Loog, M.[Marco],
Duin, R.P.W.,
Haeb-Umbach, R.,
Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher
Criteria,
PAMI(23), No. 7, July 2001, pp. 762-766.
IEEE DOI
0108
BibRef
Earlier: A2, A1, A3:
Multi-class Linear Feature Extraction by Nonlinear PCA,
ICPR00(Vol II: 398-401).
IEEE DOI
0009
BibRef
Loog, M.[Marco],
Duin, R.P.W.[Robert P.W.],
Linear Dimensionality Reduction via a Heteroscedastic Extension of LDA:
The Chernoff Criterion,
PAMI(26), No. 6, June 2004, pp. 732-739.
IEEE Abstract.
0404
BibRef
Loog, M.[Marco],
Duin, R.P.W.[Robert P.W.],
The Dipping Phenomenon,
SSSPR12(310-317).
Springer DOI
1211
BibRef
Loog, M.[Marco],
van Ginneken, B.[Bram],
Duin, R.P.W.[Robert P.W.],
Dimensionality reduction of image features using the canonical
contextual correlation projection,
PR(38), No. 12, December 2005, pp. 2409-2418.
Elsevier DOI
0510
BibRef
Earlier:
Dimensionality Reduction by Canonical Contextual Correlation
Projections,
ECCV04(Vol I: 562-573).
Springer DOI
0405
BibRef
Loog, M.[Marco],
On an alternative formulation of the Fisher criterion that overcomes
the small sample problem,
PR(40), No. 6, June 2007, pp. 1753-1755.
Elsevier DOI
0704
BibRef
Earlier:
Conditional Linear Discriminant Analysis,
ICPR06(II: 387-390).
IEEE DOI
0609
Fisher criterion; Feature extraction; Small sample problem; Counterexample
BibRef
Loog, M.[Marco],
de Ridder, D.[Dick],
Local Discriminant Analysis,
ICPR06(III: 328-331).
IEEE DOI
0609
BibRef
Qin, A.K.,
Suganthan, P.N.,
Loog, M.,
Efficient Feature Extraction Based on Regularized Uncorrelated Chernoff
Discriminant Analysis,
ICPR06(III: 125-128).
IEEE DOI
0609
BibRef
Choi, S.J.[Seung-Jin],
Sequential EM learning for subspace analysis,
PRL(25), No. 14, 15 October 2004, pp. 1559-1567.
Elsevier DOI
0410
PCA for sub space analysis.
BibRef
Zheng, Z.L.[Zhong-Long],
Yang, J.[Jie],
Supervised locality pursuit embedding for pattern classification,
IVC(24), No. 8, August 2006, pp. 819-826.
Elsevier DOI
0608
Dimensionality reduction; Principal component analysis;
Linear discriminant analysis; Locality pursuit embedding;
Supervised learning methods
BibRef
Zubko, V.,
Kaufman, Y.J.,
Burg, R.I.,
Martins, J.V.,
Principal Component Analysis of Remote Sensing of Aerosols Over Oceans,
GeoRS(45), No. 3, March 2007, pp. 730-745.
IEEE DOI
0703
BibRef
Cho, M.K.[Min-Kook],
Park, H.Y.[Hye-Young],
A feature analysis for dimension reduction based on a data generation
model with class factors and environment factors,
CVIU(113), No. 9, September 2009, pp. 1005-1016.
Elsevier DOI
0907
Pattern classification; Feature analysis; Dimension reduction; PCA
(principal component analysis); LDA (linear discriminant analysis);
Data generation model; Class factor; Environment factor
BibRef
Tasoulis, S.K.,
Tasoulis, D.K.,
Plagianakos, V.P.,
Enhancing principal direction divisive clustering,
PR(43), No. 10, October 2010, pp. 3391-3411.
Elsevier DOI
1007
Clustering; Principal component analysis; Kernel density estimation
BibRef
Tasoulis, S.K.,
Tasoulis, D.K.,
Plagianakos, V.P.,
Random direction divisive clustering,
PRL(34), No. 2, 15 January 2013, pp. 131-139.
Elsevier DOI
1212
Clustering; Principal Component Analysis; Random Projection; Kernel
Density Estimation
BibRef
Torbick, N.,
Becker, B.,
Evaluating Principal Components Analysis for Identifying Optimal Bands
Using Wetland Hyperspectral Measurements From the Great Lakes, USA,
RS(1), No. 3, September 2009, pp. 408-417.
DOI Link
1203
BibRef
Ding, X.,
He, L.,
Carin, L.[Lawrence],
Bayesian Robust Principal Component Analysis,
IP(20), No. 12, December 2011, pp. 3419-3430.
IEEE DOI
1112
BibRef
Yektaii, M.[Mahdi],
Bhattacharya, P.[Prabir],
A criterion for measuring the separability of clusters and its
applications to principal component analysis,
SIViP(5), No. 1, March 2011, pp. 93-104.
WWW Link.
1103
BibRef
Wang, D.H.[Dong-Hui],
Kong, S.[Shu],
Feature selection from high-order tensorial data via sparse
decomposition,
PRL(33), No. 13, 1 October 2012, pp. 1695-1702.
Elsevier DOI
1208
Dimensionality reduction; Feature selection; Tensor decomposition;
High-order principal component analysis; Sparse principal component
analysis
BibRef
Honeine, P.[Paul],
Online Kernel Principal Component Analysis: A Reduced-Order Model,
PAMI(34), No. 9, September 2012, pp. 1814-1826.
IEEE DOI
1208
BibRef
Gao, J.B.[Jun-Bin],
Shi, Q.F.[Qin-Feng],
Caetano, T.S.[Tibério S.],
Dimensionality reduction via compressive sensing,
PRL(33), No. 9, 1 July 2012, pp. 1163-1170.
Elsevier DOI
1202
Dimensionality reduction; Sparse models; PCA; Supervised learning;
Un-supervised learning; Compressive sensing
BibRef
Tu, S.K.[Shi-Kui],
Xu, L.[Lei],
A theoretical investigation of several model selection criteria for
dimensionality reduction,
PRL(33), No. 9, 1 July 2012, pp. 1117-1126.
Elsevier DOI
1202
Factor analysis; PCA; Dimensionality reduction; Model selection
criteria
BibRef
Zhu, X.Z.[Xin-Zhong],
Super-class Discriminant Analysis:
A novel solution for heteroscedasticity,
PRL(34), No. 5, 1 April 2013, pp. 545-551.
Elsevier DOI
1303
Heteroscedasticity problem; Super-class; Super-class Discriminant
Analysis; Divide and conquer
BibRef
Kadappa, V.[Vijayakumar],
Negi, A.[Atul],
Computational and space complexity analysis of SubXPCA,
PR(46), No. 8, August 2013, pp. 2169-2174.
Elsevier DOI
1304
Dimensionality reduction; Feature extraction; Principal component
analysis; Feature partitioning; Space complexity; Time complexity
BibRef
Liang, Z.Z.[Zhi-Zheng],
Xia, S.X.[Shi-Xiong],
Zhou, Y.[Yong],
Zhang, L.[Lei],
Li, Y.F.[You-Fu],
Feature extraction based on Lp-norm generalized principal component
analysis,
PRL(34), No. 9, July 2013, pp. 1037-1045.
Elsevier DOI
1305
Generalized PCA; Lp-norm; Convex function; Face images; UCI data sets
BibRef
Villegas, M.[Mauricio],
Paredes, R.[Roberto],
On improving robustness of LDA and SRDA by using tangent vectors,
PRL(34), No. 9, July 2013, pp. 1094-1100.
Elsevier DOI
1305
Subspace learning; Dimensionality reduction; Tangent vectors; LDA;
SRDA
BibRef
Hari Kumar, R.,
Vinoth Kumar, B.,
Comprehensive analysis of LPG-PCA algorithms in denoising
and deblurring of medical images,
IJIST(23), No. 2, 2013, pp. 157-170.
DOI Link principle component analysis, local pixel grouping,
denoising, deblurring, image quality measures
1307
BibRef
Hari Kumar, R.,
Vinoth Kumar, B.,
Gowthami, S.,
Performance analysis of LPG PCA algorithm in medical images,
IMVIP12(125-128).
IEEE DOI
1302
BibRef
Ulfarsson, M.O.,
Solo, V.,
Selecting the Number of Principal Components with SURE,
SPLetters(22), No. 2, February 2015, pp. 239-243.
IEEE DOI
1410
Eigenvalues and eigenfunctions
BibRef
Lu, M.[Meng],
Huang, J.H.Z.[Jian-Hua Z.],
Qian, X.N.[Xiao-Ning],
Sparse exponential family Principal Component Analysis,
PR(60), No. 1, 2016, pp. 681-691.
Elsevier DOI
1609
Dimension reduction
BibRef
Lu, G.F.[Gui-Fu],
Zou, J.[Jian],
Wang, Y.[Yong],
Wang, Z.Q.[Zhong-Qun],
L1-norm-based principal component analysis with adaptive
regularization,
PR(60), No. 1, 2016, pp. 901-907.
Elsevier DOI
1609
Principal component analysis
BibRef
Yi, S.Y.[Shuang-Yan],
Lai, Z.H.[Zhi-Hui],
He, Z.Y.[Zhen-Yu],
Cheung, Y.M.[Yiu-Ming],
Liu, Y.[Yang],
Joint sparse principal component analysis,
PR(61), No. 1, 2017, pp. 524-536.
Elsevier DOI
1705
Dimensionality reduction
Comment:
See also Comment on 'Joint sparse principal component analysis' by S. Yi et al. (Pattern Recognition, vol. 61, pp. 524-536, 2017).
BibRef
Yi, S.Y.[Shuang-Yan],
He, Z.Y.[Zhen-Yu],
Li, Y.[Yi],
Cheung, Y.M.[Yiu-Ming],
Chen, W.S.[Wen-Sheng],
Simultaneous Dual-Views Reconstruction with Adaptive Dictionary and
Low-Rank Representation,
ICPR16(1607-1611)
IEEE DOI
1705
Databases, Dictionaries, Feature extraction, Geometry,
Linear programming, Optimization, Training
BibRef
Forghani, Y.[Yahya],
Comment on 'Joint sparse principal component analysis' by S. Yi et
al. (Pattern Recognition, vol. 61, pp. 524-536, 2017),
PR(77), 2018, pp. 454-455.
Elsevier DOI
1802
Joint sparse principal component analysis (JSPCA),
Feature selection, Convergence, Local optimal solution
See also Joint sparse principal component analysis.
BibRef
Lee, J.,
Choe, Y.,
Robust PCA Based on Incoherence With Geometrical Interpretation,
IP(27), No. 4, April 2018, pp. 1939-1950.
IEEE DOI
1802
blind source separation, computational complexity,
principal component analysis, sparse matrices,
source separation
BibRef
de Pierrefeu, A.,
Löfstedt, T.,
Hadj-Selem, F.,
Dubois, M.,
Jardri, R.,
Fovet, T.,
Ciuciu, P.,
Frouin, V.,
Duchesnay, E.,
Structured Sparse Principal Components Analysis With the TV-Elastic
Net Penalty,
MedImg(37), No. 2, February 2018, pp. 396-407.
IEEE DOI
1802
Loading, Minimization, Neuroimaging, Optimization,
Principal component analysis, Sociology, TV, MRI, PCA, total variation,
unsupervised machine learning
BibRef
Minnehan, B.[Breton],
Savakis, A.[Andreas],
Deep domain adaptation with manifold aligned label transfer,
MVA(30), No. 3, April 2019, pp. 473-485.
WWW Link.
1906
BibRef
Earlier:
Manifold Guided Label Transfer for Deep Domain Adaptation,
Diff-CVML17(744-752)
IEEE DOI
1709
Feature extraction, Manifolds, Measurement,
Principal component analysis, Training
BibRef
Kumar, S.[Sriram],
Savakis, A.[Andreas],
Learning a perceptual manifold for image set classification,
ICIP16(4433-4437)
IEEE DOI
1610
BibRef
Earlier:
Robust Domain Adaptation on the L1-Grassmannian Manifold,
DIFF-CV16(1058-1065)
IEEE DOI
1612
Biologically motivated
BibRef
Chen, X.H.[Xiu-Hong],
Sun, H.Q.[Hui-Qiang],
L_2,1-norm-based sparse principle component analysis with trace norm
regularised term,
IET-IPR(13), No. 6, 10 May 2019, pp. 910-922.
DOI Link
1906
BibRef
Ma, J.[Ji],
Yuan, Y.Y.[Yu-Yu],
Dimension reduction of image deep feature using PCA,
JVCIR(63), 2019, pp. 102578.
Elsevier DOI
1909
Deep learning, Feature extraction, Dimension reduction, PCA algorithm
BibRef
Li, X.,
Convolutional PCA for Multiple Time Series,
SPLetters(27), 2020, pp. 1450-1454.
IEEE DOI
2009
Principal component analysis, Frequency-domain analysis,
Time series analysis, Convolution, Time-domain analysis,
signal detection
BibRef
He, Z.X.[Zai-Xing],
Wu, M.T.[Meng-Tian],
Zhao, X.Y.[Xin-Yue],
Zhang, S.Y.[Shu-You],
Tan, J.R.[Jian-Rong],
Representative null space LDA for discriminative dimensionality
reduction,
PR(111), 2021, pp. 107664.
Elsevier DOI
2012
Linear discriminant analysis, Dimensionality reduction,
Feature selection, Null space, Overfitting, Singularity problem
BibRef
Nie, F.P.[Fei-Ping],
Tian, L.[Lai],
Huang, H.[Heng],
Ding, C.[Chris],
Non-Greedy L21-Norm Maximization for Principal Component Analysis,
IP(30), 2021, pp. 5277-5286.
IEEE DOI
2106
Principal component analysis, Minimization, Covariance matrices,
Robustness, Optimization, Convergence, Linear programming,
L21-norm maximization
BibRef
Lim, Y.J.[Yae-Ji],
Kwon, J.[Junhyeon],
Oh, H.S.[Hee-Seok],
Principal component analysis in the wavelet domain,
PR(119), 2021, pp. 108096.
Elsevier DOI
2108
Principal component analysis, Non-stationary time series,
Wavelet process, Feature extraction, Seismic data
BibRef
He, F.[Fan],
Lv, K.[Kexin],
Yang, J.[Jie],
Huang, X.L.[Xiao-Lin],
One-Shot Distributed Algorithm for PCA With RBF Kernels,
SPLetters(28), 2021, pp. 1465-1469.
IEEE DOI
2108
Kernel, Principal component analysis,
Signal processing algorithms, Partitioning algorithms,
RBF kernels
BibRef
Sofuoglu, S.E.[Seyyid Emre],
Aviyente, S.[Selin],
Graph Regularized Low-Rank Tensor-Train for Robust Principal
Component Analysis,
SPLetters(29), 2022, pp. 1152-1156.
IEEE DOI
2205
Tensors, Principal component analysis, Correlation, Optimization,
Geometry, Matrix decomposition, Manifold learning, Tensors,
robustness
BibRef
Dhanaraj, M.[Mayur],
Markopoulos, P.P.[Panos P.],
On the Asymptotic L1-PC of Elliptical Distributions,
SPLetters(29), 2022, pp. 2343-2347.
IEEE DOI
2212
Principal component analysis, Standards, Data models, Distributed databases,
Wireless communication, Resistance, Elliptical Distribution
BibRef
Lee, J.[Jongmin],
Oh, H.S.[Hee-Seok],
Robust spherical principal curves,
PR(138), 2023, pp. 109380.
Elsevier DOI
2303
Principal curves are a nonlinear generalization of principal components.
Dimension reduction, Robustness, Measure of central tendency, Spherical domain
BibRef
Wang, Y.L.[Yu-Long],
Kou, K.I.[Kit Ian],
Chen, H.[Hong],
Tang, Y.Y.[Yuan Yan],
Li, L.Q.[Luo-Qing],
Double Auto-Weighted Tensor Robust Principal Component Analysis,
IP(32), 2023, pp. 5114-5125.
IEEE DOI
2310
BibRef
Migenda, N.[Nico],
Möller, R.[Ralf],
Schenck, W.[Wolfram],
Adaptive local Principal Component Analysis improves the clustering
of high-dimensional data,
PR(146), 2024, pp. 110030.
Elsevier DOI
2311
High-dimensional clustering, Potential function,
Adaptive learning rate, Ranking criteria, Local PCA
BibRef
Zhang, C.[Chihao],
Gai, K.[Kuo],
Zhang, S.H.[Shi-Hua],
Matrix normal PCA for interpretable dimension reduction and graphical
noise modeling,
PR(154), 2024, pp. 110591.
Elsevier DOI
2406
Principal component analysis, Dimension reduction,
Matrix normal distribution, Sparse inverse covariance, Graphical noise modeling
BibRef
Ju, F.,
Sun, Y.,
Gao, J.,
Liu, S.,
Hu, Y.,
Yin, B.,
Mixture of Bilateral-Projection Two-Dimensional Probabilistic
Principal Component Analysis,
CVPR16(4462-4470)
IEEE DOI
1612
BibRef
Lu, C.,
Feng, J.,
Chen, Y.,
Liu, W.,
Lin, Z.,
Yan, S.,
Tensor Robust Principal Component Analysis: Exact Recovery of
Corrupted Low-Rank Tensors via Convex Optimization,
CVPR16(5249-5257)
IEEE DOI
1612
BibRef
Shi, F.Y.[Fei-Yu],
Zhai, M.[Menghua],
Duncan, D.[Drew],
Jacobs, N.[Nathan],
MPCA: EM-based PCA for mixed-size image datasets,
ICIP14(1807-1811)
IEEE DOI
1502
BibRef
And: A2, A1, A3, A4:
Covariance-Based PCA for Multi-size Data,
ICPR14(1603-1608)
IEEE DOI
1412
Covariance matrices
BibRef
Abdel-Hakim, A.E.[Alaa E.],
El-Saban, M.[Motaz],
FRPCA: Fast Robust Principal Component Analysis for online observations,
ICPR12(413-416).
WWW Link.
1302
BibRef
Wang, S.J.[Su-Jing],
Sun, M.F.[Ming-Fang],
Chen, Y.H.[Yu-Hsin],
Pang, E.P.[Er-Ping],
Zhou, C.G.[Chun-Guang],
STPCA: Sparse tensor Principal Component Analysis for feature
extraction,
ICPR12(2278-2281).
WWW Link.
1302
BibRef
Kawatani, T.,
Shimizu, H.,
Complementary Classifier Design Using Difference Principal Components,
ICDAR97(875-880).
IEEE DOI
9708
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Intrinsic Dimensionality .