeling,
Optimization, Minimization, Matrix converters,
tensor robust principal component analysis
BibRef
Gao, Y.L.[Yun-Long],
Lin, T.T.[Ting-Ting],
Pan, J.Y.[Jin-Yan],
Nie, F.P.[Fei-Ping],
Xie, Y.W.[You-Wei],
Fuzzy Sparse Deviation Regularized Robust Principal Component
Analysis,
IP(31), 2022, pp. 5645-5660.
IEEE DOI
2209
Principal component analysis, Image reconstruction, Robustness,
Data models, Analytical models, Measurement uncertainty, sparse
BibRef
Liu, T.H.[Tian-Hao],
Díaz-Pachón, D.A.[Daniel Andrés],
Rao, J. .S.I.[J. Sun-Il],
Dazard, J.E.[Jean-Eudes],
High Dimensional Mode Hunting Using Pettiest Components Analysis,
PAMI(45), No. 4, April 2023, pp. 4637-4649.
IEEE DOI
2303
Principal component analysis, Eigenvalues and eigenfunctions,
Tumors, Time complexity, Partitioning algorithms, Kernel,
principal components analysis
BibRef
Virta, J.[Joni],
Artemiou, A.[Andreas],
Poisson PCA for matrix count data,
PR(138), 2023, pp. 109401.
Elsevier DOI
2303
Discrete data, Kronecker model, Matrix normal distribution,
Poisson log-normal distribution
BibRef
Ali, T.M.F.[T. M. Feroz],
Chaudhuri, S.[Subhasis],
Theoretical Analysis of Null Foley-Sammon Transform and its
Implications,
PAMI(45), No. 5, May 2023, pp. 6445-6459.
IEEE DOI
2304
Transforms, Measurement, Training, Principal component analysis,
Anomaly detection, Feature extraction,
small sample size data
BibRef
Gao, K.X.[Kai-Xin],
Huang, Z.H.[Zheng-Hai],
Tensor Robust Principal Component Analysis via Tensor Fibered Rank
and l_p Minimization,
SIIMS(16), No. 1, 2023, pp. 423-460.
DOI Link
2305
BibRef
Panhuber, R.[Reinhard],
Fast, Efficient, and Viable Compressed Sensing, Low-Rank, and Robust
Principle Component Analysis Algorithms for Radar Signal Processing,
RS(15), No. 8, 2023, pp. 2216.
DOI Link
2305
BibRef
Kang, Z.[Zhao],
Liu, H.F.[Hong-Fei],
Li, J.X.[Jiang-Xin],
Zhu, X.F.[Xiao-Feng],
Tian, L.[Ling],
Self-paced principal component analysis,
PR(142), 2023, pp. 109692.
Elsevier DOI
2307
Dimension reduction, Outliers, Manifold learning
BibRef
Zhang, H.Y.[Hong-Yuan],
Zhu, Y.[Yanan],
Li, X.L.[Xue-Long],
Toward Projected Clustering With Aggregated Mapping,
IP(32), 2023, pp. 4103-4113.
IEEE DOI
2307
Feature extraction, Principal component analysis,
Manifold learning, Graph neural networks, Data models,
unsupervised dimensionality reduction
BibRef
Han, Z.[Zhi],
Zhang, S.J.[Shao-Jie],
Liu, Z.[Zhiyu],
Wang, Y.[Yanmei],
Yao, J.P.[Jun-Ping],
Wang, Y.[Yao],
Tensor Robust Principal Component Analysis With Side Information:
Models and Applications,
CirSysVideo(33), No. 8, August 2023, pp. 3713-3725.
IEEE DOI
2308
Tensors, Matrix decomposition, Data models, Noise measurement,
Computational modeling, Robots, Analytical models, Low rank, side information
BibRef
Bi, P.F.[Peng-Fei],
Du, X.[Xue],
Arbitrary Triangle Structure Adaptive Mean PCA and Image Recognition,
CirSysVideo(34), No. 2, February 2024, pp. 754-769.
IEEE DOI
2402
Principal component analysis, Robustness, Measurement,
Image reconstruction, Feature extraction, Optimization,
image recognition
BibRef
Liu, Y.[Youfa],
Du, B.[Bo],
Chen, Y.Y.[Yong-Yong],
Zhang, L.[Lefei],
Gong, M.M.[Ming-Ming],
Tao, D.C.[Da-Cheng],
Convex-Concave Tensor Robust Principal Component Analysis,
IJCV(132), No. 5, May 2024, pp. 1721-1747.
Springer DOI
2405
BibRef
Peng, J.J.[Jiang-Jun],
Wang, H.L.[Hai-Lin],
Cao, X.Y.[Xiang-Yong],
Jia, X.X.[Xi-Xi],
Zhang, H.Y.[Hong-Ying],
Meng, D.Y.[De-Yu],
Stable Local-Smooth Principal Component Pursuit,
SIIMS(17), No. 2, 2024, pp. 1182-1205.
DOI Link Code:
WWW Link.
2407
BibRef
Li, T.[Tao],
Ma, J.W.[Jin-Wen],
T-SVD Based Non-convex Tensor Completion and Robust Principal
Component Analysis,
ICPR21(6980-6987)
IEEE DOI
2105
Tensors, Machine learning, Minimization, Particle measurements,
Task analysis, Optimization
BibRef
Fan, Y.F.[Yi-Fei],
Dahiya, N.[Navdeep],
Bignardi, S.[Samuel],
Sandhu, R.[Romeil],
Yezzi, A.J.[Anthony J.],
Directionally Paired Principal Component Analysis for Bivariate
Estimation Problems,
ICPR21(10180-10187)
IEEE DOI
2105
BibRef
Earlier: A2, A1, A3, A4, A5:
Dependently Coupled Principal Component Analysis for Bivariate
Inversion Problems,
ICPR21(10592-10599)
IEEE DOI
2105
Analytical models, Correlation, Computational modeling, Estimation,
Data models, Pattern recognition, Image reconstruction.
Training, Manifolds, Image processing,
Approximation error, Minimization, Shape Analysis
BibRef
Ghojogh, B.[Benyamin],
Karray, F.[Fakhri],
Crowley, M.[Mark],
Image Structure Subspace Learning Using Structural Similarity Index,
ICIAR19(I:33-44).
Springer DOI
1909
BibRef
And:
Principal Component Analysis Using Structural Similarity Index for
Images,
ICIAR19(I:77-88).
Springer DOI
1909
BibRef
And:
Locally Linear Image Structural Embedding for Image Structure Manifold
Learning,
ICIAR19(I:126-138).
Springer DOI
1909
BibRef
El Fattahi, L.,
Sbai, E.H.,
Kernel entropy principal component analysis using Parzen estimator,
ISCV18(1-8)
IEEE DOI
1807
feature extraction, maximum entropy methods, pattern clustering,
principal component analysis, Parzen estimator, Shannon entropy,
kernel entropy principal component analysis (KEPCA)
BibRef
Wang, M.J.[Meng-Jiao],
Panagakis, Y.[Yannis],
Snape, P.[Patrick],
Zafeiriou, S.P.[Stefanos P.],
Learning the Multilinear Structure of Visual Data,
CVPR17(6053-6061)
IEEE DOI
1711
Databases, Matrix decomposition,
Principal component analysis, Shape, Tensile stress, Visualization
BibRef
Zhou, P.,
Feng, J.,
Outlier-Robust Tensor PCA,
CVPR17(3938-3946)
IEEE DOI
1711
Algorithm design and analysis,
Discrete Fourier transforms, Optimization,
Principal component analysis, Sparse matrices, Tensile, stress
BibRef
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Analysis of Multilinear Subspaces Based on Geodesic Distance,
CAIP17(I: 384-396).
Springer DOI
1708
BibRef
Wang, Q.,
Gao, Q.,
Robust 2DPCA and Its Application,
Robust16(1152-1158)
IEEE DOI
1612
BibRef
Pena, R.,
Bresson, X.,
Vandergheynst, P.[Pierre],
Source localization on graphs via L_1 recovery and spectral graph
theory,
IVMSP16(1-5)
IEEE DOI
1608
Diffusion processes
BibRef
Shahid, N.,
Kalofolias, V.,
Bresson, X.,
Bronstein, M.M.,
Vandergheynst, P.,
Robust Principal Component Analysis on Graphs,
ICCV15(2812-2820)
IEEE DOI
1602
Benchmark testing
BibRef
Zhang, C.[Chao],
Heeren, B.[Behrend],
Rumpf, M.[Martin],
Smith, W.A.P.[William A. P.],
Shell PCA: Statistical Shape Modelling in Shell Space,
ICCV15(1671-1679)
IEEE DOI
1602
Computational modeling. Surfaces with non-zero thickness.
Deformation, articulation.
BibRef
Inoue, K.[Kohei],
Hara, K.[Kenji],
Urahama, K.[Kiichi],
A Unified View of Two-Dimensional Principal Component Analyses,
SSSPR12(566-574).
Springer DOI
1211
BibRef
Mignon, A.[Alexis],
Jurie, F.[Frederic],
PCCA: A new approach for distance learning from sparse pairwise
constraints,
CVPR12(2666-2672).
IEEE DOI
1208
BibRef
Ayazoglu, M.[Mustafa],
Sznaier, M.[Mario],
Camps, O.I.[Octavia I.],
Fast algorithms for structured robust principal component analysis,
CVPR12(1704-1711).
IEEE DOI
1208
BibRef
Lim, K.L.[Kart-Leong],
Galoogahi, H.K.,
Shape Classification Using Local and Global Features,
PSIVT10(115-120).
IEEE DOI
1011
Histogram of Oriented Gradient (HOG). PCA for both local and global.
BibRef
Duanduan, Y.[Yang],
Sluzek, A.[Andrzej],
Performance evaluation of low-dimensional sifts,
ICIP10(2729-2732).
IEEE DOI
1009
simplifications of SIFT, analysis. PCA-SIFT.
BibRef
Hui, K.H.[Kang-Hua],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Globally-Preserving Based Locally Linear Embedding,
ICPR10(531-534).
IEEE DOI
1008
BibRef
Bruneau, P.[Pierrick],
Gelgon, M.[Marc],
Picarougne, F.[Fabien],
Aggregation of Probabilistic PCA Mixtures with a Variational-Bayes
Technique Over Parameters,
ICPR10(702-705).
IEEE DOI
1008
BibRef
Negi, A.[Atul],
Kadappa, V.K.[Vijaya Kumar],
SubXPCA versus PCA: A Theoretical Investigation,
ICPR10(4170-4173).
IEEE DOI
1008
BibRef
Sommer, S.[Stefan],
Lauze, F.[François],
Hauberg, S.[Søren],
Nielsen, M.[Mads],
Manifold Valued Statistics, Exact Principal Geodesic Analysis and the
Effect of Linear Approximations,
ECCV10(VI: 43-56).
Springer DOI
1009
Effect of linearization when using Principal Geodesic Analysis.
BibRef
Mu, Y.D.[Ya-Dong],
Sun, J.[Ju],
Han, T.X.[Tony X.],
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Randomized Locality Sensitive Vocabularies for Bag-of-Features Model,
ECCV10(III: 748-761).
Springer DOI
1009
BibRef
Mu, Y.D.[Ya-Dong],
Shen, J.L.[Jia-Lie],
Yan, S.C.[Shui-Cheng],
Weakly-supervised hashing in kernel space,
CVPR10(3344-3351).
IEEE DOI
1006
BibRef
Ozay, N.[Necmiye],
Sznaier, M.[Mario],
Lagoa, C.[Constantino],
Camps, O.I.[Octavia I.],
GPCA with denoising: A moments-based convex approach,
CVPR10(3209-3216).
IEEE DOI
1006
Generalized Principal Component Analysis
BibRef
Inoue, K.[Kohei],
Hara, K.[Kenji],
Urahama, K.[Kiichi],
Robust multilinear principal component analysis,
ICCV09(591-597).
IEEE DOI
0909
BibRef
Serra, J.[Jean],
Adaptive lattices on the unit sphere. Application to remote sensing,
ICIP09(2257-2260).
IEEE DOI
0911
Study color, luminance and hue distributions.
BibRef
Laparra, V.[Valero],
Camps-Valls, G.[Gustavo],
Malo, J.[Jesus],
PCA Gaussianization for image processing,
ICIP09(3985-3988).
IEEE DOI
0911
See also Recovering wavelet relations using SVM for image denoising.
BibRef
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
Kernel PCA-based semantic feature estimation approach for similar image
retrieval,
ICIP08(965-968).
IEEE DOI
0810
BibRef
Mei, L.[Lin],
Figl, M.[Michael],
Darzi, A.[Ara],
Rueckert, D.[Daniel],
Edwards, P.[Philip],
Sample Sufficiency and PCA Dimension for Statistical Shape Models,
ECCV08(IV: 492-503).
Springer DOI
0810
BibRef
Zhao, D.L.[De-Li],
Lin, Z.C.[Zhou-Chen],
Tang, X.[Xiaoou],
Laplacian PCA and Its Applications,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Maret, Y.,
Nikolopoulos, S.,
Dufaux, F.,
Ebrahimi, T.,
Nikolaidis, N.,
A Novel Replica Detection System using Binary Classifiers, R-Trees, and
PCA,
ICIP06(925-928).
IEEE DOI
0610
BibRef
Sarkis, M.,
Dawy, Z.,
Obermeier, F.,
Diepold, K.,
Automatic Model-Order Selection for PCA,
ICIP06(933-936).
IEEE DOI
0610
BibRef
Jin, Z.[Zhong],
Davoine, F.[Franck],
Lou, Z.[Zhen],
Yang, J.Y.[Jing-Yu],
A Novel PCA-Based Bayes Classifier and Face Analysis,
ICB06(144-150).
Springer DOI
0601
BibRef
Hosic, S.[Sabina],
Hocanin, A.[Aykut],
Demirel, H.[Hasan],
Unequal Error Protection Using Convolutional Codes for PCA-Coded Images,
ICIAR05(335-342).
Springer DOI
0509
BibRef
Jin, Z.[Zhong],
Davoine, F.[Franck],
Orthogonal ICA representation of images,
ICARCV04(I: 369-374).
IEEE DOI
0412
BibRef
Tanaka, T.,
Generalized subspace rules for on-line PCA and their application in
signal and image compression,
ICIP04(III: 1895-1898).
IEEE DOI
0505
BibRef
Romaniuk, B.,
Guilloux, V.,
Desvignes, M.,
Deshayes, M.J.,
Partially observed objects localization with PCA and KPCA models,
Southwest04(80-84).
IEEE DOI
0411
BibRef
Ke, Y.[Yan],
Sukthankar, R.,
PCA-SIFT: a more distinctive representation for local image descriptors,
CVPR04(II: 506-513).
IEEE DOI
0408
See also Distinctive Image Features from Scale-Invariant Keypoints.
BibRef
Meltzer, J.[Jason],
Yang, M.H.[Ming-Hsuan],
Gupta, R.[Rakesh],
Soatto, S.[Stefano],
Multiple View Feature Descriptors from Image Sequences via Kernel
Principal Component Analysis,
ECCV04(Vol I: 215-227).
Springer DOI
0405
BibRef
Le Bihan, N.,
Sangwine, S.J.,
Quaternion principal component analysis of color images,
ICIP03(I: 809-812).
IEEE DOI
0312
BibRef
Zeng, X.Y.[Xiang-Yan],
Chen, Y.W.[Yen-Wei],
Nakao, Z.,
Image feature representation by the subspace of nonlinear PCA,
ICPR02(II: 228-231).
IEEE DOI
0211
BibRef
Hegazy, D.[Doaa],
Denzler, J.[Joachim],
Combining Appearance and Range Based Information for Multi-class
Generic Object Recognition,
CIARP09(741-748).
Springer DOI
0911
BibRef
Earlier:
Generic Object Recognition Using Boosted Combined Features,
RobVis08(355-366).
Springer DOI
0802
BibRef
Drexler, C.,
Mattern, F.,
Denzler, J.,
Appearance Based Generic Object Modeling and Recognition Using
Probabilistic Principal Component Analysis,
DAGM02(100 ff.).
Springer DOI
0303
BibRef
Perantonis, S.J.,
Petridis, S.,
Virvilis, V.,
Supervised Principal Component Analysis Using a Smooth Classifier
Paradigm,
ICPR00(Vol II: 109-112).
IEEE DOI
0009
BibRef
Surendro, K.[Kridanto],
Anzai, Y.[Yuichiro],
Non-rigid object recognition using principal component analysis and
geometric hashing,
CAIP97(50-57).
Springer DOI
9709
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Invariants -- ICA, Independent Component Analysis .