Mikolajczyk, K.[Krystian],
Tuytelaars, T.[Tinne],
Schmid, C.,
Zisserman, A.,
Matas, J.G.,
Schaffalitzky, F.,
Kadir, T.,
Van Gool, L.J.,
A Comparison of Affine Region Detectors,
IJCV(65), No. 1-2, November 2005, pp. 43-72.
Springer DOI
0604
Six types of detectors are included:
detectors based on affine normalization around Harris (
See also Scale and Affine Invariant Interest Point Detectors. );
(
See also Automated location matching in movies. ) and
Hessian points (
See also Scale and Affine Invariant Interest Point Detectors. ),
MSER: Maximally stable extremal regions (
See also Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. );
an edge-based region detector (Tuytelaars and Van Gool, 1999) and
Intensity extrema (
See also Matching Widely Separated Views Based on Affine Invariant Regions. ),
Salient regions (
See also Affine Invariant Salient Region Detector, An. ).
BibRef
Seo, H.J.[Hae Jong],
Milanfar, P.[Peyman],
Training-Free, Generic Object Detection Using Locally Adaptive
Regression Kernels,
PAMI(32), No. 9, September 2010, pp. 1688-1704.
IEEE DOI
1008
BibRef
Earlier:
Using local regression kernels for statistical object detection,
ICIP08(2380-2383).
IEEE DOI
0810
Detection-locaization to search without training. Single example of the
object of interest to find similar matches. Local regression kernels.
BibRef
Alexe, B.[Bogdan],
Deselaers, T.[Thomas],
Ferrari, V.[Vittorio],
Measuring the Objectness of Image Windows,
PAMI(34), No. 11, November 2012, pp. 2189-2202.
IEEE DOI
1209
BibRef
Earlier:
What is an object?,
CVPR10(73-80).
IEEE DOI
1006
BibRef
And:
ClassCut for Unsupervised Class Segmentation,
ECCV10(V: 380-393).
Springer DOI
1009
BibRef
And: A2, A1, A3:
Localizing Objects While Learning Their Appearance,
ECCV10(IV: 452-466).
Springer DOI
1009
Does an image window contain an object (any object).
A generic object measure. Objects with well defined boundaries vs.
amorphous background elements.
BibRef
Deselaers, T.[Thomas],
Ferrari, V.[Vittorio],
Visual and semantic similarity in ImageNet,
CVPR11(1777-1784).
IEEE DOI
1106
BibRef
Earlier:
Global and efficient self-similarity for object classification and
detection,
CVPR10(1633-1640).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Deselaers, T.[Thomas],
Alexe, B.[Bogdan],
Ferrari, V.[Vittorio],
Weakly Supervised Localization and Learning with Generic Knowledge,
IJCV(100), No. 3, December 2012, pp. 275-293.
WWW Link.
1210
BibRef
Pan, H.[Hong],
Zhu, Y.P.[Ya-Ping],
Xia, L.Z.[Liang-Zheng],
Efficient and accurate face detection using heterogeneous feature
descriptors and feature selection,
CVIU(117), No. 1, January 2013, pp. 12-28.
Elsevier DOI
1212
BibRef
Earlier:
Fusing multi-feature representation and PSO-Adaboost based feature
selection for reliable frontal face detection,
ICIP13(2998-3002)
IEEE DOI
1402
Cascade classifiers
Face detection; PSO; Adaboost; Feature selection; Cascade classifier
BibRef
Pan, H.[Hong],
Zhu, Y.P.[Ya-Ping],
Qin, A.K.,
Xia, L.Z.[Liang-Zheng],
Mining heterogeneous class-specific codebook for categorical object
detection and classification,
ICIP13(3132-3136)
IEEE DOI
1402
Class-specific codebook
BibRef
Pan, H.[Hong],
Olsen, S.I.[Søren Ingvor],
Zhu, Y.P.[Ya-Ping],
Feature representation of RGB-D images using joint spatial-depth
feature pooling,
PRL(80), No. 1, 2016, pp. 239-248.
Elsevier DOI
1609
BibRef
Earlier:
Object classification from RGB-D images using depth context kernel
descriptors,
ICIP15(512-516)
IEEE DOI
1512
BibRef
Earlier:
Joint Spatial-Depth Feature Pooling for RGB-D Object Classification,
SCIA15(314-326).
Springer DOI
1506
BibRef
Earlier:
Object Classification and Detection with Context Kernel Descriptors,
CIARP14(827-835).
Springer DOI
1411
RGB-D feature representation.
Context cue
BibRef
Pan, H.[Hong],
Zhu, Y.P.[Ya-Ping],
Xia, S.[Siyu],
Qin, K.[Kai],
Improved generic categorical object detection fusing depth cue with 2D
appearance and shape features,
ICPR12(1467-1470).
WWW Link.
1302
BibRef
Pan, H.[Hong],
Xia, L.Z.[Liang-Zheng],
Nguyen, T.Q.[Truong Q.],
Robust object detection scheme using feature selection,
ICIP10(849-852).
IEEE DOI
1009
BibRef
Torrent, A.[Albert],
Lladó, X.[Xavier],
Freixenet, J.[Jordi],
Torralba, A.[Antonio],
A boosting approach for the simultaneous detection and segmentation
of generic objects,
PRL(34), No. 13, 2013, pp. 1490-1498.
Elsevier DOI
1307
BibRef
Earlier:
Simultaneous detection and segmentation for generic objects,
ICIP11(653-656).
IEEE DOI
1201
Object detection.
General framework, not just one kind of object.
BibRef
Torrent, A.[Albert],
Llado, X.[Xavier],
Freixenet, J.[Jordi],
Semiautomatic labeling of generic objects for enlarging annotated image
databases,
ICIP12(2889-2892).
IEEE DOI
1302
BibRef
Wang, X.Y.[Xiao-Yu],
Yang, M.[Ming],
Zhu, S.H.[Sheng-Huo],
Lin, Y.Q.[Yuan-Qing],
Regionlets for Generic Object Detection,
PAMI(37), No. 10, October 2015, pp. 2071-2084.
IEEE DOI
1509
BibRef
Earlier:
ICCV13(17-24)
IEEE DOI
1403
Boosting.
DPM
BibRef
Liu, L.[Li],
Ouyang, W.L.[Wan-Li],
Wang, X.G.[Xiao-Gang],
Fieguth, P.W.[Paul W.],
Chen, J.[Jie],
Liu, X.W.[Xin-Wang],
Pietikäinen, M.[Matti],
Deep Learning for Generic Object Detection: A Survey,
IJCV(128), No. 2, February 2020, pp. 261-318.
Springer DOI
2002
Survey, Generic Object Detecion.
BibRef
Jiang, P.,
Vasconcelos, N.,
Peng, J.,
Generic Promotion of Diffusion-Based Salient Object Detection,
ICCV15(217-225)
IEEE DOI
1602
Algorithm design and analysis
BibRef
Novotny, D.[David],
Matas, J.G.[Jiri G.],
Cascaded Sparse Spatial Bins for Efficient and Effective Generic
Object Detection,
ICCV15(1152-1160)
IEEE DOI
1602
Detectors based on HoG.
BibRef
Zou, W.[Will],
Wang, X.Y.[Xiao-Yu],
Sun, M.[Miao],
Lin, Y.Q.[Yuan-Qing],
Generic Object Detection with Dense Neural Patterns and Regionlets,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Siva, P.[Parthipan],
Russell, C.[Chris],
Xiang, T.[Tao],
Agapito, L.[Lourdes],
Looking Beyond the Image:
Unsupervised Learning for Object Saliency and Detection,
CVPR13(3238-3245)
IEEE DOI
1309
Generic Object Detection; Object Saliency; Weakly Supervised Learning
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Interest Operators, Interest Points, Feature Points, Salient Points .