7.3.7 Distance Transforms, Distance Functions, Distance Measures

Chapter Contents (Back)
Symmetry. Distance Function. Similarity Measure. Thinning Techniques. Distance Transform. Distance Map. Clustering: See also Distance Measures, Criteria for Clustering. General measures: See also Similarity Measure, Distance Transforms and Functions for Objects and Shapes. 3-D: See also Three Dimensional Distance Transforms and Distance Functions. Skeletons: See also Distance Transforms, Functions and Skeletons. 9605

Rosenfeld, A., and Pfaltz, J.L.,
Distance Functions on Digital Pictures,
PR(1), No. 1, July 1968, pp. 33-61.
WWW Link. BibRef 6807

Jackson, D.M.[David M.], White, L.J.[Lee J.],
Effect of random errors on generalized distance computations,
PR(4), No. 3, October 1972, pp. 263-273.
WWW Link. 0309
BibRef

Fischler, M.A.,
Fast Algorithms for Two Maximal Distance Problems with Applications to Image Analysis,
PR(12), No. 1, 1980, pp. 35-40.
WWW Link. BibRef 8000

Yokoi, S., Toriwaki, J.I., and Fukumura, T.,
On Generalized Distance Transformation of Digitized Pictures,
PAMI(3), No. 4, July 1981, pp. 424-443. BibRef 8107
Earlier:
Generalized Distance Transformation on Digitized Binary Images,
ICPR80(1201-1203). BibRef

Toriwaki, J.I., Naruse, T., and Fukumura, T.,
Fundamental Properties of the Grey Weighted Distance Transformation of Grey Pictures,
IECE(60), 1977, pp. 1101-1108. BibRef 7700

Toriwaki, J.I.[Jun-Ichiro], Tanaka, M.[Masahiko], Fukumura, T.[Teruo],
A Generalized Distance Transformation of a Line Pattern with Grey Values and Its Application,
CGIP(20), No. 4, December 1982, pp. 319-346.
WWW Link. BibRef 8212
Earlier: ICPR80(35-37). BibRef

Danielsson, P.E.,
Euclidean Distance Mapping,
CGIP(14), No. 3, November 1980, pp. 227-248.
WWW Link. How far is a point to some feature. BibRef 8011

Danielsson, P.E., Kruse, B.,
Distance Checking Algorithms,
CGIP(11), No. 4, December 1979, pp. 349-376.
WWW Link. BibRef 7912

Roberts, S.J., Hanka, R.,
An interpretation of Mahalanobis distance in the dual space,
PR(15), No. 4, 1982, pp. 325-333.
WWW Link. 0309
BibRef

Krusinska, E.,
A valuation of state of object based on weighted Mahalanobis distance,
PR(20), No. 4, 1987, pp. 413-418.
WWW Link. 0309
BibRef

Samet, H.,
Distance Transform for Images Represented by Quadtrees,
PAMI(4), No. 3, May 1982, pp. 298-303. BibRef 8205

Chazelle, B.,
An Improved Algorithm for the Fixed-Radius Neighbor Problem,
IPL(16), 1983, pp. 193-198. BibRef 8300

Bhattacharya, B.K., Toussaint, G.T.,
Efficient Algorithms for Computing the Maximum Distance,
Algorithms(4), 1983, pp. 121-126. BibRef 8300

Soille, P.,
Spatial Distributions from Contour Lines: An Efficient Methodology Based on Distance Transformations,
JVCIR(2), 1991, pp. 138-150. BibRef 9100

Soille, P.[Pierre],
Constrained Connectivity for Hierarchical Image Decomposition and Simplification,
PAMI(30), No. 7, July 2008, pp. 1132-1145.
IEEE DOI 0806
BibRef
Earlier:
On Genuine Connectivity Relations Based on Logical Predicates,
CIAP07(487-492).
IEEE DOI 0709
2 pixels are connected if the meet certain constraints, gray level differences over the connecting path. BibRef

Klein, F., and Kubler, O.,
Euclidean Distance Transformations and Model-Guided Image Interpretation,
PRL(5), 1987, pp. 19-29. BibRef 8700

Das, P.P., Chakrabarti, P.P., and Chatterji, B.N.,
Distance Functions in Digital Geometry,
IS(42), 1987, pp. 113-136. BibRef 8700

Das, P.P., Chatterji, B.N.,
Hyperspheres In Digital Geometry,
IS(50), 1990, pp. 73-91. BibRef 9000

Das, P.P., Chatterji, B.N.,
Knight's Distance in Digital Geometry,
PRL(7), 1988, pp. 215-226. BibRef 8800

Das, P.P.,
Counting Minimal Paths in Digital Geometry,
PRL(12), 1991, pp. 595-603. BibRef 9100
And:
An Algorithm for Computing the Number of the Minimal Paths in Digital Images,
PRL(9), 1989, pp. 107-116. BibRef

Das, P.P., Mukherjee, J.,
Metricity of Super-Knight's Distance in Digital Geometry,
PRL(11), 1990, pp. 601-604. BibRef 9000

Das, P.P., Chatterji, B.N.,
Octagonal Distances For Digital Pictures,
IS(50), 1990, pp. 123-150. BibRef 9000

Das, P.P., Chatterji, B.N.,
A Note on 'Distance Transformations in Arbitrary Dimensions',
CVGIP(43), No. 3, September 1988, pp. 368-385.
WWW Link. BibRef 8809

Das, P.P.,
Lattice of Octagonal Distances in Digital Geometry,
PRL(11), 1990, pp. 663-667. BibRef 9000

Das, P.P.,
More on Path Generated Digital Metrics,
PRL(10), 1989, pp. 25-31. BibRef 8900

Das, P.P.,
Metricity Preserving Transforms,
PRL(10), 1989, pp. 73-76. BibRef 8900

Rosenfeld, A.,
A Note on Average Distances in Digital Sets,
PRL(5), 1987, pp. 281-283. BibRef 8700

Borgefors, G.,
Distance Transformations in Digital Images,
CVGIP(34), No. 3, June 1986, pp. 344-371.
WWW Link. BibRef 8606
Earlier:
A New Distance Transformation Approximating the Euclidean Distance,
ICPR86(336-338). BibRef
And:
Another Comment on 'A Note on 'Distance Transformations in Digital Images'',
CVGIP(54), No. 2, September 1991, pp. 301-306.
WWW Link. BibRef

Borgefors, G., Hartmann, T., and Tanimoto, S.L.,
Parallel Distance Transforms on Pyramid Machines: Theory and Implementation,
SP(21), 1990, pp. 61-86. BibRef 9000

Vossepoel, A.M.,
A Note on 'Distance Transformations in Digital Images',
CVGIP(43), No. 1, July 1988, pp. 88-97.
WWW Link. BibRef 8807

Vossepoel, A.M.,
Estimating the size of circular pre-images from coarsely digitized representations,
ICPR92(III:365-368).
IEEE DOI 9208
probability of disks in set of pixels. BibRef

Beckers, A.L.D., Smeulders, A.W.M.,
A Comment on 'A Note on 'Distance Transformations in Digital Images'',
CVGIP(47), No. 1, July 1989, pp. 89-91.
WWW Link. BibRef 8907

Yamashita, M., Honda, N.,
Distance Functions Defined by Variable Neighborhood Sequences,
PR(17), No. 5, 1984, pp. 509-513.
WWW Link. 9611
BibRef

Yamashita, M., Ibaraki, T.,
Distances Defined By Neighborhood Sequences,
PR(19), No. 3, 1986, pp. 237-246.
WWW Link. BibRef 8600

Piper, J., Granum, E.,
Computing Distance Transformations in Convex and Non-Convex Domains,
PR(20), No. 6, 1987, pp. 599-615.
WWW Link. BibRef 8700

Verwer, B.J.H., Verbeek, P.W., and Dekker, S.T.,
An Efficient Uniform Cost Algorithm Applied to Distance Transforms,
PAMI(11), No. 4, April 1989, pp. 425-429.
IEEE DOI BibRef 8904

Shih, F.Y., Wu, H.,
Optimization on Euclidean Distance Transformation Using Grayscale Morphology,
JVCIR(3), 1992, pp. 104-114. BibRef 9200

Shih, F.Y.[Frank Y.], Liu, J.J.[Jenny J.],
Size-invariant four-scan Euclidean distance transformation,
PR(31), No. 11, November 1998, pp. 1761-1766.
WWW Link. BibRef 9811

Shih, F.Y.[Frank Y.], Wu, Y.T.[Yi-Ta],
Fast Euclidean Distance Transformation in Two Scans Using a 3X3 Neighborhood,
CVIU(93), No. 2, February 2004, pp. 195-205.
WWW Link. 0402
Record relative X and Y and achieve distance in only 2 scans. See also Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods. BibRef

Shih, F.Y.[Frank Y.], Wu, Y.T.[Yi-Ta],
The Efficient Algorithms for Achieving Euclidean Distance Transformation,
IP(13), No. 8, August 2004, pp. 1078-1091.
IEEE DOI 0409
BibRef

Paglieroni, D.W.[David W.],
Distance Transforms: Properties and Machine Vision Applications,
GMIP(54), No. 1, January 1992, pp. 56-74. BibRef 9201

Paglieroni, D.W.,
A Unified Distance Transform Algorithm and Architecture,
MVA(5), 1992, pp. 47-55. BibRef 9200

Wang, X.L.[Xiao-Li], Bertrand, G.,
Some Sequential Algorithms for a Generalized Distance Transformation Based on Minkowski Operations,
PAMI(14), No. 11, November 1992, pp. 1114-1121.
IEEE DOI BibRef 9211
An Algorithm for a Generalized Distance Transformation Based on Minkowski Operations,
ICPR88(II: 1164-1168).
IEEE DOI BibRef

Ragnemalm, I.[Ingemar],
Neighborhoods for Distance Transformations Using Ordered Propagation,
CVGIP(56), No. 3, November 1992, pp. 399-409.
WWW Link. BibRef 9211

Borgefors, G., Ragnemalm, I.[Ingemar], and Sanniti di Baja, G.[Gabriella],
Feature Extraction of the Euclidean Distance Transform,
CIAP91(115-122). BibRef 9100

Ragnemalm, I.,
The Euclidean Distance Transform in Arbitrary Dimensions,
PRL(14), 1993, pp. 883-888. BibRef 9300

Ragnemalm, I.,
Fast Erosion and Dilation by Contour Processing and Thresholding of Distance Maps,
PRL(13), 1992, pp. 161-166. BibRef 9200

Starovoitov, V.V., Ablameyko, S.V., Ishikawa, S., Kawaguchi, E.,
Binary Texture Border Extraction on Line Drawings Based on Distance Transform,
PR(26), No. 8, August 1993, pp. 1165-1176.
WWW Link. BibRef 9308

Breu, H., Gil, J., Kirkpatrick, D., Werman, M.,
Linear-Time Euclidean Distance Transform Algorithms,
PAMI(17), No. 5, May 1995, pp. 529-533.
IEEE DOI One theoretical algorithm and one practical algorithm, derive transform from a Voronoi diagram. BibRef 9505

Embrechts, H.[Hugo], Roose, D.[Dirk],
A Parallel Euclidean Distance Transformation Algorithm,
CVIU(63), No. 1, January 1996, pp. 15-26.
DOI Link BibRef 9601
Earlier:
Parallel algorithms for the distance transformation,
ECCV92(387-391).
Springer DOI 9205
BibRef

Starovoitov, V.V.,
A Clustering Technique Based on the Distance Transform,
PRL(17), No. 3, March 6 1996, pp. 231-239. BibRef 9603
Earlier:
Towards a measure of diversity between grey-scale images,
CAIP95(214-221).
Springer DOI 9509
BibRef

di Gesu, V.[Vito], Starovoitov, V.V.[Valery V.],
Distance-based functions for image comparison,
PRL(20), No. 2, February 1999, pp. 207-214. BibRef 9902

Starovoitov, V.V., Kose, C., Sankur, B.,
Generalized distance based matching of nonbinary images,
ICIP98(I: 803-807).
IEEE DOI 9810
BibRef

Toivanen, P.J.,
New Geodesic Distance Transforms for Gray-Scale Images,
PRL(17), No. 5, May 1 1996, pp. 437-450. 9606
BibRef
And: Correction: PRL(17), No. 13, November 25 1996, pp. 1411-1411. BibRef

Eggers, H.,
Parallel Euclidean Distance Transformations in Z(G)(N),
PRL(17), No. 7, June 10 1996, pp. 751-757. 9607
BibRef

Eggers, H.[Hinnik],
Two Fast Euclidean Distance Transformations in Z2 Based on Sufficient Propagation,
CVIU(69), No. 1, January 1998, pp. 106-116.
DOI Link BibRef 9801

Kiselman, C.O.,
Regularity Properties of Distance Transformations in Image-Analysis,
CVIU(64), No. 3, November 1996, pp. 390-398.
DOI Link 9612
BibRef

Chaudhuri, D., Murthy, C.A., Chaudhuri, B.B.,
A Modified Metric to Compute Distance,
PR(25), No. 7, July 1992, pp. 667-677.
WWW Link. BibRef 9207

Huang, C.T.[C. Tony], and Mitchell, O.R.[O. Robert],
A Euclidian Distance Transform Using Grayscale Morphology Decomposition,
PAMI(16), No. 4, April 1994, pp. 443-448.
IEEE DOI BibRef 9404
Earlier:
Rapid Euclidean Distance Transform Using Grayscale Morphology Decomposition,
CVPR91(695-697).
IEEE DOI See also Threshold Decomposition of Gray-Scale Morphology into Binary Morphology. BibRef

Arcelli, C., Ramella, G.,
Sketching a Grey-Tone Pattern from Its Distance Transform,
PR(29), No. 12, December 1996, pp. 2033-2045.
WWW Link. 9701
BibRef

Coquin, D.[Didier], Bolon, P.[Philippe],
Discrete Distance Operator on Rectangular Grids,
PRL(16), 1995, pp. 911-923. BibRef 9500

Coquin, D.[Didier], Bolon, P.[Philippe],
Lower and Upper Bounds for Scaling Factors Used for Integer Approximation of 3D Anisotropic Chamfer Distance Operator,
DGCI09(457-468).
Springer DOI 0909
BibRef

Toivanen, P.J.,
Image Compression by Selecting Control Points Using Distance Function on Curved Space,
PRL(14), 1993, pp. 475-482. BibRef 9300

Rhodes, F.[Frank],
On the metrics of Chaudhuri, Murthy and Chaudhuri,
PR(28), No. 5, May 1995, pp. 745-752.
WWW Link. 0401
considers the approximation of Euclidean distance in n-dimensional space by linear combinations of the L1 and L-inf metrics. See also Modified Metric to Compute Distance, A. BibRef

Rhodes, F.,
Some Characterizations of the Chessboard Metric and the City Block Metric,
PRL(11), 1990, pp. 669-675. BibRef 9000

Melter, R.A.,
Some Characterizations of City Block Distance,
PRL(6), 1987, pp. 235-240. BibRef 8700

Brown, R.L.,
The Fringe Distance Measure: An Easily Calculated Image Distance Measure with Recognition Results Comparable to Gaussian Blurring,
SMC(24), 1994, pp. 111-115. BibRef 9400

Lee, Y.H., Horng, S.J., Kao, T.W., Chen, Y.J.,
Parallel Computation of the Euclidean Distance transform on the Mesh of Trees and the Hypercube Computer,
CVIU(68), No. 1, October 1997, pp. 109-119.
DOI Link 9710
BibRef

Lee, Y.H.[Yu-Hua], Horng, S.J.[Shi-Jinn],
Optimal Computing the Chessboard Distance Transform on Parallel Processing Systems,
CVIU(73), No. 3, March 1999, pp. 374-390.
DOI Link BibRef 9903

Juffs, P., Beggs, E., Deravi, F.,
A Multiresolution Distance Measure for Images,
SPLetters(5), No. 6, June 1998, pp. 138-140.
IEEE Top Reference. 9806
BibRef

Butt, M.A., Maragos, P.,
Optimum Design of Chamfer Distance Transforms,
IP(7), No. 10, October 1998, pp. 1477-1484.
IEEE DOI BibRef 9810

Kaijser, T.,
Computing the Kantorovich Distance for Images,
JMIV(9), No. 2, September 1998, pp. 173-191.
DOI Link 9811
BibRef

Pennec, X., Ayache, N.J.,
Uniform Distribution, Distance and Expectation Problems for Geometric Features Processing,
JMIV(9), No. 1, July 1998, pp. 49-67.
DOI Link 9807
BibRef

Maekawa, T.,
An overview of offset curves and surfaces,
CAD(31), No. 3, March 1999, pp. 165-173. BibRef 9903

Maekawa, T., and Patrikalakis, N.M.,
Computation of singularities and intersections of offsets of planar curves,
CAGD(10), No. 5, 1993, pp. 407-429. BibRef 9300

Marchand-Maillet, S.[Stephane], Sharaiha, Y.M.[Yazid M.],
Euclidean Ordering via Chamfer Distance Calculations,
CVIU(73), No. 3, March 1999, pp. 404-413.
DOI Link BibRef 9903
And:
A Graph-Theoretic Algorithm for the Exact Generation of Euclidean Distance Maps,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Takala, J.H.[Jarmo H.], Viitanen, J.O.[Jouko O.],
Distance Transform Algorithm for Bit-Serial SIMD Architectures,
CVIU(74), No. 2, May 1999, pp. 150-161.
DOI Link BibRef 9905
Earlier: A2, A1:
SIMD parallel calculation of distance transformations,
ICIP94(III: 645-649).
IEEE DOI 9411
BibRef

Bloch, I.[Isabelle],
On fuzzy distances and their use in image processing under imprecision,
PR(32), No. 11, November 1999, pp. 1873-1895.
WWW Link. See also Fuzzy Connectivity and Mathematical Morphology. BibRef 9911

Bloch, I.[Isabelle],
Geodesic balls in a fuzzy set and fuzzy geodesic mathematical morphology,
PR(33), No. 6, June 2000, pp. 897-905.
WWW Link. 0004
BibRef

Bloch, I.[Isabelle],
On links between mathematical morphology and rough sets,
PR(33), No. 9, September 2000, pp. 1487-1496.
WWW Link. 0005
BibRef

Ramponi, G.,
Warped Distance for Space-Variant Linear Image Interpolation,
IP(8), No. 5, May 1999, pp. 629-639.
IEEE DOI BibRef 9905

Zhang, S., Karim, M.A.,
Euclidean Distance Transform by Stack Filters,
SPLetters(6), No. 10, October 1999, pp. 253.
IEEE Top Reference. BibRef 9910

Cuisenaire, O., Macq, B.,
Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods,
CVIU(76), No. 2, November 1999, pp. 163-172.
DOI Link 9911
Also use bucket sort. BibRef

Toivanen, P.J.[Pekka J.], Vepsäläinen, A.M.[Ari M.], Parkkinen, J.P.S.[Jussi P.S.],
Image Compression Using the Distance Transform on Curved Space (DTOCS) and Delaunay Triangulation,
PRL(20), No. 10, October 1999, pp. 1015-1026. 9911
BibRef
Earlier:
Image Compression Using the DTOCS and Delaunay Triangulation,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Pan, Y., Hamdi, M., Li, K.,
Euclidean Distance Transform for Binary Images on Reconfigurable Mesh-Connected Computers,
SMC-B(30), No. 1, February 2000, pp. 240-243.
IEEE Top Reference. 0004
See also Improved Constant-Time Algorithm for Computing the Radon and Hough Transforms on a Reconfigurable Mesh, An. BibRef

Gomes, J.[José], Faugeras, O.D.[Olivier D.],
Reconciling Distance Functions and Level Sets,
JVCIR(11), No. 2, June 2000, pp. 209-223. 0008
BibRef
Earlier: ScaleSpace99(70-81). BibRef

Gomes, J.[José], Faugeras, O.D.[Olivier D.],
The Vector Distance Functions,
IJCV(52), No. 2-3, May-June 2003, pp. 161-187.
DOI Link 0301
BibRef
Earlier:
Using the vector distance functions to evolve manifolds of arbitrary codimension,
ScaleSpace01(xx-yy). 0106
BibRef
Earlier:
Level Sets and Distance Functions,
ECCV00(I: 588-602).
Springer DOI 0003
BibRef

Mukherjee, J., Das, P.P., Kumar, M.A.[M. Aswatha], Chatterji, B.N.,
On approximating Euclidean metrics by digital distances in 2D and 3D,
PRL(21), No. 6-7, June 2000, pp. 573-582. 0006
BibRef

Chang, C.C., Chou, J.S., Chen, T.S.,
An Efficient Computation of Euclidean Distance Using Approximated Look-Up Table,
CirSysVideo(10), No. 4, June 2000, pp. 594-599.
IEEE Top Reference. 0006
BibRef

Boxer, L.[Laurence], Miller, R.[Russ],
Efficient Computation of the Euclidean Distance Transform,
CVIU(80), No. 3, December 2000, pp. 379-383.
DOI Link 0012
BibRef
And: Corrigendum: CVIU(86), No. 2, May 2002, pp. 137-140.
WWW Link. 0301
BibRef

Sebe, N.[Nicu], Lew, M.S.[Michael S.], Huijsmans, D.P.[Dionysius P.],
Toward Improved Ranking Metrics,
PAMI(22), No. 10, October 2000, pp. 1132-1143.
IEEE DOI 0011
Evaluation. Distance Measures. Applied to contyent based retrieval, stereo matching and motion tracking. Comparison of various metrics (SSD, SAD, Cauchy, Kullback). Cauchy was better. BibRef

Satherley, R.[Richard], Jones, M.W.[Mark W.],
Vector-City Vector Distance Transform,
CVIU(82), No. 3, June 2001, pp. 238-254.
DOI Link City-block chamfer distance transform. 0108
BibRef

Maurer, C.R.[Calvin R.], Qi, R.S.[Ren-Sheng], Raghavan, V.[Vijay],
A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions,
PAMI(25), No. 2, February 2003, pp. 265-270.
IEEE DOI 0301
For k-dimensional images. Based on dimensionality reduction and partial Voronoi diagram reconstructions. BibRef

Saha, P.K.[Punam K.], Wehrli, F.W.[Felix W.], Gomberg, B.R.[Bryon R.],
Fuzzy Distance Transform: Theory, Algorithms, and Applications,
CVIU(86), No. 3, June 2002, pp. 171-190.
WWW Link. 0301
BibRef

Li, J.[Jun], Nekka, F.[Fahima],
The Hausdorff measure functions: A new way to characterize fractal sets,
PRL(24), No. 15, November 2003, pp. 2723-2730.
WWW Link. 0308
BibRef

Datta, A., Soundaralakshmi, S.,
Fast parallel algorithm for distance transform,
SMC-A(33), No. 4, July 2003, pp. 429-434.
IEEE Abstract. 0310
BibRef

Zhang, Y.G.[Yun Gang], Zhang, C.S.[Chang Shui], Zhang, D.[David],
Distance metric learning by knowledge embedding,
PR(37), No. 1, January 2004, pp. 161-163.
WWW Link. 0311
BibRef
And: Erratum: PR(37), No. 4, April 2004, pp. Page 855.
WWW Link. 0403
BibRef

Fernández García, N.L., Medina Carnicer, R., Carmona Poyato, A., Madrid Cuevas, F.J., Prieto Villegas, M.,
Characterization of empirical discrepancy evaluation measures,
PRL(25), No. 1, January 2004, pp. 35-47.
WWW Link. 0311
BibRef

Grevera, G.J.[George J.],
The 'dead reckoning' signed distance transform,
CVIU(95), No. 3, September 2004, pp. 317-333.
WWW Link. 0409
Modification to Chamfer distance based loosely on dead reckoning navigation. More efficient and accurate. BibRef

Ikonen, L.[Leena], Toivanen, P.J.[Pekka J.],
Shortest routes on varying height surfaces using gray-level distance transforms,
IVC(23), No. 2, 1 February 2004, pp. 133-141.
WWW Link. 0412
BibRef

Ikonen, L.[Leena], Toivanen, P.J.[Pekka J.],
Distance and nearest neighbor transforms on gray-level surfaces,
PRL(28), No. 5, 1 April 2007, pp. 604-612.
WWW Link. 0703
Distance transforms; Gray-level distance transforms; Nearest neighbor transforms; Geodesic distances; Minimal geodesics; Surface roughness BibRef

Ikonen, L.[Leena], Toivanen, P.J.[Pekka J.], Tuominen, J.[Janne],
Shortest Route on Gray-Level Map Using Distance Transform on Curved Space,
SCIA03(305-310).
Springer DOI 0310
BibRef

Ikonen, L.[Leena],
Priority pixel queue algorithm for geodesic distance transforms,
IVC(25), No. 10, 1 October 2007, pp. 1520-1529.
WWW Link. 0709
Distance transforms; Gray-level distance transforms; Nearest neighbor transforms; Minimal geodesics; Pixel queue algorithms BibRef

Toivanen, P.J.[Pekka J.], Lenz, R.[Reiner],
On the Properties of Gray-scale Distance Transforms,
SCIA01(O-M4B). 0206
BibRef

Fouard, C.[Céline], Malandain, G.[Grégoire],
3-D chamfer distances and norms in anisotropic grids,
IVC(23), No. 2, 1 February 2004, pp. 143-158.
WWW Link. 0412
BibRef
Earlier:
Automatic calculation of chamfer mask coefficients for large masks and anisotropic images pages.,
INRIARR-4792, Mars 2003.
HTML Version. 0306
BibRef

Ong, E.J.[Eng-Jon], Bowden, R.[Richard],
Learning multi-kernel distance functions using relative comparisons,
PR(38), No. 12, December 2005, pp. 2653-2657.
WWW Link. 0510
BibRef
And:
Learning Distances for Arbitrary Visual Features,
BMVC06(II:749).
PDF File. 0609
BibRef
And:
Learning Wormholes for Sparsely Labelled Clustering,
ICPR06(I: 916-919).
IEEE DOI 0609
See also Learning Sequential Patterns for Lipreading. BibRef

Miyazawa, M., Zeng, P.[Peifeng], Iso, N., Hirata, T.,
A Systolic Algorithm for Euclidean Distance Transform,
PAMI(28), No. 7, July 2006, pp. 1127-1134.
IEEE DOI 0606
Computes the Euclidean distance map of an NXN binary image in 3N clocks on 2N^2 processing cells. BibRef

Nayak, A.[Arvind], Trucco, E.[Emanuele], Thacker, N.A.[Neil A.],
When are Simple LS Estimators Enough? An Empirical Study of LS, TLS, and GTLS,
IJCV(68), No. 2, June 2006, pp. 203-216.
Springer DOI 0606
least squares; total least squares; generalized total least squares. Study the various errors to determine whether simpler model can be used. BibRef

Guderlei, R., Klenk, S., Mayer, J., Schmidt, V., Spodarev, E.,
Algorithms for the computation of the Minkowski functionals of deterministic and random polyconvex sets,
IVC(25), No. 4, April 2007, pp. 464-474.
WWW Link. 0702
Binary image; Intrinsic volume; Querma[ss] integral; Minkowski functional; Area; Boundary length; Euler-Poincare characteristic; Stationary random closed set; Random field; Volume fraction; Steiner formula; Principal kinematic formula; Parallel set BibRef

Lee, D.J.[Dah-Jye], Archibald, J.[James], Xu, X.Q.[Xiao-Qian], Zhan, P.C.[Peng-Cheng],
Using distance transform to solve real-time machine vision inspection problems,
MVA(18), No. 2, April 2007, pp. 85-93.
Springer DOI 0704
BibRef

Fouard, C.[Celine], Strand, R.[Robin], Borgefors, G.[Gunilla],
Weighted distance transforms generalized to modules and their computation on point lattices,
PR(40), No. 9, September 2007, pp. 2453-2474.
WWW Link. 0705
Weighted distance; Distance transform; Chamfer algorithm; Non-standard grids BibRef

Rauber, T.W., Braun, T., Berns, K.,
Probabilistic distance measures of the Dirichlet and Beta distributions,
PR(41), No. 2, February 2008, pp. 637-645.
WWW Link. 0711
Probabilistic distance measures; Chernoff distance; Bhattacharyya distance; Dirichlet distribution; Beta distribution BibRef

Rauber, T.W., Conci, A., Braun, T., Berns, K.,
Bhattacharyya probabilistic distance of the Dirichlet density and its application to Split-and-Merge image segmentation,
WSSIP08(145-148).
IEEE DOI 0806
BibRef

da Silva, M.A.H.B.[Moacyr A.H.B.], Teixeira, R.[Ralph], Pesco, S.[Sinésio], Craizer, M.[Marcos],
A Fast Marching Method for the Area Based Affine Distance,
JMIV(30), No. 1, January 2008, pp. 1-12.
Springer DOI 0801
BibRef

McCane, B.[Brendan], Albert, M.[Michael],
Distance functions for categorical and mixed variables,
PRL(29), No. 7, 1 May 2008, pp. 986-993.
WWW Link. 0804
Categorical data; Mahalanobis distance; Distance functions BibRef

Fabbri, R.[Ricardo], da Fontoura Costa, L.[Luciano], Torelli, J.C.[Julio C.], Bruno, O.M.[Odemir M.],
2D Euclidean distance transform algorithms: A comparative survey,
Surveys(40), No. 1, February 2008, pp. 1-44.
WWW Link. 0805
Survey, Distance Measures. BibRef

Gavrilova, M.L.[Marina L.], Alsuwaiyel, M.H.[Muhammad H.],
Two Algorithms For Computing The Euclidean Distance Transform,
IJIG(1), No. 4, October 2001, pp. 635-645. 0110
BibRef

Li, J.[Jing], Lu, B.L.[Bao-Liang],
An adaptive image Euclidean distance,
PR(42), No. 3, March 2009, pp. 349-357.
WWW Link. 0811
Image similarity; Image Euclidean distance; Image metric; Gender classification BibRef

Lucet, Y.[Yves],
New sequential exact Euclidean distance transform algorithms based on convex analysis,
IVC(27), No. 1-2, January 2009, pp. 37-44.
WWW Link. 0811
BibRef
Earlier:
A Linear Euclidean Distance Transform Algorithm Based on the Linear-Time Legendre Transform,
CRV05(262-267).
IEEE DOI 0505
Distance transform; Euclidean distance; Feature transform; Fast Legendre transform; Legendre-Fenchel transform; Fenchel conjugate; Moreau envelope; Moreau-Yosida approximate; Computational convex analysis BibRef

Cardenes, R.[Ruben], Alberola-Lopez, C.[Carlos], Ruiz-Alzola, J.[Juan],
Fast and accurate geodesic distance transform by ordered propagation,
IVC(28), No. 3, March 2010, pp. 307-316.
Elsevier DOI 1001
Distance transform; Geodesic distance transform; Geodesic metric; Hidden pixels; Ordered propagation; Visibility BibRef

Cardenes, R., Warfield, S.K., Mewes, A.J.U., Ruiz-Alzola, J.,
K-voronoi diagrams computing in arbitrary domains,
ICIP03(II: 941-944).
IEEE DOI 0312
BibRef

Cardenes, R., Warfield, S.K., Macias, E., Ruiz-Alzola, J.,
Occlusion points propagation geodesic distance transformation,
ICIP03(I: 361-364).
IEEE DOI 0312
BibRef

Zhao, Q.[Qi], Yang, Z.[Zhi], Tao, H.[Hai],
Differential Earth Mover's Distance with Its Applications to Visual Tracking,
PAMI(32), No. 2, February 2010, pp. 274-287.
IEEE DOI 1001
Simplified computational model for EMD. BibRef

Son, J.[Joken], Inoue, N.[Naoya], Yamashtia, Y.[Yukihiko],
Geometrically local isotropic independence and numerical analysis of the Mahalanobis metric in vector space,
PRL(31), No. 8, 1 June 2010, pp. 709-716.
Elsevier DOI 1004
BibRef
Earlier:
Numerical analysis of Mahalanobis metric in vector space,
ICPR08(1-4).
IEEE DOI 0812
Mahalanobis metric; Mahalanobis distance; Manifold; Geometrically local isotropic independence; Newton-Raphson method. Probabilistic distance for non-normal distribution. BibRef

Ma, Y.[Yu], Gu, X.D.[Xiao-Dong], Wang, Y.Y.[Yuan-Yuan],
Histogram similarity measure using variable bin size distance,
CVIU(114), No. 8, August 2010, pp. 981-989.
Elsevier DOI 1007
Variable bin size distance (VBSD); Histogram similarity; Histogram distance; Image retrieval BibRef

Ramanan, D.[Deva], Baker, S.[Simon],
Local Distance Functions: A Taxonomy, New Algorithms, and an Evaluation,
PAMI(33), No. 4, April 2011, pp. 794-806.
IEEE DOI 1103
BibRef
Earlier: ICCV09(301-308).
IEEE DOI 0909
Survey, Distance Functions. Classify by how, where and when they estimate geodesic distance defined by the metric tensor. BibRef

Mukherjee, J.[Jayanta],
On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension,
PRL(32), No. 6, 15 April 2011, pp. 824-831.
Elsevier DOI 1103
Digital geometry; t-cost distances; Euclidean norm; m-Neighbor distances; Octagonal distances; Hypersphere BibRef

Mukherjee, J.[Jayanta],
Hyperspheres of weighted distances in arbitrary dimension,
PRL(34), No. 2, 15 January 2013, pp. 117-123.
Elsevier DOI 1212
Weighted distance; Euclidean distance; Octagonal distance; Hypersphere BibRef

Mukherjee, J.[Jayanta],
Linear combination of weighted t-cost and chamfering weighted distances,
PRL(40), No. 1, 2014, pp. 72-79.
Elsevier DOI 1403
Chamfering weighted distance BibRef

Mukherjee, J.[Jayanta],
Error analysis of octagonal distances defined by periodic neighborhood sequences for approximating Euclidean metrics in arbitrary dimension,
PRL(75), No. 1, 2016, pp. 16-23.
Elsevier DOI 1604
Maximum relative error (MRE) BibRef

Ciesielski, K.C.[Krzysztof Chris], Chen, X.J.[Xin-Jian], Udupa, J.K.[Jayaram K.], Grevera, G.J.[George J.],
Linear Time Algorithms for Exact Distance Transform,
JMIV(39), No. 3, March 2011, pp. 193-209.
WWW Link. 1103
BibRef

Vacavant, A.[Antoine],
Fast distance transformation on irregular two-dimensional grids,
PR(43), No. 10, October 2010, pp. 3348-3358.
Elsevier DOI 1007
Squared Euclidean distance transformation; Irregular grids; Quadtree; Run length encoding; Voronoi diagram; Medial axis extraction BibRef

Coeurjolly, D.[David],
2D Subquadratic Separable Distance Transformation for Path-Based Norms,
DGCI14(75-87).
Springer DOI 1410
BibRef
Earlier:
Distance transformation, reverse distance transformation and discrete medial axis on toric spaces,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Vacavant, A.[Antoine], Coeurjolly, D.[David], Tougne, L.[Laure],
Separable algorithms for distance transformations on irregular grids,
PRL(32), No. 9, 1 July 2011, pp. 1356-1364.
Elsevier DOI 1101
BibRef
Earlier:
A Novel Algorithm for Distance Transformation on Irregular Isothetic Grids,
DGCI09(469-480).
Springer DOI 0909
BibRef
Earlier:
Distance Transformation on Two-Dimensional Irregular Isothetic Grids,
DGCI08(xx-yy).
Springer DOI 0804
BibRef
Earlier:
Dynamic Reconstruction of Complex Planar Objects on Irregular Isothetic Grids,
ISVC06(II: 205-214).
Springer DOI 0611
BibRef
Earlier: Dymanic extension of:
Topological and geometrical reconstruction of complex objects on irregular isothetic grids,
DGCI06(xx-yy). Squared Euclidean distance transformation; Irregular grids; Quadtree; Voronoi diagrams BibRef

Rabin, J.[Julien], Delon, J.[Julie], Gousseau, Y.[Yann],
Transportation Distances on the Circle,
JMIV(41), No. 1-2, September 2011, pp. 147-167.
WWW Link. 1108
BibRef
Earlier:
Circular Earth Mover's Distance for the comparison of local features,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Twining, C.J.[Carole J.], Taylor, C.J.[Christopher J.],
Specificity: A Graph-Based Estimator of Divergence,
PAMI(33), No. 12, December 2011, pp. 2492-2505.
IEEE DOI 1110
BibRef
Earlier:
Specificity as a Graph-Based Estimator of Cross-Entropy and KL Divergence,
BMVC06(II:59).
PDF File. 0609
Fit between the model of the probability density function and the training data. BibRef

Celebi, M.E.[M. Emre], Kingravi, H.A.[Hassan A.], Celiker, F.[Fatih],
Comments on 'On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension',
PRL(33), No. 10, 15 July 2012, pp. 1422-1425.
Elsevier DOI 1205
Euclidean distance; Weighted t-cost distance; Norm approximation See also On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension. BibRef

Antón-Canalís, L.[Luis], Hernández-Tejera, M.[Mario], Sánchez-Nielsen, E.[Elena],
Distance Maps from Unthresholded Magnitudes,
PR(45), No. 9, September 2012, pp. 3125-3130.
Elsevier DOI 1206
BibRef
Earlier: IbPRIA11(92-99).
Springer DOI 1106
BibRef
Earlier:
Analysis of Relevant Maxima in Distance Transform. An Application to Fast Coarse Image Segmentation,
IbPRIA07(I: 97-104).
Springer DOI 0706
Distance transform; Distance map; Pseudodistance BibRef

Lagerstrom, R.[Ryan], Buckley, M.[Michael],
An attribute weighted distance transform,
PRL(33), No. 16, 1 December 2012, pp. 2141-2147.
Elsevier DOI 1210
Euclidean distance transform; Mathematical morphology; Adaptive filtering BibRef

Ni, B.B., Yan, S.C., Wang, M., Kassim, A.A., Tian, Q.,
High-Order Local Spatial Context Modeling by Spatialized Random Forest,
IP(22), No. 2, February 2013, pp. 739-751.
IEEE DOI 1302
BibRef

Feng, J.S.[Jia-Shi], Ni, B.B.[Bing-Bing], Tian, Q.[Qi], Yan, S.C.[Shui-Cheng],
Geometric LP-norm feature pooling for image classification,
CVPR11(2609-2704).
IEEE DOI 1106
aggregate local features. Average and Max are common, but not best. Perserve geometric information. BibRef

Normand, N.[Nicolas], Strand, R.[Robin], Evenou, P.[Pierre], Arlicot, A.[Aurore],
Minimal-delay distance transform for neighborhood-sequence distances in 2D and 3D,
CVIU(117), No. 4, April 2013, pp. 409-417.
Elsevier DOI 1303
BibRef
Earlier:
Path-Based Distance with Varying Weights and Neighborhood Sequences,
DGCI11(199-210).
Springer DOI 1104
Distance transform; Neighborhood-sequence distance; Minkowski Sum; Lambek-Moser inverse; Beatty sequence BibRef

Normand, N.[Nicolas], Strand, R.[Robin], Evenou, P.[Pierre], Arlicot, A.[Aurore],
A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances,
IPOL(2014), No. 2014, pp. 196-203.
DOI Link 1411
Code, Distance Transform. BibRef

Normand, N.[Nicolas], Strand, R.[Robin], Evenou, P.[Pierre],
Digital Distances and Integer Sequences,
DGCI13(169-179).
Springer DOI 1304
BibRef

Strand, R.[Robin], Ciesielski, K.C.[Krzysztof Chris], Malmberg, F.[Filip], Saha, P.K.[Punam K.],
The minimum barrier distance,
CVIU(117), No. 4, April 2013, pp. 429-437.
Elsevier DOI 1303
Image processing; Distance function; Distance transform; Fuzzy subset; Path strength BibRef

Ciesielski, K.C.[Krzysztof Chris], Strand, R.[Robin], Malmberg, F.[Filip], Saha, P.K.[Punam K.],
Efficient algorithm for finding the exact minimum barrier distance,
CVIU(123), No. 1, 2014, pp. 53-64.
Elsevier DOI 1405
Image processing BibRef

Jiang, L.X.[Liang-Xiao], Li, C.Q.[Chao-Qun],
An Augmented Value Difference Measure,
PRL(34), No. 10, 15 July 2013, pp. 1169-1174.
Elsevier DOI 1306
Value Difference Metric; The memory-based reasoning transform; The attribute independence assumption; Distance measure BibRef

Mukherjee, J.[Jayanta],
Linear combination of norms in improving approximation of Euclidean norm,
PRL(34), No. 12, 1 September 2013, pp. 1348-1355.
Elsevier DOI 1306
Weighted distance; t-Cost distance; Weighted-t-cost distance; Euclidean distance BibRef

Sun, C.S.[Chen-Sheng], Lam, K.M.[Kin-Man],
Multiple-Kernel, Multiple-Instance Similarity Features for Efficient Visual Object Detection,
IP(22), No. 8, 2013, pp. 3050-3061.
IEEE DOI 1307
coarse-to-fine learning; kernel machines BibRef

Lindblad, J.[Joakim], Sladoje, N.[Nataša],
Linear Time Distances Between Fuzzy Sets With Applications to Pattern Matching and Classification,
IP(23), No. 1, January 2014, pp. 126-136.
IEEE DOI 1402
BibRef
And:
Exact Linear Time Euclidean Distance Transforms of Grid Line Sampled Shapes,
ISMM15(645-656).
Springer DOI 1506
fuzzy set theory BibRef

Öfverstedt, J.[Johan], Sladoje, N.[Nataša], Lindblad, J.[Joakim],
Distance Between Vector-Valued Fuzzy Sets Based on Intersection Decomposition with Applications in Object Detection,
ISMM17(395-407).
Springer DOI 1706
BibRef

Sladoje, N.[Nataša], Lindblad, J.[Joakim],
Distance Between Vector-Valued Representations of Objects in Images with Application in Object Detection and Classification,
IWCIA17(243-255).
Springer DOI 1706
BibRef
And:
Estimation of Moments of Digitized Objects with Fuzzy Borders,
CIAP05(188-195).
Springer DOI 0509
BibRef

Jing, Y.[Yushi], Covell, M., Tsai, D., Rehg, J.M.,
Learning Query-Specific Distance Functions for Large-Scale Web Image Search,
MultMed(15), No. 8, December 2013, pp. 2022-2034.
IEEE DOI 1402
Internet BibRef

Schouten, T.E.[Theo E.], van den Broek, E.L.[Egon L.],
Fast Exact Euclidean Distance (FEED): A New Class of Adaptable Distance Transforms,
PAMI(36), No. 11, November 2014, pp. 2159-2172.
IEEE DOI 1410
BibRef
Earlier:
Incremental Distance Transforms (IDT),
ICPR10(237-240).
IEEE DOI 1008
BibRef
Earlier:
Fast exact euclidean distance (FEED) transformation,
ICPR04(III: 594-597).
IEEE DOI 0409
Algorithm design and analysis BibRef

Zhang, Y.[Yu], Wu, J.X.[Jian-Xin], Cai, J.F.[Jian-Fei], Lin, W.Y.[Wei-Yao],
Flexible Image Similarity Computation Using Hyper-Spatial Matching,
IP(23), No. 9, September 2014, pp. 4112-4125.
IEEE DOI 1410
computer vision BibRef

Werner, D.[Diana], Werner, P.[Philipp], Al-Hamadi, A.[Ayoub],
Quantitative Analysis of Surface Reconstruction Accuracy Achievable with the TSDF Representation,
CVS15(167-176).
Springer DOI 1507
BibRef
Earlier: A1, A3, A2:
Truncated Signed Distance Function: Experiments on Voxel Size,
ICIAR14(II: 357-364).
Springer DOI 1410
BibRef

Wei, J.[Jie],
On Markov Earth Mover's Distance,
IJIG(14), No. 04, 2014, pp. 1450016.
DOI Link 1412
BibRef

Mishchenko, Y.[Yuriy],
A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures,
SIViP(9), No. 1, January 2015, pp. 19-27.
WWW Link. 1503
BibRef

Mennucci, A.C.G., Duci, A.,
Banach-Like Distances and Metric Spaces of Compact Sets,
SIIMS(8), No. 1, 2015, pp. 19-66.
DOI Link 1503
BibRef

Baum, M., Willett, P., Hanebeck, U.D.,
On Wasserstein Barycenters and MMOSPA Estimation,
SPLetters(22), No. 10, October 2015, pp. 1511-1515.
IEEE DOI 1506
Barycenter: a measure of similarity between images. Minimum Mean Optimal Sub-Pattern Assignment for tracking. approximation theory BibRef

Harel, M., Mannor, S.,
The Perturbed Variation,
PAMI(37), No. 10, October 2015, pp. 2119-2130.
IEEE DOI 1509
Complexity theory. Descrepancy measure between 2 distributions. BibRef

Taha, A.A.[Abdel Aziz], Hanbury, A.[Allan],
An Efficient Algorithm for Calculating the Exact Hausdorff Distance,
PAMI(37), No. 11, November 2015, pp. 2153-2163.
IEEE DOI 1511
computational complexity BibRef

Correa-Morris, J.[Jyrko], Martínez-Díaz, Y.[Yoanna], Hernández, N.[Noslen], Méndez-Vázquez, H.[Heydi],
Novel histograms kernels with structural properties,
PRL(68, Part 1), No. 1, 2015, pp. 146-152.
Elsevier DOI 1512
Histogram similarity BibRef

Jin, C.[Cong], Jin, S.W.[Shu-Wei],
Image distance metric learning based on neighborhood sets for automatic image annotation,
JVCIR(34), No. 1, 2016, pp. 167-175.
Elsevier DOI 1601
Automatic image annotation See also Adaptive digital image watermark scheme based on Fuzzy Neural Network for copyright protection. BibRef

El Moataz, A.[Abderrahim], Toutain, M.[Matthieu], Tenbrinck, D.[Daniel],
On the p-Laplacian and inf-Laplacian on Graphs with Applications in Image and Data Processing,
SIIMS(8), No. 4, 2015, pp. 2412-2451.
DOI Link 1601
partial difference operators. such as filtering, segmentation, clustering, and inpainting. BibRef

Alvarez, L.[Luis], Cuenca, C.[Carmelo], Esclarín, J.[Julio], Mazorra, L.[Luis], Morel, J.M.[Jean-Michel],
Affine Invariant Distance Using Multiscale Analysis,
JMIV(55), No. 2, June 2016, pp. 199-209.
Springer DOI 1604
BibRef

Toutain, M.[Matthieu], Elmoataz, A.[Abderrahim], Lozes, F.[François], Mansouri, A.[Alamin],
Non-local Discrete INF-Poisson and Hamilton Jacobi Equations,
JMIV(55), No. 2, June 2016, pp. 229-241.
Springer DOI 1604
BibRef

Genctav, M.[Murat], Genctav, A.[Asli], Tari, S.[Sibel],
NonLocal via Local-NonLinear via Linear: A New Part-coding Distance Field via Screened Poisson Equation,
JMIV(55), No. 2, June 2016, pp. 242-252.
Springer DOI 1604
BibRef

Režnáková, M.[Marta], Tencer, L.[Lukas], Cheriet, M.[Mohamed],
Incremental Similarity for real-time on-line incremental learning systems,
PRL(74), No. 1, 2016, pp. 61-67.
Elsevier DOI 1604
Incremental learning BibRef

Wang, K.[Ke], Yong, B.[Bin],
Application of the Frequency Spectrum to Spectral Similarity Measures,
RS(8), No. 4, 2016, pp. 344.
DOI Link 1604
BibRef

Zhai, Y.H.[Yuan-Hao], Neuhoff, D.L.[David L.],
Similarity of Scenic Bilevel Images,
IP(25), No. 11, November 2016, pp. 5063-5076.
IEEE DOI 1610
image processing BibRef

Peng, J.T.[Jiang-Tao], Zhang, L.[Lefei], Li, L.Q.[Luo-Qing],
Regularized set-to-set distance metric learning for hyperspectral image classification,
PRL(83, Part 2), No. 1, 2016, pp. 143-151.
Elsevier DOI 1609
Hyperspectral image classification BibRef

Xavier, E.M.A.[Emerson M. A.], Ariza-López, F.J.[Francisco J.], Ureńa-Cámara, M.A.[Manuel A.],
A Survey of Measures and Methods for Matching Geospatial Vector Datasets,
Surveys(48), No. 3, February 2016, pp. 39.
DOI Link 1612
Survey, Geospatial Matching. Survey of procedures to find the correspondences between two vector datasets and similarity measures. BibRef

Chen, Y.[Yilin], He, F.[Fazhi], Wu, Y.[Yiqi], Hou, N.[Neng],
A local start search algorithm to compute exact Hausdorff Distance for arbitrary point sets,
PR(67), No. 1, 2017, pp. 139-148.
Elsevier DOI 1704
Hausdorff Distance BibRef

Wei, D.[Dennis],
k-quantiles: L1 distance clustering under a sum constraint,
PRL(92), No. 1, 2017, pp. 49-55.
Elsevier DOI 1705
Proportional data BibRef


Géraud, T.[Thierry], Xu, Y.[Yongchao], Carlinet, E.[Edwin], Boutry, N.[Nicolas],
Introducing the Dahu Pseudo-Distance,
ISMM17(55-67).
Springer DOI 1706
BibRef

Röwekamp, J.H.,
Fast thresholding of high dimensional Euclidean distances using binary squaring,
ICPR16(3103-3108)
IEEE DOI 1705
Context, Euclidean distance, Pattern recognition, Petri nets, Program processors, Search, problems BibRef

Iwata, K.,
Reducing the computational cost of shape matching with the distance set,
ICPR16(1506-1511)
IEEE DOI 1705
Computational efficiency, Computers, Cost function, Euclidean distance, Minimization, Shape, Sorting, Hilbert distance, distance set, local descriptor of shape, shape matching BibRef

Strand, R.[Robin],
Minimal Paths by Sum of Distance Transforms,
DGCI16(349-358).
WWW Link. 1606
BibRef

Mustafa, A.A.Y.,
A modified hamming distance measure for quick detection of dissimilar binary images,
ICCVIA15(1-6)
IEEE DOI 1603
image matching BibRef

Shamai, G.[Gil], Aflalo, Y.[Yonathan], Zibulevsky, M.[Michael], Kimmel, R.[Ron],
Classical Scaling Revisited,
ICCV15(2255-2263)
IEEE DOI 1602
Complexity theory. evaluation of distances between data points. BibRef

Shukla, A.[Ankita], Anand, S.[Saket],
Distance Metric Learning by Optimization on the Stiefel Manifold,
DIFF-CV15(xx-yy).
DOI Link 1601
BibRef

Noyel, G.[Guillaume], Jourlin, M.[Michel],
Double-Sided Probing by Map of Asplund's Distances Using Logarithmic Image Processing in the Framework of Mathematical Morphology,
ISMM17(408-420).
Springer DOI 1706
BibRef
And:
Spatio-Colour Asplünd's Metric and Logarithmic Image Processing for Colour Images (LIPC),
CIARP16(36-43).
Springer DOI 1703
BibRef
Earlier:
Asplünd's metric defined in the logarithmic image processing (LIP) framework for colour and multivariate images,
ICIP15(3921-3925)
IEEE DOI 1512
Asplünd's distance BibRef

Jia, D.[Di], Xiao, C.L.[Cheng-Long], Sun, J.G.[Jin-Guang],
Edge detection method of Gaussian block distance,
ICIP15(3049-3053)
IEEE DOI 1512
Euclidean distance BibRef

Aiello, R.[Rosario], Banterle, F.[Francesco], Pietroni, N.[Nico], Malomo, L.[Luigi], Cignonii, P.[Paolo], Scopigno, R.[Roberto],
Compression and Querying of Arbitrary Geodesic Distances,
CIAP15(I:282-293).
Springer DOI 1511
BibRef

Pinho, A.J.[Armando J.], Pratas, D.[Diogo], Ferreira, P.J.S.G.[Paulo J.S.G.],
A New Compressor for Measuring Distances among Images,
ICIAR14(I: 30-37).
Springer DOI 1410
BibRef

Savchenko, A.V.[Andrey V.],
Deep Convolutional Neural Networks and Maximum-Likelihood Principle in Approximate Nearest Neighbor Search,
IbPRIA17(42-49).
Springer DOI 1706
BibRef
Earlier:
An Optimal Greedy Approximate Nearest Neighbor Method in Statistical Pattern Recognition,
PReMI15(236-245).
Springer DOI 1511
BibRef
Earlier:
Nonlinear Transformation of the Distance Function in the Nearest Neighbor Image Recognition,
CompIMAGE14(261-266).
Springer DOI 1407
BibRef

Figueroa, K.[Karina], Paredes, R.[Rodrigo],
Boosting the Permutation Based Index for Proximity Searching,
MCPR15(103-112).
Springer DOI 1506
BibRef
Earlier:
An Effective Permutant Selection Heuristic for Proximity Searching in Metric Spaces,
MCPR14(102-111).
Springer DOI 1407
BibRef

Rebatel, F.[Fabien], Thiel, É.[Édouard],
On Dimension Partitions in Discrete Metric Spaces,
DGCI13(11-22).
Springer DOI 1304
BibRef

Maki, A.[Atsuto], Gherardi, R.[Riccardo],
Conditional Variance of Differences: A Robust Similarity Measure for Matching and Registration,
SSSPR12(657-665).
Springer DOI 1211
BibRef

Dubbelman, G.[Gijs], Dorst, L.[Leo], Pijls, H.[Henk],
Manifold Statistics for Essential Matrices,
ECCV12(II: 531-544).
Springer DOI 1210
BibRef

Wang, F.[Fan], Guibas, L.J.[Leonidas J.],
Supervised Earth Mover's Distance Learning and Its Computer Vision Applications,
ECCV12(I: 442-455).
Springer DOI 1210
BibRef

Fang, C.[Chen], Torresani, L.[Lorenzo],
Measuring Image Distances via Embedding in a Semantic Manifold,
ECCV12(IV: 402-415).
Springer DOI 1210
BibRef

Nilsson, O.[Ola], Reimers, M.[Martin], Museth, K.[Ken], Brun, A.[Anders],
A Novel Algorithm for Computing Riemannian Geodesic Distance in Rectangular 2d Grids,
ISVC12(II: 265-274).
Springer DOI 1209
BibRef

Dimitrov, P.[Pavel], Lawlor, M.[Matthew], Zucker, S.W.[Steven W.],
Distance Images and Intermediate-Level Vision,
SSVM11(653-664).
Springer DOI 1201
BibRef

Chen, S.A.[Shu-Ang], Li, J.L.[Jun-Li], Wang, X.Y.[Xiu-Ying],
A Fast Exact Euclidean Distance Transform Algorithm,
ICIG11(45-49).
IEEE DOI 1109
BibRef

Veelaert, P.[Peter],
Distance between Separating Circles and Points,
DGCI11(346-357).
Springer DOI 1104
BibRef

Enficiaud, R.[Raffi],
Queue and Priority Queue Based Algorithms for Computing the Quasi-distance Transform,
ICIAR10(I: 35-44).
Springer DOI 1006
BibRef

Pele, O.[Ofir], Werman, M.[Michael],
Fast and robust Earth Mover's Distances,
ICCV09(460-467).
IEEE DOI 0909
BibRef

Omer, I.[Ido], Werman, M.[Michael],
The Bottleneck Geodesic: Computing Pixel Affinity,
CVPR06(II: 1901-1907).
IEEE DOI 0606
Compute image specific measures for simmilarity of pixels. Path in histogram space that is short and dense. BibRef

Mémoli, F.[Facundo],
Metric Structures on Datasets: Stability and Classification of Algorithms,
CAIP11(II: 1-33).
Springer DOI 1109
BibRef

Memoli, F.[Facundo],
Spectral Gromov-Wasserstein distances for shape matching,
NORDIA09(256-263).
IEEE DOI 0910
BibRef
Earlier:
Gromov-Hausdorff distances in Euclidean spaces,
NORDIA08(1-8).
IEEE DOI 0806
BibRef

Oka, A.[Aiko], Wada, T.[Toshikazu],
Mahalanobis distance Minimization Mapping: M3,
Subspace09(93-100).
IEEE DOI 0910
BibRef

Niu, Y.[Yan], Dick, A., Brooks, M.J.,
A new inconsistency measure for linear systems and two applications in motion analysis,
IVCNZ09(12-17).
IEEE DOI 0911
BibRef

Zhou, Z.Q.[Zhi-Qiang], Wang, B.[Bo],
A modified Hausdorff distance using edge gradient for robust object matching,
IASP09(250-254).
IEEE DOI 0904
BibRef

Gurumoorthy, K.S.[Karthik S.], Rangarajan, A.[Anand], Banerjee, A.[Arunava],
The Complex Wave Representation of Distance Transforms,
EMMCVPR11(413-427).
Springer DOI 1107
BibRef

Rangarajan, A.[Anand], Gurumoorthy, K.S.[Karthik S.],
A Schrödinger Wave Equation Approach to the Eikonal Equation: Application to Image Analysis,
EMMCVPR09(140-153).
Springer DOI 0908
BibRef
And: A2, A1:
A Schrödinger Equation for the Fast Computation of Approximate Euclidean Distance Functions,
SSVM09(100-111).
Springer DOI 0906
BibRef

Lou, Z.[Zhen], Jin, Z.[Zhong],
Integrated probability function on local mean distance for image recognition,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Gupta, M.D.[Mithun Das], Huang, T.S.[Thomas S.],
Bregman distance to L1 regularized logistic regression,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Ebrahim, Y., Ahmed, M., Chau, S.C., Abdelsalam, W.,
A novel warping distance measure,
ICIP08(2172-2175).
IEEE DOI 0810
BibRef

Shirdhonkar, S.[Sameer], Jacobs, D.W.[David W.],
Approximate earth mover's distance in linear time,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Combier, C.[Camille], Damiand, G.[Guillaume], Solnon, C.[Christine],
Measuring the Distance of Generalized Maps,
GbRPR11(82-91).
Springer DOI 1105
BibRef

Solnon, C.[Christine], Jolion, J.M.[Jean-Michel],
Generalized vs Set Median Strings for Histogram-Based Distances: Algorithms and Classification Results in the Image Domain,
GbRPR07(404-414).
Springer DOI 0706
BibRef

Felzenszwalb, P.F.[Pedro F.], Huttenlocher, D.P.[Daniel P.],
Distance Transforms of Sampled Functions,
Cornell2004, Computing and Information Science TR2004-1963. Code, Distance Transform.
WWW Link. BibRef 0400

Harker, M.J., O'Leary, P.L.,
First Order Geometric Distance (The Myth of Sampsonus),
BMVC06(I:87).
PDF File. 0609
BibRef

Abdi, H., O'Toole, A.J., Valentin, D., Edelman, B.,
DISTATIS: The Analysis of Multiple Distance Matrices,
EEMCV05(III: 42-42).
IEEE DOI 0507
BibRef

Zhang, B.[Bin], Srihari, S.,
Discovery of the tri-edge inequality with binary vector dissimilarity measures,
ICPR04(IV: 669-672).
IEEE DOI 0409
Triangle: sum of 2 sides greater than the third. Apply to distance measure analysis. BibRef

Chen, W.J.[Wei-Jun], Buhmann, J.M.[Joachim M.],
A New Distance Measure for Probabilistic Shape Modeling,
DAGM03(507-514).
Springer DOI 0310
BibRef

Donath, K.[Klaus], Wolf, M.[Matthias], Chrástek, R.[Radim], Niemann, H.[Heinrich],
A Hybrid Distance Map Based and Morphologic Thinning Algorithm,
DAGM03(354-361).
Springer DOI 0310
BibRef

Aujol, J.F.[Jean-Francois], Aubert, G.[Gilles],
Signed distance functions and viscosity solutions of discontinuous Hamilton-Jacobi Equations,
INRIARR-4507, July 2002.
HTML Version. 0211
BibRef

Giannopoulos, P.[Panos], Veltkamp, R.C.[Remco C.],
A Pseudo-Metric for Weighted Point Sets,
ECCV02(III: 715 ff.).
Springer DOI 0205
BibRef

Levina, E.[Elizaveta], Bickel, P.[Peter],
The Earth Mover's Distance is the Mallows Distance: Some Insights from Statistics,
ICCV01(II: 251-256).
IEEE DOI 0106
See also Earth Mover's Distance as a Metric for Image Retrieval, The. BibRef

Cohen, S.D., Guibas, L.J.,
The Earth Mover's Distance under Transformation Sets,
ICCV99(1076-1083).
IEEE DOI See also Earth Mover's Distance as a Metric for Image Retrieval, The. BibRef 9900

Gustin, V.[Veselko], Lapajne, A.[Ales], Kodric, R.[Rober], Zitko, T.[Tomislav],
Measurement of Ski-Jump Distances by the Use of Fuzzy Pattern Comparator,
CAIP99(462-471).
Springer DOI 9909
BibRef

Jang, J.H., Hong, K.S.,
Detection of Curvilinear Structures Using the Euclidean Distance Transform,
MVA98(xx-yy). BibRef 9800

Forsmoo, A.,
The distance transform algorithm on a two-processor computer,
CIAP99(114-118).
IEEE DOI 9909
BibRef

Forsmoo, A.[Anders], and Borgefors, G.[Gunilla],
Parallel Distance Transform Algorithms on a General SIMD Computer,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Baglietto, P.,
Euclidean distance transform on a dedicated architecture based on a reconfigurable mesh network,
CIAP99(235-240).
IEEE DOI 9909
BibRef

Shih, F.Y., Yang, C.H.T.,
On solving exact Euclidean distance transformation with invariance to object size,
CVPR93(607-608).
IEEE DOI 0403
BibRef

Pridmore, T.P.[Tony P.], Ablameyko, S.V.[Sergey V.],
The distance transform for line patterns: Generalisation and development,
CAIP95(278-285).
Springer DOI 9509
BibRef

Buchowicz, A.,
Adaptive multichannel distance filter,
ICIP95(I: 175-178).
IEEE DOI 9510
BibRef

Buchowicz, A., Pitas, I.,
Multichannel distance filters,
ICIP94(II: 575-579).
IEEE DOI 9411
BibRef

Yang, D.L.[Dyi-Long], Chen, C.H.[Chin-Hsing],
A real-time systolic array for distance transformation,
ICPR94(C:342-344).
IEEE DOI 9410
BibRef

Verbeek, F.J.,
Deformation correction using Euclidean contour distance maps,
ICPR92(III:347-351).
IEEE DOI 9208
BibRef

Segawa, H., Ukita, T.,
A similarity value transformation method for probabilistic scoring,
ICPR88(II: 1225-1209).
IEEE DOI 8811
Turn similarity into probability. BibRef

Mouer, E., Schaerf, R.,
New Applications of Distance Transformation Methods for Effective Structural Image Analysis,
ICPR86(666-668). BibRef 8600

Okada, T., Kanade, T.,
Approximate Lengths Between Phalanges of Multijointed Fingers for Stable Grasping,
AAAI-83(301-305). BibRef 8300

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Three Dimensional Distance Transforms and Distance Functions .


Last update:Nov 11, 2017 at 13:31:57