7.3.7.1 Three Dimensional Distance Transforms and Distance Functions

Chapter Contents (Back)
Distance Function. Distance Transform. 3-D Distance. 3-D. See also Distance Transforms, Distance Functions, Distance Measures. 9908

Borgefors, G.[Gunilla],
Distance Transformations in Arbitrary Dimensions,
CVGIP(27), No. 3, September 1984, pp. 321-345.
WWW Link. See also Note on Distance Transformations in Arbitrary Dimensions, A. BibRef 8409

Borgefors, G.[Gunilla],
On Digital Distance Transforms in Three Dimensions,
CVIU(64), No. 3, November 1996, pp. 368-376.
DOI Link 9612
BibRef

Okabe, N., Toriwaki, J.I., Fukumura, T.,
Paths and Distance Functions on Three-Dimensional Digitized Pictures,
PRL(1), 1983, pp. 205-212. BibRef 8300

Mullikin, J.C.[James C.],
The Vector Distance Transform in Two and Three Dimensions,
GMIP(54), No. 6, November 1992, pp. 526-535. BibRef 9211

Beckers, A.L.D., and Smeulders, A.W.M.,
Optimization of Length Measurements for Isotropic Distance Transformations in Three Dimension[s],
CVGIP(55), No. 3, May 1992, pp. 296-306.
WWW Link. Estimate length of line from digitization. BibRef 9205

Verwer, B.J.H.,
Local Distances for Distance Transformations in Two and Three Dimensions,
PRL(12), 1991, pp. 671-682. BibRef 9100

Bhattacharya, P.,
A New Three-Dimensional Transform Using a Ternary Product,
TSP(43), No. 12, December 1995, pp. 3081-3084. BibRef 9512

Svensson, S.[Stina], Sanniti di Baja, G.[Gabriella],
Using distance transforms to decompose 3D discrete objects,
IVC(20), No. 8, June 2002, pp. 529-540.
WWW Link. 0206
BibRef

Svensson, S.[Stina], Borgefors, G.[Gunilla],
Distance transforms in 3D using four different weights,
PRL(23), No. 12, October 2002, pp. 1407-1418.
Elsevier DOI 0206
BibRef

Borgefors, G.[Gunilla], Svensson, S.[Stina],
Optimal Local Distances for Distance Transforms in 3D Using an Extended Neighbourhood,
VF01(113 ff.).
Springer DOI 0209
BibRef

Svensson, S.[Stina], Nyström, I.[Ingela], Sanniti di Baja, G.[Gabriella],
Curve skeletonization of surface-like objects in 3D images guided by voxel classification,
PRL(23), No. 12, October 2002, pp. 1419-1426.
Elsevier DOI 0206
BibRef
Earlier: A2, A3, A1:
Curve Skeletonization by Junction Detection in Surface Skeletons,
VF01(229 ff.).
Springer DOI 0209
BibRef

Borgefors, G.[Gunilla], Nystrom, I.[Ingela], and Sanniti di Baja, G.[Gabriella],
Connected Components in 3D Neighbourhoods,
SCIA97(xx-yy)
HTML Version. 9705
BibRef
And:
Quantitative Shape Analysis of Volume Images: Thinning Volume Objects to Surface Skeletons,
SSAB97(Image Processing) 9703
BibRef

Borgefors, G.[Gunilla], Nystrom, I.[Ingela], Sanniti di Baja, G.[Gabriella],
Computing Covering Polyhedra of Non-Convex Objects,
BMVC94(xx-yy).
PDF File. 9409
BibRef

Nyström, I.[Ingela], Borgefors, G.[Gunilla],
Synthesising objects and scenes using the reverse distance transformation in 2D and 3D,
CIAP95(441-446).
Springer DOI 9509
BibRef

Svensson, S.[Stina], Sanniti di Baja, G.[Gabriella],
Simplifying curve skeletons in volume images,
CVIU(90), No. 3, June 2003, pp. 242-257.
WWW Link. 0307
BibRef
Earlier: A2, A1:
Editing 3d Binary Images Using Distance Transforms,
ICPR00(Vol II: 1030-1033).
IEEE DOI 0009
See also new shape descriptor for surfaces in 3D images, A. BibRef

Shih, F.Y.[Frank Y.], Wu, Y.T.[Yi-Ta],
Three-dimensional Euclidean distance transformation and its application to shortest path planning,
PR(37), No. 1, January 2004, pp. 79-92.
WWW Link. 0311
See also Fast Euclidean Distance Transformation in Two Scans Using a 3X3 Neighborhood. BibRef

Sintorn, I.M.[Ida-Maria], Borgefors, G.[Gunilla],
Weighted distance transforms for volume images digitized in elongated voxel grids,
PRL(25), No. 5, 5 April 2004, pp. 571-580.
WWW Link. 0403
BibRef
Earlier:
Weighted distance transforms in rectangular grids,
CIAP01(322-326).
WWW Link. 0210
equal dimension on 2 axes, lower on third. BibRef

Yang, L.[Li],
Building k-edge-connected neighborhood graph for distance-based data projection,
PRL(26), No. 13, 1 October 2005, pp. 2015-2021.
WWW Link. 0509
BibRef
Earlier:
K-edge connected neighborhood graph for geodesic distance estimation and nonlinear data projection,
ICPR04(I: 196-199).
IEEE DOI 0409
BibRef

Yang, L.[Li],
Building k Edge-Disjoint Spanning Trees of Minimum Total Length for Isometric Data Embedding,
PAMI(27), No. 10, October 2005, pp. 1680-1683.
IEEE DOI 0509
BibRef

Yang, L.[Li],
Building k-Connected Neighborhood Graphs for Isometric Data Embedding,
PAMI(28), No. 5, May 2006, pp. 827-831.
IEEE DOI 0604
BibRef
And:
Building Connected Neighborhood Graphs for Locally Linear Embedding,
ICPR06(IV: 194-197).
IEEE DOI 0609
BibRef

Zhao, D.F.[Dong-Fang], Yang, L.[Li],
Incremental Isometric Embedding of High-Dimensional Data Using Connected Neighborhood Graphs,
PAMI(31), No. 1, January 2009, pp. 86-98.
IEEE DOI 0812
BibRef

Coquin, D.[Didier], Bolon, P.[Philippe],
Integer approximation of 3D chamfer mask coefficients using a scaling factor in anisotropic grids,
PRL(32), No. 9, 1 July 2011, pp. 1365-1373.
Elsevier DOI 1101
Distance transformation; Chamfer distance; Anisotropic lattice BibRef

Coquin, D.[Didier], Bolon, P.[Philippe], Onea, A.[Alexandru],
3D Nonstationary Local Distance Operator,
ICPR00(Vol III: 951-954).
IEEE DOI 0009
BibRef

Lott, III, G.K.,
Direct Orthogonal Distance to Quadratic Surfaces in 3D,
PAMI(36), No. 9, September 2014, pp. 1888-1892.
IEEE DOI 1408
Approximation algorithms BibRef

Ilic, V.[Vladimir], Lindblad, J.[Joakim], Sladoje, N.[Nataša],
Precise Euclidean distance transforms in 3D from voxel coverage representation,
PRL(65), No. 1, 2015, pp. 184-191.
Elsevier DOI 1511
Distance transform BibRef

Dražic, S.[Slobodan], Sladoje, N.[Nataša], Lindblad, J.[Joakim],
Estimation of Feret's diameter from pixel coverage representation of a shape,
PRL(80), No. 1, 2016, pp. 37-45.
Elsevier DOI 1609
Feret's diameter BibRef


Shamai, G.[Gil], Kimmel, R.[Ron],
Geodesic Distance Descriptors,
CVPR17(3624-3632)
IEEE DOI 1711
Eigenvalues and eigenfunctions, Image reconstruction, Manifolds, Measurement, Minimization, Shape, Symmetric, matrices BibRef

Bhunre, P.K.[Piyush K.], Bhowmick, P.[Partha], Mukhopadhyay, J.[Jayanta],
On Characterization and Decomposition of Isothetic Distance Functions for 2-Manifolds,
IWCIA17(212-225).
Springer DOI 1706
BibRef
Earlier:
Solving Distance Geometry Problem with Inexact Distances in Integer Plane,
CTIC16(277-289).
Springer DOI 1608
BibRef

Rebatel, F.[Fabien], Thiel, É.[Édouard],
Metric Bases for Polyhedral Gauges,
DGCI11(116-128).
Springer DOI 1104
used for graphs with intrinsic distance, planar city-block, etc. Apply to polyhedral gauges. BibRef

Cheng, M.[Ming], Huang, S.H.[Shao-Hui], Huang, X.Y.[Xiao-Yang], Wang, B.L.[Bo-Liang],
Anisotropic 3-D Distance Transform Based on Contour Propagation,
CISP09(1-4).
IEEE DOI 0910
BibRef

Huang, Z.J.[Zhang-Jin], Wang, G.P.[Guo-Ping],
Bounding the Distance between a Loop Subdivision Surface and Its Limit Mesh,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Yoshida, T.,
Distance metric for motion vector histograms based on human perceptual characteristics,
ICIP02(I: 904-907).
IEEE DOI 0210
BibRef

Twining, C.J., Marsland, S., Taylor, C.J.,
Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms,
BMVC02(Face and Gesture Processing). 0208
BibRef

Borgefors, G., Guo, H.,
Weighted Distance Transform Hyperspheres in Four Dimensions,
SSAB97(Image Processing) 9703
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Similarity Measure, Distance Transforms and Functions for Objects and Shapes .


Last update:Dec 7, 2017 at 17:23:10