Rosenfeld, A.,
Pfaltz, J.L.,
Distance Functions on Digital Pictures,
PR(1), No. 1, July 1968, pp. 33-61.
Elsevier DOI Parallal distance.
BibRef
6807
Jackson, D.M.[David M.],
White, L.J.[Lee J.],
Effect of random errors on generalized distance computations,
PR(4), No. 3, October 1972, pp. 263-273.
Elsevier DOI
0309
BibRef
Fischler, M.A.[Martin A.],
Fast Algorithms for Two Maximal Distance Problems with
Applications to Image Analysis,
PR(12), No. 1, 1980, pp. 35-40.
Elsevier DOI
BibRef
8000
Yokoi, S.,
Toriwaki, J.I.,
Fukumura, T.,
On Generalized Distance Transformation of Digitized Pictures,
PAMI(3), No. 4, July 1981, pp. 424-443.
BibRef
8107
Earlier:
Generalized Distance Transformation on Digitized Binary Images,
ICPR80(1201-1203).
BibRef
Toriwaki, J.I.,
Naruse, T.,
Fukumura, T.,
Fundamental Properties of the Grey Weighted
Distance Transformation of Grey Pictures,
IECE(60), 1977, pp. 1101-1108.
BibRef
7700
Toriwaki, J.I.[Jun-Ichiro],
Tanaka, M.[Masahiko],
Fukumura, T.[Teruo],
A Generalized Distance Transformation of a Line Pattern with
Grey Values and Its Application,
CGIP(20), No. 4, December 1982, pp. 319-346.
Elsevier DOI
BibRef
8212
Earlier:
ICPR80(35-37).
BibRef
Danielsson, P.E.[Per-Erik],
Euclidean Distance Mapping,
CGIP(14), No. 3, November 1980, pp. 227-248.
Elsevier DOI How far is a point to some feature.
BibRef
8011
Danielsson, P.E.[Per-Erik],
Kruse, B.,
Distance Checking Algorithms,
CGIP(11), No. 4, December 1979, pp. 349-376.
Elsevier DOI
See also Process for Detecting Defects in Complicated Patterns, A.
BibRef
7912
Roberts, S.J.,
Hanka, R.,
An interpretation of Mahalanobis distance in the dual space,
PR(15), No. 4, 1982, pp. 325-333.
Elsevier DOI
0309
BibRef
Krusinska, E.,
A valuation of state of object based on weighted Mahalanobis distance,
PR(20), No. 4, 1987, pp. 413-418.
Elsevier DOI
0309
Distance between object and multidimensional norm estimate.
BibRef
Samet, H.,
Distance Transform for Images Represented by Quadtrees,
PAMI(4), No. 3, May 1982, pp. 298-303.
BibRef
8205
Chazelle, B.,
An Improved Algorithm for the Fixed-Radius Neighbor Problem,
IPL(16), 1983, pp. 193-198.
BibRef
8300
Bhattacharya, B.K.,
Toussaint, G.T.,
Efficient Algorithms for Computing the Maximum Distance,
Algorithms(4), 1983, pp. 121-126.
BibRef
8300
Soille, P.,
Spatial Distributions from Contour Lines:
An Efficient Methodology Based on Distance Transformations,
JVCIR(2), 1991, pp. 138-150.
BibRef
9100
Soille, P.[Pierre],
Constrained Connectivity for Hierarchical Image Decomposition and
Simplification,
PAMI(30), No. 7, July 2008, pp. 1132-1145.
IEEE DOI
0806
BibRef
Earlier:
On Genuine Connectivity Relations Based on Logical Predicates,
CIAP07(487-492).
IEEE DOI
0709
2 pixels are connected if the meet certain constraints, gray level differences
over the connecting path.
BibRef
Klein, F.,
Kubler, O.,
Euclidean Distance Transformations and
Model-Guided Image Interpretation,
PRL(5), 1987, pp. 19-29.
BibRef
8700
Das, P.P.,
Chakrabarti, P.P.,
Chatterji, B.N.,
Distance Functions in Digital Geometry,
IS(42), 1987, pp. 113-136.
BibRef
8700
Das, P.P.,
Chatterji, B.N.,
Hyperspheres In Digital Geometry,
IS(50), 1990, pp. 73-91.
BibRef
9000
Das, P.P.,
Chatterji, B.N.,
Knight's Distance in Digital Geometry,
PRL(7), 1988, pp. 215-226.
BibRef
8800
Das, P.P.,
Counting Minimal Paths in Digital Geometry,
PRL(12), 1991, pp. 595-603.
BibRef
9100
And:
An Algorithm for Computing the Number of the Minimal Paths in
Digital Images,
PRL(9), 1989, pp. 107-116.
BibRef
Das, P.P.,
Mukherjee, J.,
Metricity of Super-Knight's Distance in Digital Geometry,
PRL(11), 1990, pp. 601-604.
BibRef
9000
Das, P.P.,
Chatterji, B.N.,
Octagonal Distances For Digital Pictures,
IS(50), 1990, pp. 123-150.
BibRef
9000
Das, P.P.,
Chatterji, B.N.,
A Note on 'Distance Transformations in Arbitrary Dimensions',
CVGIP(43), No. 3, September 1988, pp. 368-385.
Elsevier DOI Proved the conjecture.
See also Distance Transformations in Arbitrary Dimensions.
BibRef
8809
Das, P.P.,
Lattice of Octagonal Distances in Digital Geometry,
PRL(11), 1990, pp. 663-667.
BibRef
9000
Das, P.P.,
More on Path Generated Digital Metrics,
PRL(10), 1989, pp. 25-31.
BibRef
8900
Das, P.P.,
Metricity Preserving Transforms,
PRL(10), 1989, pp. 73-76.
BibRef
8900
Rosenfeld, A.,
A Note on Average Distances in Digital Sets,
PRL(5), 1987, pp. 281-283.
BibRef
8700
Borgefors, G.[Gunilla],
Distance Transformations in Digital Images,
CVGIP(34), No. 3, June 1986, pp. 344-371.
Elsevier DOI
BibRef
8606
Earlier:
A New Distance Transformation Approximating the Euclidean Distance,
ICPR86(336-338).
BibRef
And:
Another Comment on 'A Note on
'Distance Transformations in Digital Images'',
CVGIP(54), No. 2, September 1991, pp. 301-306.
Elsevier DOI
See also Note on Distance Transformations in Digital Images, A.
See also Comment on A Note on 'Distance Transformations in Digital Images', A.
BibRef
Borgefors, G.,
Hartmann, T.,
Tanimoto, S.L.,
Parallel Distance Transforms on Pyramid Machines:
Theory and Implementation,
SP(21), 1990, pp. 61-86.
BibRef
9000
Vossepoel, A.M.[Albert M.],
A Note on 'Distance Transformations in Digital Images',
CVGIP(43), No. 1, July 1988, pp. 88-97.
Elsevier DOI
See also Distance Transformations in Digital Images.
See also Comment on A Note on 'Distance Transformations in Digital Images', A.
BibRef
8807
Vossepoel, A.M.[Albert M.],
Estimating the size of circular pre-images from coarsely digitized
representations,
ICPR92(III:365-368).
IEEE DOI
9208
probability of disks in set of pixels.
BibRef
Beckers, A.L.D.,
Smeulders, A.W.M.,
A Comment on 'A Note on 'Distance Transformations in Digital Images'',
CVGIP(47), No. 1, July 1989, pp. 89-91.
Elsevier DOI
See also Note on Distance Transformations in Digital Images, A.
See also Distance Transformations in Digital Images.
BibRef
8907
Yamashita, M.[Masafumi],
Honda, N.[Namio],
Distance Functions Defined by Variable Neighborhood Sequences,
PR(17), No. 5, 1984, pp. 509-513.
Elsevier DOI
9611
BibRef
Yamashita, M.[Masafumi],
Ibaraki, T.[Toshihide],
Distances Defined By Neighborhood Sequences,
PR(19), No. 3, 1986, pp. 237-246.
Elsevier DOI
BibRef
8600
Piper, J.[Jim],
Granum, E.[Erik],
Computing Distance Transformations in Convex and Non-Convex Domains,
PR(20), No. 6, 1987, pp. 599-615.
Elsevier DOI
BibRef
8700
Verwer, B.J.H.,
Verbeek, P.W.,
Dekker, S.T.,
An Efficient Uniform Cost Algorithm Applied to Distance Transforms,
PAMI(11), No. 4, April 1989, pp. 425-429.
IEEE DOI
BibRef
8904
Shih, F.Y.,
Wu, H.,
Optimization on Euclidean Distance Transformation Using
Grayscale Morphology,
JVCIR(3), 1992, pp. 104-114.
BibRef
9200
Shih, F.Y.[Frank Y.],
Liu, J.J.[Jenny J.],
Size-invariant four-scan Euclidean distance transformation,
PR(31), No. 11, November 1998, pp. 1761-1766.
Elsevier DOI
BibRef
9811
Shih, F.Y.[Frank Y.],
Wu, Y.T.[Yi-Ta],
Fast Euclidean Distance Transformation in Two Scans Using
a 3X3 Neighborhood,
CVIU(93), No. 2, February 2004, pp. 195-205.
Elsevier DOI
0402
Record relative X and Y and achieve distance in only 2 scans.
See also Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods.
See also Three-dimensional Euclidean distance transformation and its application to shortest path planning.
BibRef
Shih, F.Y.[Frank Y.],
Wu, Y.T.[Yi-Ta],
The Efficient Algorithms for Achieving Euclidean Distance
Transformation,
IP(13), No. 8, August 2004, pp. 1078-1091.
IEEE DOI
0409
BibRef
Paglieroni, D.W.[David W.],
Distance Transforms: Properties and Machine Vision Applications,
GMIP(54), No. 1, January 1992, pp. 56-74.
BibRef
9201
Paglieroni, D.W.,
A Unified Distance Transform Algorithm and Architecture,
MVA(5), 1992, pp. 47-55.
BibRef
9200
Wang, X.L.[Xiao-Li],
Bertrand, G.,
Some Sequential Algorithms for a Generalized Distance Transformation
Based on Minkowski Operations,
PAMI(14), No. 11, November 1992, pp. 1114-1121.
IEEE DOI
BibRef
9211
An Algorithm for a Generalized Distance Transformation Based on
Minkowski Operations,
ICPR88(II: 1164-1168).
IEEE DOI
BibRef
Ragnemalm, I.[Ingemar],
Neighborhoods for Distance Transformations Using Ordered Propagation,
CVGIP(56), No. 3, November 1992, pp. 399-409.
Elsevier DOI process only at the propagation front.
BibRef
9211
Borgefors, G.,
Ragnemalm, I.[Ingemar], and
Sanniti di Baja, G.[Gabriella],
Feature Extraction of the Euclidean Distance Transform,
CIAP91(115-122).
BibRef
9100
Ragnemalm, I.,
The Euclidean Distance Transform in Arbitrary Dimensions,
PRL(14), 1993, pp. 883-888.
BibRef
9300
Ragnemalm, I.,
Fast Erosion and Dilation by Contour Processing and
Thresholding of Distance Maps,
PRL(13), 1992, pp. 161-166.
BibRef
9200
Starovoitov, V.V.[Valery V.],
Ablameyko, S.V.[Sergey V.],
Ishikawa, S.[Seiji],
Kawaguchi, E.[Eiji],
Binary Texture Border Extraction on Line Drawings Based on
Distance Transform,
PR(26), No. 8, August 1993, pp. 1165-1176.
Elsevier DOI
BibRef
9308
Breu, H.,
Gil, J.,
Kirkpatrick, D.,
Werman, M.,
Linear-Time Euclidean Distance Transform Algorithms,
PAMI(17), No. 5, May 1995, pp. 529-533.
IEEE DOI One theoretical algorithm and one practical algorithm, derive
transform from a Voronoi diagram.
BibRef
9505
Embrechts, H.[Hugo],
Roose, D.[Dirk],
A Parallel Euclidean Distance Transformation Algorithm,
CVIU(63), No. 1, January 1996, pp. 15-26.
DOI Link
BibRef
9601
Earlier:
Parallel algorithms for the distance transformation,
ECCV92(387-391).
Springer DOI
9205
BibRef
Starovoitov, V.V.,
A Clustering Technique Based on the Distance Transform,
PRL(17), No. 3, March 6 1996, pp. 231-239.
BibRef
9603
Earlier:
Towards a measure of diversity between grey-scale images,
CAIP95(214-221).
Springer DOI
9509
BibRef
di Gesu, V.[Vito],
Starovoitov, V.V.[Valery V.],
Distance-based functions for image comparison,
PRL(20), No. 2, February 1999, pp. 207-214.
BibRef
9902
Starovoitov, V.V.,
Kose, C.,
Sankur, B.,
Generalized distance based matching of nonbinary images,
ICIP98(I: 803-807).
IEEE DOI
9810
BibRef
Toivanen, P.J.,
New Geodesic Distance Transforms for Gray-Scale Images,
PRL(17), No. 5, May 1 1996, pp. 437-450.
9606
BibRef
And:
Correction:
PRL(17), No. 13, November 25 1996, pp. 1411-1411.
BibRef
Eggers, H.,
Parallel Euclidean Distance Transformations in Z(G)(N),
PRL(17), No. 7, June 10 1996, pp. 751-757.
9607
BibRef
Eggers, H.[Hinnik],
Two Fast Euclidean Distance Transformations in Z2 Based on
Sufficient Propagation,
CVIU(69), No. 1, January 1998, pp. 106-116.
DOI Link
BibRef
9801
Kiselman, C.O.,
Regularity Properties of Distance Transformations in Image-Analysis,
CVIU(64), No. 3, November 1996, pp. 390-398.
DOI Link
9612
BibRef
Chaudhuri, D.,
Murthy, C.A.,
Chaudhuri, B.B.,
A Modified Metric to Compute Distance,
PR(25), No. 7, July 1992, pp. 667-677.
Elsevier DOI Close to Euclidean, but more efficient.
BibRef
9207
Huang, C.T.[C. Tony],
Mitchell, O.R.[O. Robert],
A Euclidian Distance Transform Using Grayscale Morphology Decomposition,
PAMI(16), No. 4, April 1994, pp. 443-448.
IEEE DOI
BibRef
9404
Earlier:
Rapid Euclidean Distance Transform Using
Grayscale Morphology Decomposition,
CVPR91(695-697).
IEEE DOI
See also Threshold Decomposition of Gray-Scale Morphology into Binary Morphology.
BibRef
Arcelli, C.[Carlo],
Ramella, G.,
Sketching a Grey-Tone Pattern from Its Distance Transform,
PR(29), No. 12, December 1996, pp. 2033-2045.
Elsevier DOI
9701
BibRef
Coquin, D.[Didier],
Bolon, P.[Philippe],
Discrete Distance Operator on Rectangular Grids,
PRL(16), 1995, pp. 911-923.
BibRef
9500
Coquin, D.[Didier],
Bolon, P.[Philippe],
Lower and Upper Bounds for Scaling Factors Used for Integer
Approximation of 3D Anisotropic Chamfer Distance Operator,
DGCI09(457-468).
Springer DOI
0909
BibRef
Toivanen, P.J.,
Image Compression by Selecting Control Points Using Distance Function
on Curved Space,
PRL(14), 1993, pp. 475-482.
BibRef
9300
Rhodes, F.[Frank],
On the metrics of Chaudhuri, Murthy and Chaudhuri,
PR(28), No. 5, May 1995, pp. 745-752.
Elsevier DOI
0401
considers the approximation of Euclidean distance in n-dimensional
space by linear combinations of the L1 and L-inf metrics.
See also Modified Metric to Compute Distance, A.
BibRef
Rhodes, F.[Frank],
Some Characterizations of the Chessboard Metric and the
City Block Metric,
PRL(11), 1990, pp. 669-675.
BibRef
9000
Melter, R.A.,
Some Characterizations of City Block Distance,
PRL(6), 1987, pp. 235-240.
BibRef
8700
Brown, R.L.,
The Fringe Distance Measure: An Easily Calculated Image Distance Measure
with Recognition Results Comparable to Gaussian Blurring,
SMC(24), 1994, pp. 111-115.
BibRef
9400
Lee, Y.H.,
Horng, S.J.,
Kao, T.W.,
Chen, Y.J.,
Parallel Computation of the Euclidean Distance transform on the
Mesh of Trees and the Hypercube Computer,
CVIU(68), No. 1, October 1997, pp. 109-119.
DOI Link
9710
BibRef
Lee, Y.H.[Yu-Hua],
Horng, S.J.[Shi-Jinn],
Optimal Computing the Chessboard Distance Transform on Parallel
Processing Systems,
CVIU(73), No. 3, March 1999, pp. 374-390.
DOI Link
BibRef
9903
Juffs, P.,
Beggs, E.,
Deravi, F.,
A Multiresolution Distance Measure for Images,
SPLetters(5), No. 6, June 1998, pp. 138-140.
IEEE Top Reference.
9806
BibRef
Butt, M.A.,
Maragos, P.,
Optimum Design of Chamfer Distance Transforms,
IP(7), No. 10, October 1998, pp. 1477-1484.
IEEE DOI
BibRef
9810
Kaijser, T.,
Computing the Kantorovich Distance for Images,
JMIV(9), No. 2, September 1998, pp. 173-191.
DOI Link
9811
BibRef
Pennec, X.,
Ayache, N.J.,
Uniform Distribution, Distance and Expectation Problems for
Geometric Features Processing,
JMIV(9), No. 1, July 1998, pp. 49-67.
DOI Link
9807
BibRef
Maekawa, T.,
An overview of offset curves and surfaces,
CAD(31), No. 3, March 1999, pp. 165-173.
BibRef
9903
Maekawa, T.,
Patrikalakis, N.M.,
Computation of singularities and intersections
of offsets of planar curves,
CAGD(10), No. 5, 1993, pp. 407-429.
BibRef
9300
Marchand-Maillet, S.[Stephane],
Sharaiha, Y.M.[Yazid M.],
Euclidean Ordering via Chamfer Distance Calculations,
CVIU(73), No. 3, March 1999, pp. 404-413.
DOI Link
BibRef
9903
And:
A Graph-Theoretic Algorithm for the Exact Generation of
Euclidean Distance Maps,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Takala, J.H.[Jarmo H.],
Viitanen, J.O.[Jouko O.],
Distance Transform Algorithm for Bit-Serial SIMD Architectures,
CVIU(74), No. 2, May 1999, pp. 150-161.
DOI Link
BibRef
9905
Earlier: A2, A1:
SIMD parallel calculation of distance transformations,
ICIP94(III: 645-649).
IEEE DOI
9411
BibRef
Bloch, I.[Isabelle],
On fuzzy distances and their use in image processing under imprecision,
PR(32), No. 11, November 1999, pp. 1873-1895.
Elsevier DOI
See also Fuzzy Connectivity and Mathematical Morphology.
BibRef
9911
Bloch, I.[Isabelle],
Geodesic balls in a fuzzy set and fuzzy geodesic mathematical
morphology,
PR(33), No. 6, June 2000, pp. 897-905.
Elsevier DOI
0004
Fuzzy distances between fuzzy sets.
BibRef
Bloch, I.[Isabelle],
On links between mathematical morphology and rough sets,
PR(33), No. 9, September 2000, pp. 1487-1496.
Elsevier DOI
0005
BibRef
Ramponi, G.,
Warped Distance for Space-Variant Linear Image Interpolation,
IP(8), No. 5, May 1999, pp. 629-639.
IEEE DOI
BibRef
9905
Zhang, S.,
Karim, M.A.,
Euclidean Distance Transform by Stack Filters,
SPLetters(6), No. 10, October 1999, pp. 253.
IEEE Top Reference.
BibRef
9910
Cuisenaire, O.,
Macq, B.,
Fast Euclidean Distance Transformation by Propagation Using Multiple
Neighborhoods,
CVIU(76), No. 2, November 1999, pp. 163-172.
DOI Link
9911
Also use bucket sort.
BibRef
Toivanen, P.J.[Pekka J.],
Vepsäläinen, A.M.[Ari M.],
Parkkinen, J.P.S.[Jussi P.S.],
Image Compression Using the Distance Transform on Curved Space (DTOCS)
and Delaunay Triangulation,
PRL(20), No. 10, October 1999, pp. 1015-1026.
9911
BibRef
Earlier:
Image Compression Using the DTOCS and Delaunay Triangulation,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Pan, Y.,
Hamdi, M.,
Li, K.,
Euclidean Distance Transform for Binary Images on Reconfigurable
Mesh-Connected Computers,
SMC-B(30), No. 1, February 2000, pp. 240-243.
IEEE Top Reference.
0004
See also Improved Constant-Time Algorithm for Computing the Radon and Hough Transforms on a Reconfigurable Mesh, An.
BibRef
Gomes, J.[José],
Faugeras, O.D.[Olivier D.],
Reconciling Distance Functions and Level Sets,
JVCIR(11), No. 2, June 2000, pp. 209-223.
0008
BibRef
Earlier:
ScaleSpace99(70-81).
BibRef
Gomes, J.[José],
Faugeras, O.D.[Olivier D.],
The Vector Distance Functions,
IJCV(52), No. 2-3, May-June 2003, pp. 161-187.
DOI Link
0301
BibRef
Earlier:
Using the vector distance functions to evolve manifolds of arbitrary
codimension,
ScaleSpace01(xx-yy).
0106
BibRef
Earlier:
Level Sets and Distance Functions,
ECCV00(I: 588-602).
Springer DOI
0003
BibRef
Mukherjee, J.,
Das, P.P.,
Kumar, M.A.[M. Aswatha],
Chatterji, B.N.,
On approximating Euclidean metrics by digital distances in 2D and 3D,
PRL(21), No. 6-7, June 2000, pp. 573-582.
0006
BibRef
Chang, C.C.,
Chou, J.S.,
Chen, T.S.,
An Efficient Computation of Euclidean Distance Using Approximated
Look-Up Table,
CirSysVideo(10), No. 4, June 2000, pp. 594-599.
IEEE Top Reference.
0006
BibRef
Boxer, L.[Laurence],
Miller, R.[Russ],
Efficient Computation of the Euclidean Distance Transform,
CVIU(80), No. 3, December 2000, pp. 379-383.
DOI Link
0012
BibRef
And:
Corrigendum:
CVIU(86), No. 2, May 2002, pp. 137-140.
DOI Link
0301
BibRef
Sebe, N.[Nicu],
Lew, M.S.[Michael S.],
Huijsmans, D.P.[Dionysius P.],
Toward Improved Ranking Metrics,
PAMI(22), No. 10, October 2000, pp. 1132-1143.
IEEE DOI
0011
Evaluation.
Distance Measures. Applied to contyent based retrieval, stereo matching and motion tracking.
Comparison of various metrics (SSD, SAD, Cauchy, Kullback).
Cauchy was better.
BibRef
Satherley, R.[Richard],
Jones, M.W.[Mark W.],
Vector-City Vector Distance Transform,
CVIU(82), No. 3, June 2001, pp. 238-254.
DOI Link City-block chamfer distance transform.
0108
BibRef
Maurer, C.R.[Calvin R.],
Qi, R.S.[Ren-Sheng],
Raghavan, V.[Vijay],
A linear time algorithm for computing exact euclidean distance
transforms of binary images in arbitrary dimensions,
PAMI(25), No. 2, February 2003, pp. 265-270.
IEEE DOI
0301
For k-dimensional images.
Based on dimensionality reduction and partial Voronoi diagram reconstructions.
BibRef
Saha, P.K.[Punam K.],
Wehrli, F.W.[Felix W.],
Gomberg, B.R.[Bryon R.],
Fuzzy Distance Transform: Theory, Algorithms, and Applications,
CVIU(86), No. 3, June 2002, pp. 171-190.
DOI Link
0301
BibRef
Datta, A.,
Soundaralakshmi, S.,
Fast parallel algorithm for distance transform,
SMC-A(33), No. 4, July 2003, pp. 429-434.
IEEE Abstract.
0310
BibRef
Zhang, Y.G.[Yun Gang],
Zhang, C.S.[Chang Shui],
Zhang, D.[David],
Distance metric learning by knowledge embedding,
PR(37), No. 1, January 2004, pp. 161-163.
Elsevier DOI
0311
BibRef
And:
Erratum:
PR(37), No. 4, April 2004, pp. Page 855.
Elsevier DOI
0403
BibRef
Grevera, G.J.[George J.],
The 'dead reckoning' signed distance transform,
CVIU(95), No. 3, September 2004, pp. 317-333.
Elsevier DOI
0409
Modification to Chamfer distance based loosely on dead reckoning
navigation.
More efficient and accurate.
BibRef
Ikonen, L.[Leena],
Toivanen, P.J.[Pekka J.],
Shortest routes on varying height surfaces using gray-level distance
transforms,
IVC(23), No. 2, 1 February 2004, pp. 133-141.
Elsevier DOI
0412
distance on curved space.
BibRef
Ikonen, L.[Leena],
Toivanen, P.J.[Pekka J.],
Distance and nearest neighbor transforms on gray-level surfaces,
PRL(28), No. 5, 1 April 2007, pp. 604-612.
Elsevier DOI
0703
Distance transforms; Gray-level distance transforms;
Nearest neighbor transforms; Geodesic distances; Minimal geodesics;
Surface roughness
BibRef
Ikonen, L.[Leena],
Toivanen, P.J.[Pekka J.],
Tuominen, J.[Janne],
Shortest Route on Gray-Level Map Using Distance Transform on Curved
Space,
SCIA03(305-310).
Springer DOI
0310
BibRef
Ikonen, L.[Leena],
Priority pixel queue algorithm for geodesic distance transforms,
IVC(25), No. 10, 1 October 2007, pp. 1520-1529.
Elsevier DOI
0709
Distance transforms; Gray-level distance transforms;
Nearest neighbor transforms; Minimal geodesics; Pixel queue algorithms
BibRef
Toivanen, P.J.[Pekka J.],
Lenz, R.[Reiner],
On the Properties of Gray-scale Distance Transforms,
SCIA01(O-M4B).
0206
BibRef
Fouard, C.[Céline],
Malandain, G.[Grégoire],
3-D chamfer distances and norms in anisotropic grids,
IVC(23), No. 2, 1 February 2004, pp. 143-158.
Elsevier DOI
0412
BibRef
Earlier:
Automatic calculation of chamfer mask coefficients for large masks and
anisotropic images pages.,
INRIARR-4792, Mars 2003.
HTML Version.
0306
BibRef
Ong, E.J.[Eng-Jon],
Bowden, R.[Richard],
Learning multi-kernel distance functions using relative comparisons,
PR(38), No. 12, December 2005, pp. 2653-2657.
Elsevier DOI
0510
BibRef
And:
Learning Distances for Arbitrary Visual Features,
BMVC06(II:749).
PDF File.
0609
BibRef
And:
Learning Wormholes for Sparsely Labelled Clustering,
ICPR06(I: 916-919).
IEEE DOI
0609
See also Learning Sequential Patterns for Lipreading.
BibRef
Miyazawa, M.,
Zeng, P.F.[Pei-Feng],
Iso, N.,
Hirata, T.,
A Systolic Algorithm for Euclidean Distance Transform,
PAMI(28), No. 7, July 2006, pp. 1127-1134.
IEEE DOI
0606
Computes the Euclidean distance map of an NXN binary image in 3N clocks
on 2N^2 processing cells.
BibRef
Nayak, A.[Arvind],
Trucco, E.[Emanuele],
Thacker, N.A.[Neil A.],
When are Simple LS Estimators Enough? An Empirical Study of LS, TLS,
and GTLS,
IJCV(68), No. 2, June 2006, pp. 203-216.
Springer DOI
0606
least squares; total least squares; generalized total least squares.
Study the various errors to determine whether simpler model can be used.
BibRef
Guderlei, R.,
Klenk, S.,
Mayer, J.,
Schmidt, V.,
Spodarev, E.,
Algorithms for the computation of the Minkowski functionals of
deterministic and random polyconvex sets,
IVC(25), No. 4, April 2007, pp. 464-474.
Elsevier DOI
0702
Binary image; Intrinsic volume; Querma[ss] integral; Minkowski functional;
Area; Boundary length; Euler-Poincare characteristic;
Stationary random closed set; Random field; Volume fraction;
Steiner formula; Principal kinematic formula; Parallel set
BibRef
Lee, D.J.[Dah-Jye],
Archibald, J.[James],
Xu, X.Q.[Xiao-Qian],
Zhan, P.C.[Peng-Cheng],
Using distance transform to solve real-time machine vision inspection
problems,
MVA(18), No. 2, April 2007, pp. 85-93.
Springer DOI
0704
BibRef
Fouard, C.[Celine],
Strand, R.[Robin],
Borgefors, G.[Gunilla],
Weighted distance transforms generalized to modules and their
computation on point lattices,
PR(40), No. 9, September 2007, pp. 2453-2474.
Elsevier DOI
0705
Weighted distance; Distance transform; Chamfer algorithm; Non-standard grids
BibRef
Rauber, T.W.,
Braun, T.,
Berns, K.,
Probabilistic distance measures of the Dirichlet and Beta distributions,
PR(41), No. 2, February 2008, pp. 637-645.
Elsevier DOI
0711
Probabilistic distance measures; Chernoff distance;
Bhattacharyya distance; Dirichlet distribution; Beta distribution
BibRef
Rauber, T.W.,
Conci, A.,
Braun, T.,
Berns, K.,
Bhattacharyya probabilistic distance of the Dirichlet density and its
application to Split-and-Merge image segmentation,
WSSIP08(145-148).
IEEE DOI
0806
BibRef
da Silva, M.A.H.B.[Moacyr A.H.B.],
Teixeira, R.[Ralph],
Pesco, S.[Sinésio],
Craizer, M.[Marcos],
A Fast Marching Method for the Area Based Affine Distance,
JMIV(30), No. 1, January 2008, pp. 1-12.
Springer DOI
0801
BibRef
McCane, B.[Brendan],
Albert, M.[Michael],
Distance functions for categorical and mixed variables,
PRL(29), No. 7, 1 May 2008, pp. 986-993.
Elsevier DOI
0804
Categorical data; Mahalanobis distance; Distance functions
BibRef
Fabbri, R.[Ricardo],
da Fontoura Costa, L.[Luciano],
Torelli, J.C.[Julio C.],
Bruno, O.M.[Odemir M.],
2D Euclidean distance transform algorithms: A comparative survey,
Surveys(40), No. 1, February 2008, pp. 1-44.
WWW Link.
0805
Survey, Distance Measures.
BibRef
Gavrilova, M.L.[Marina L.],
Alsuwaiyel, M.H.[Muhammad H.],
Two Algorithms For Computing The Euclidean Distance Transform,
IJIG(1), No. 4, October 2001, pp. 635-645.
0110
BibRef
Li, J.[Jing],
Lu, B.L.[Bao-Liang],
An adaptive image Euclidean distance,
PR(42), No. 3, March 2009, pp. 349-357.
Elsevier DOI
0811
Image similarity; Image Euclidean distance; Image metric; Gender classification
BibRef
Lucet, Y.[Yves],
New sequential exact Euclidean distance transform algorithms based on
convex analysis,
IVC(27), No. 1-2, January 2009, pp. 37-44.
Elsevier DOI
0811
BibRef
Earlier:
A Linear Euclidean Distance Transform Algorithm Based on the
Linear-Time Legendre Transform,
CRV05(262-267).
IEEE DOI
0505
Distance transform; Euclidean distance; Feature transform; Fast
Legendre transform; Legendre-Fenchel transform; Fenchel conjugate;
Moreau envelope; Moreau-Yosida approximate; Computational convex
analysis
BibRef
Cardenes, R.[Ruben],
Alberola-Lopez, C.[Carlos],
Ruiz-Alzola, J.[Juan],
Fast and accurate geodesic distance transform by ordered propagation,
IVC(28), No. 3, March 2010, pp. 307-316.
Elsevier DOI
1001
Distance transform; Geodesic distance transform; Geodesic metric;
Hidden pixels; Ordered propagation; Visibility
BibRef
Cardenes, R.,
Warfield, S.K.,
Mewes, A.J.U.,
Ruiz-Alzola, J.,
K-voronoi diagrams computing in arbitrary domains,
ICIP03(II: 941-944).
IEEE DOI
0312
BibRef
Cardenes, R.,
Warfield, S.K.,
Macias, E.,
Ruiz-Alzola, J.,
Occlusion points propagation geodesic distance transformation,
ICIP03(I: 361-364).
IEEE DOI
0312
BibRef
Zhao, Q.[Qi],
Yang, Z.[Zhi],
Tao, H.[Hai],
Differential Earth Mover's Distance with Its Applications to Visual
Tracking,
PAMI(32), No. 2, February 2010, pp. 274-287.
IEEE DOI
1001
Simplified computational model for EMD.
BibRef
Son, J.[Joken],
Inoue, N.[Naoya],
Yamashtia, Y.[Yukihiko],
Geometrically local isotropic independence and numerical analysis of
the Mahalanobis metric in vector space,
PRL(31), No. 8, 1 June 2010, pp. 709-716.
Elsevier DOI
1004
BibRef
Earlier:
Numerical analysis of Mahalanobis metric in vector space,
ICPR08(1-4).
IEEE DOI
0812
Mahalanobis metric; Mahalanobis distance; Manifold; Geometrically
local isotropic independence; Newton-Raphson method.
Probabilistic distance for non-normal distribution.
BibRef
Ma, Y.[Yu],
Gu, X.D.[Xiao-Dong],
Wang, Y.Y.[Yuan-Yuan],
Histogram similarity measure using variable bin size distance,
CVIU(114), No. 8, August 2010, pp. 981-989.
Elsevier DOI
1007
Variable bin size distance (VBSD); Histogram similarity; Histogram
distance; Image retrieval
BibRef
Ramanan, D.[Deva],
Baker, S.[Simon],
Local Distance Functions: A Taxonomy, New Algorithms, and an Evaluation,
PAMI(33), No. 4, April 2011, pp. 794-806.
IEEE DOI
1103
BibRef
Earlier:
ICCV09(301-308).
IEEE DOI
0909
Survey, Distance Functions. Classify by how, where and when they
estimate geodesic distance defined by the metric tensor.
BibRef
Mukherjee, J.[Jayanta],
On approximating Euclidean metrics by weighted t-cost distances in
arbitrary dimension,
PRL(32), No. 6, 15 April 2011, pp. 824-831.
Elsevier DOI
1103
Digital geometry; t-cost distances; Euclidean norm; m-Neighbor
distances; Octagonal distances; Hypersphere
BibRef
Mukherjee, J.[Jayanta],
Hyperspheres of weighted distances in arbitrary dimension,
PRL(34), No. 2, 15 January 2013, pp. 117-123.
Elsevier DOI
1212
Weighted distance; Euclidean distance; Octagonal distance; Hypersphere
BibRef
Mukherjee, J.[Jayanta],
Linear combination of weighted t-cost and chamfering weighted
distances,
PRL(40), No. 1, 2014, pp. 72-79.
Elsevier DOI
1403
Chamfering weighted distance
BibRef
Mukherjee, J.[Jayanta],
Error analysis of octagonal distances defined by periodic
neighborhood sequences for approximating Euclidean metrics in
arbitrary dimension,
PRL(75), No. 1, 2016, pp. 16-23.
Elsevier DOI
1604
Maximum relative error (MRE)
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Chen, X.J.[Xin-Jian],
Udupa, J.K.[Jayaram K.],
Grevera, G.J.[George J.],
Linear Time Algorithms for Exact Distance Transform,
JMIV(39), No. 3, March 2011, pp. 193-209.
WWW Link.
1103
BibRef
Vacavant, A.[Antoine],
Fast distance transformation on irregular two-dimensional grids,
PR(43), No. 10, October 2010, pp. 3348-3358.
Elsevier DOI
1007
Squared Euclidean distance transformation; Irregular grids; Quadtree;
Run length encoding; Voronoi diagram; Medial axis extraction
BibRef
Coeurjolly, D.[David],
2D Subquadratic Separable Distance Transformation for Path-Based Norms,
DGCI14(75-87).
Springer DOI
1410
BibRef
Earlier:
Distance transformation, reverse distance transformation and discrete
medial axis on toric spaces,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Vacavant, A.[Antoine],
Coeurjolly, D.[David],
Tougne, L.[Laure],
Separable algorithms for distance transformations on irregular grids,
PRL(32), No. 9, 1 July 2011, pp. 1356-1364.
Elsevier DOI
1101
BibRef
Earlier:
A Novel Algorithm for Distance Transformation on Irregular Isothetic
Grids,
DGCI09(469-480).
Springer DOI
0909
BibRef
Earlier:
Distance Transformation on Two-Dimensional Irregular Isothetic Grids,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Earlier:
Dynamic Reconstruction of Complex Planar Objects on Irregular Isothetic
Grids,
ISVC06(II: 205-214).
Springer DOI
0611
BibRef
Earlier: Dymanic extension of:
Topological and geometrical reconstruction
of complex objects on irregular isothetic grids,
DGCI06(xx-yy).
Squared Euclidean distance transformation; Irregular grids; Quadtree;
Voronoi diagrams
BibRef
Rabin, J.[Julien],
Delon, J.[Julie],
Gousseau, Y.[Yann],
Transportation Distances on the Circle,
JMIV(41), No. 1-2, September 2011, pp. 147-167.
WWW Link.
1108
BibRef
Earlier:
Circular Earth Mover's Distance for the comparison of local features,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Twining, C.J.[Carole J.],
Taylor, C.J.[Christopher J.],
Specificity: A Graph-Based Estimator of Divergence,
PAMI(33), No. 12, December 2011, pp. 2492-2505.
IEEE DOI
1110
BibRef
Earlier:
Specificity as a Graph-Based Estimator of Cross-Entropy and KL
Divergence,
BMVC06(II:59).
PDF File.
0609
Fit between the model of the probability density function and the
training data.
BibRef
Celebi, M.E.[M. Emre],
Kingravi, H.A.[Hassan A.],
Celiker, F.[Fatih],
Comments on 'On approximating Euclidean metrics by weighted t-cost
distances in arbitrary dimension',
PRL(33), No. 10, 15 July 2012, pp. 1422-1425.
Elsevier DOI
1205
Euclidean distance; Weighted t-cost distance; Norm approximation
See also On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension.
BibRef
Antón-Canalís, L.[Luis],
Hernández-Tejera, M.[Mario],
Sánchez-Nielsen, E.[Elena],
Distance Maps from Unthresholded Magnitudes,
PR(45), No. 9, September 2012, pp. 3125-3130.
Elsevier DOI
1206
BibRef
Earlier:
IbPRIA11(92-99).
Springer DOI
1106
BibRef
Earlier:
Analysis of Relevant Maxima in Distance Transform. An Application to
Fast Coarse Image Segmentation,
IbPRIA07(I: 97-104).
Springer DOI
0706
Distance transform; Distance map; Pseudodistance
BibRef
Lagerstrom, R.[Ryan],
Buckley, M.[Michael],
An attribute weighted distance transform,
PRL(33), No. 16, 1 December 2012, pp. 2141-2147.
Elsevier DOI
1210
Euclidean distance transform; Mathematical morphology; Adaptive
filtering
BibRef
Ni, B.B.,
Yan, S.C.,
Wang, M.,
Kassim, A.A.,
Tian, Q.,
High-Order Local Spatial Context Modeling by Spatialized Random Forest,
IP(22), No. 2, February 2013, pp. 739-751.
IEEE DOI
1302
BibRef
Feng, J.S.[Jia-Shi],
Ni, B.B.[Bing-Bing],
Tian, Q.[Qi],
Yan, S.C.[Shui-Cheng],
Geometric LP-norm feature pooling for image classification,
CVPR11(2609-2704).
IEEE DOI
1106
aggregate local features. Average and Max are common, but not best.
Perserve geometric information.
BibRef
Normand, N.[Nicolas],
Strand, R.[Robin],
Evenou, P.[Pierre],
Arlicot, A.[Aurore],
Minimal-delay distance transform for neighborhood-sequence distances in
2D and 3D,
CVIU(117), No. 4, April 2013, pp. 409-417.
Elsevier DOI
1303
BibRef
Earlier:
Path-Based Distance with Varying Weights and Neighborhood Sequences,
DGCI11(199-210).
Springer DOI
1104
Distance transform; Neighborhood-sequence distance; Minkowski Sum;
Lambek-Moser inverse; Beatty sequence
BibRef
Normand, N.[Nicolas],
Strand, R.[Robin],
Evenou, P.[Pierre],
Arlicot, A.[Aurore],
A Streaming Distance Transform Algorithm for Neighborhood-Sequence
Distances,
IPOL(2014), No. 2014, pp. 196-203.
DOI Link
1411
Code, Distance Transform.
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
Normand, N.[Nicolas],
Distance Functions Based on Multiple Types of Weighted Steps Combined
with Neighborhood Sequences,
JMIV(60), No. 8, October 2018, pp. 1209-1219.
Springer DOI
1810
BibRef
Normand, N.[Nicolas],
Strand, R.[Robin],
Evenou, P.[Pierre],
Digital Distances and Integer Sequences,
DGCI13(169-179).
Springer DOI
1304
BibRef
Strand, R.[Robin],
Ciesielski, K.C.[Krzysztof Chris],
Malmberg, F.[Filip],
Saha, P.K.[Punam K.],
The minimum barrier distance,
CVIU(117), No. 4, April 2013, pp. 429-437.
Elsevier DOI
1303
BibRef
Earlier:
The Minimum Barrier Distance: A Summary of Recent Advances,
DGCI17(57-68).
Springer DOI
1711
Image processing; Distance function; Distance transform; Fuzzy subset;
Path strength
BibRef
Strand, R.[Robin],
Malmberg, F.[Filip],
Saha, P.K.[Punam K.],
Linnér, E.[Elisabeth],
The Minimum Barrier Distance: Stability to Seed Point Position,
DGCI14(111-121).
Springer DOI
1410
BibRef
Ciesielski, K.C.[Krzysztof Chris],
Strand, R.[Robin],
Malmberg, F.[Filip],
Saha, P.K.[Punam K.],
Efficient algorithm for finding the exact minimum barrier distance,
CVIU(123), No. 1, 2014, pp. 53-64.
Elsevier DOI
1405
Image processing
BibRef
Jiang, L.X.[Liang-Xiao],
Li, C.Q.[Chao-Qun],
An Augmented Value Difference Measure,
PRL(34), No. 10, 15 July 2013, pp. 1169-1174.
Elsevier DOI
1306
Value Difference Metric; The memory-based reasoning
transform; The attribute independence assumption; Distance measure
BibRef
Mukherjee, J.[Jayanta],
Linear combination of norms in improving approximation of Euclidean
norm,
PRL(34), No. 12, 1 September 2013, pp. 1348-1355.
Elsevier DOI
1306
Weighted distance; t-Cost distance; Weighted-t-cost distance;
Euclidean distance
BibRef
Sun, C.S.[Chen-Sheng],
Lam, K.M.[Kin-Man],
Multiple-Kernel, Multiple-Instance Similarity Features
for Efficient Visual Object Detection,
IP(22), No. 8, 2013, pp. 3050-3061.
IEEE DOI
1307
coarse-to-fine learning; kernel machines
BibRef
Lindblad, J.[Joakim],
Sladoje, N.[Nataa],
Linear Time Distances Between Fuzzy Sets With Applications to Pattern
Matching and Classification,
IP(23), No. 1, January 2014, pp. 126-136.
IEEE DOI
1402
BibRef
And:
Exact Linear Time Euclidean Distance Transforms of Grid Line Sampled
Shapes,
ISMM15(645-656).
Springer DOI
1506
fuzzy set theory
BibRef
Öfverstedt, J.[Johan],
Sladoje, N.[Nataa],
Lindblad, J.[Joakim],
Distance Between Vector-Valued Fuzzy Sets Based on Intersection
Decomposition with Applications in Object Detection,
ISMM17(395-407).
Springer DOI
1706
BibRef
Sladoje, N.[Nataa],
Lindblad, J.[Joakim],
Distance Between Vector-Valued Representations of Objects in Images
with Application in Object Detection and Classification,
IWCIA17(243-255).
Springer DOI
1706
BibRef
And:
Estimation of Moments of Digitized Objects with Fuzzy Borders,
CIAP05(188-195).
Springer DOI
0509
BibRef
Jing, Y.S.[Yu-Shi],
Covell, M.,
Tsai, D.,
Rehg, J.M.,
Learning Query-Specific Distance Functions for Large-Scale Web Image
Search,
MultMed(15), No. 8, December 2013, pp. 2022-2034.
IEEE DOI
1402
Internet
BibRef
Schouten, T.E.[Theo E.],
van den Broek, E.L.[Egon L.],
Fast Exact Euclidean Distance (FEED): A New Class of Adaptable
Distance Transforms,
PAMI(36), No. 11, November 2014, pp. 2159-2172.
IEEE DOI
1410
BibRef
Earlier:
Incremental Distance Transforms (IDT),
ICPR10(237-240).
IEEE DOI
1008
BibRef
Earlier:
Fast exact euclidean distance (FEED) transformation,
ICPR04(III: 594-597).
IEEE DOI
0409
Algorithm design and analysis
BibRef
Zhang, Y.[Yu],
Wu, J.X.[Jian-Xin],
Cai, J.F.[Jian-Fei],
Lin, W.Y.[Wei-Yao],
Flexible Image Similarity Computation Using Hyper-Spatial Matching,
IP(23), No. 9, September 2014, pp. 4112-4125.
IEEE DOI
1410
computer vision
BibRef
Werner, D.[Diana],
Werner, P.[Philipp],
Al-Hamadi, A.[Ayoub],
Quantitative Analysis of Surface Reconstruction Accuracy Achievable
with the TSDF Representation,
CVS15(167-176).
Springer DOI
1507
BibRef
Earlier: A1, A3, A2:
Truncated Signed Distance Function: Experiments on Voxel Size,
ICIAR14(II: 357-364).
Springer DOI
1410
BibRef
Wei, J.[Jie],
On Markov Earth Mover's Distance,
IJIG(14), No. 04, 2014, pp. 1450016.
DOI Link
1412
BibRef
Mishchenko, Y.[Yuriy],
A fast algorithm for computation of discrete Euclidean distance
transform in three or more dimensions on vector processing
architectures,
SIViP(9), No. 1, January 2015, pp. 19-27.
WWW Link.
1503
BibRef
Mennucci, A.C.G.,
Duci, A.,
Banach-Like Distances and Metric Spaces of Compact Sets,
SIIMS(8), No. 1, 2015, pp. 19-66.
DOI Link
1503
BibRef
Baum, M.,
Willett, P.,
Hanebeck, U.D.,
On Wasserstein Barycenters and MMOSPA Estimation,
SPLetters(22), No. 10, October 2015, pp. 1511-1515.
IEEE DOI
1506
Barycenter: a measure of similarity between images.
Minimum Mean Optimal Sub-Pattern Assignment for tracking.
approximation theory
BibRef
Harel, M.,
Mannor, S.,
The Perturbed Variation,
PAMI(37), No. 10, October 2015, pp. 2119-2130.
IEEE DOI
1509
Complexity theory.
Descrepancy measure between 2 distributions.
BibRef
Taha, A.A.[Abdel Aziz],
Hanbury, A.[Allan],
An Efficient Algorithm for Calculating the Exact Hausdorff Distance,
PAMI(37), No. 11, November 2015, pp. 2153-2163.
IEEE DOI
1511
computational complexity
BibRef
Correa-Morris, J.[Jyrko],
Martínez-Díaz, Y.[Yoanna],
Hernández, N.[Noslen],
Méndez-Vázquez, H.[Heydi],
Novel histograms kernels with structural properties,
PRL(68, Part 1), No. 1, 2015, pp. 146-152.
Elsevier DOI
1512
Histogram similarity
BibRef
Jin, C.[Cong],
Jin, S.W.[Shu-Wei],
Image distance metric learning based on neighborhood sets for
automatic image annotation,
JVCIR(34), No. 1, 2016, pp. 167-175.
Elsevier DOI
1601
Automatic image annotation
See also Adaptive digital image watermark scheme based on Fuzzy Neural Network for copyright protection.
BibRef
Jin, C.[Cong],
Jin, S.W.[Shu-Wei],
Content-based image retrieval model based on cost sensitive learning,
JVCIR(55), 2018, pp. 720-728.
Elsevier DOI
1809
Content-based image retrieval, Distance metric learning,
Cost sensitive learning, Classification performance,
Class imbalance
See also Adaptive digital image watermark scheme based on Fuzzy Neural Network for copyright protection.
BibRef
El Moataz, A.[Abderrahim],
Toutain, M.[Matthieu],
Tenbrinck, D.[Daniel],
On the p-Laplacian and inf-Laplacian on Graphs with Applications in
Image and Data Processing,
SIIMS(8), No. 4, 2015, pp. 2412-2451.
DOI Link
1601
partial difference operators.
such as filtering, segmentation, clustering, and inpainting.
BibRef
Alvarez, L.[Luis],
Cuenca, C.[Carmelo],
Esclarín, J.[Julio],
Mazorra, L.[Luis],
Morel, J.M.[Jean-Michel],
Affine Invariant Distance Using Multiscale Analysis,
JMIV(55), No. 2, June 2016, pp. 199-209.
Springer DOI
1604
BibRef
Toutain, M.[Matthieu],
Elmoataz, A.[Abderrahim],
Lozes, F.[François],
Mansouri, A.[Alamin],
Non-local Discrete INF-Poisson and Hamilton Jacobi Equations,
JMIV(55), No. 2, June 2016, pp. 229-241.
Springer DOI
1604
BibRef
Genctav, M.[Murat],
Genctav, A.[Asli],
Tari, S.[Sibel],
NonLocal via Local-NonLinear via Linear:
A New Part-coding Distance Field via Screened Poisson Equation,
JMIV(55), No. 2, June 2016, pp. 242-252.
Springer DOI
1604
BibRef
Renáková, M.[Marta],
Tencer, L.[Lukas],
Cheriet, M.[Mohamed],
Incremental Similarity for real-time on-line incremental learning
systems,
PRL(74), No. 1, 2016, pp. 61-67.
Elsevier DOI
1604
Incremental learning
BibRef
Wang, K.[Ke],
Yong, B.[Bin],
Application of the Frequency Spectrum to Spectral Similarity Measures,
RS(8), No. 4, 2016, pp. 344.
DOI Link
1604
BibRef
Zhai, Y.H.[Yuan-Hao],
Neuhoff, D.L.[David L.],
Similarity of Scenic Bilevel Images,
IP(25), No. 11, November 2016, pp. 5063-5076.
IEEE DOI
1610
image processing
BibRef
Peng, J.T.[Jiang-Tao],
Zhang, L.[Lefei],
Li, L.Q.[Luo-Qing],
Regularized set-to-set distance metric learning for hyperspectral
image classification,
PRL(83, Part 2), No. 1, 2016, pp. 143-151.
Elsevier DOI
1609
Hyperspectral image classification
BibRef
Xavier, E.M.A.[Emerson M. A.],
Ariza-López, F.J.[Francisco J.],
Ureńa-Cámara, M.A.[Manuel A.],
A Survey of Measures and Methods for Matching Geospatial Vector
Datasets,
Surveys(48), No. 3, February 2016, pp. 39.
DOI Link
1612
Survey, Geospatial Matching. Survey of procedures to find the correspondences
between two vector datasets and similarity measures.
BibRef
Ruiz-Lendínez, J.J.[Juan J.],
Ureńa-Cámara, M.A.[Manuel A.],
Ariza-López, F.J.[Francisco J.],
A Polygon and Point-Based Approach to Matching Geospatial Features,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
BibRef
Chen, Y.L.[Yi-Lin],
He, F.[Fazhi],
Wu, Y.[Yiqi],
Hou, N.[Neng],
A local start search algorithm to compute exact Hausdorff Distance
for arbitrary point sets,
PR(67), No. 1, 2017, pp. 139-148.
Elsevier DOI
1704
Hausdorff Distance
BibRef
Wei, D.[Dennis],
k-quantiles: L1 distance clustering under a sum constraint,
PRL(92), No. 1, 2017, pp. 49-55.
Elsevier DOI
1705
Proportional data
BibRef
Rodrigues, É.O.,
Combining Minkowski and Cheyshev: New distance proposal and survey of
distance metrics using k-nearest neighbours classifier,
PRL(110), 2018, pp. 66-71.
Elsevier DOI
1806
BibRef
And:
Corrigendum:
PRL(175), 2023, pp. 44.
Elsevier DOI
2311
Distance metric, k-nn, Classification, Survey,
Supervised learning, Minkowski, Chebyshev, Machine learning, Rodrigues
BibRef
Mustafa, A.A.Y.[Adnan A.Y.],
Probabilistic binary similarity distance for quick binary image
matching,
IET-IPR(12), No. 10, October 2018, pp. 1844-1856.
DOI Link
1809
BibRef
Earlier:
A modified hamming distance measure for quick detection of dissimilar
binary images,
ICCVIA15(1-6)
IEEE DOI
1603
image matching
BibRef
Mustafa, A.A.Y.[Adnan A.Y.],
An Image Mapping Approach for Quick Dissimilarity Detection of Binary
Images,
IVCNZ19(1-4)
IEEE DOI
2004
image matching, probability, image pixels,
dissimilar detection via mapping,
image correlation
BibRef
Firozjaei, M.K.[Mohammad Karimi],
Daryaei, I.[Iman],
Sedighi, A.[Amir],
Weng, Q.H.[Qi-Hao],
Alavipanah, S.K.[Seyed Kazem],
Homogeneity Distance Classification Algorithm (HDCA):
A Novel Algorithm for Satellite Image Classification,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
Texture and spectral information.
BibRef
Kosub, S.[Sven],
A note on the triangle inequality for the Jaccard distance,
PRL(120), 2019, pp. 36-38.
Elsevier DOI
1904
Jaccard index, Set distance, Submodularity
BibRef
Karam, C.,
Sugimoto, K.,
Hirakawa, K.,
Fast Convolutional Distance Transform,
SPLetters(26), No. 6, June 2019, pp. 853-857.
IEEE DOI
1906
computational complexity, convolution, fast Fourier transforms,
filtering theory, Gaussian processes,
distance transform
BibRef
Manduhu, M.,
Jones, M.W.,
A Work Efficient Parallel Algorithm for Exact Euclidean Distance
Transform,
IP(28), No. 11, November 2019, pp. 5322-5335.
IEEE DOI
1909
Graphics processing units, Phase change random access memory,
Approximation algorithms, Parallel algorithms, Transforms,
binary operations on GPU
BibRef
Guo, Q.[Qi],
Su, X.[XunLi],
Almost Regular Metrics on Groups and Lipschitz-Continuity of Distance
Transforms,
JMIV(61), No. 9, November 2019, pp. 1235-1242.
Springer DOI
1911
BibRef
Shamai, G.[Gil],
Zibulevsky, M.[Michael],
Kimmel, R.[Ron],
Efficient Inter-Geodesic Distance Computation and Fast Classical
Scaling,
PAMI(42), No. 1, January 2020, pp. 74-85.
IEEE DOI
1912
Manifolds, Complexity theory, Interpolation, Matrix decomposition,
Surface reconstruction, Shape, Laplace equations,
fast classical scaling
BibRef
Shamai, G.[Gil],
Aflalo, Y.[Yonathan],
Zibulevsky, M.[Michael],
Kimmel, R.[Ron],
Classical Scaling Revisited,
ICCV15(2255-2263)
IEEE DOI
1602
Complexity theory. evaluation of distances between data points.
BibRef
Liu, C.Y.[Chuan-Yi],
Wang, J.Q.[Jun-Qian],
Duan, S.M.[Shao-Ming],
Xu, Y.[Yong],
Combining dissimilarity measures for image classification,
PRL(128), 2019, pp. 536-543.
Elsevier DOI
1912
Image classification, Distance measures, Fusion distance
BibRef
Li, Q.[Qiude],
Xiong, Q.Y.[Qing-Yu],
Ji, S.F.[Sheng-Fen],
Wen, J.H.[Jun-Hao],
Gao, M.[Min],
Yu, Y.[Yang],
Xu, R.[Rui],
Using fine-tuned conditional probabilities for data transformation of
nominal attributes,
PRL(128), 2019, pp. 107-114.
Elsevier DOI
1912
Conditional probability transformation, Fine-tuning algorithm,
MIC-based feature selection, Data transformation, Distance measure
BibRef
Lu, S.[Shan],
Zhang, J.[Jun],
Gao, Y.[Ying],
Learning a minimum similarity projection and lowest correlation
representation for image classification,
IET-IPR(14), No. 4, 27 March 2020, pp. 782-788.
DOI Link
2003
BibRef
Coeurjolly, D.[David],
Sivignon, I.[Isabelle],
Efficient distance transformation for path-based metrics,
CVIU(194), 2020, pp. 102925.
Elsevier DOI
2005
BibRef
Ishihara, M.[Makio],
Kawashima, R.[Ryo],
Multi-Distance Function Trilateration over k-NN Fingerprinting for
Indoor Positioning and Its Evaluation,
IEICE(E103-D), No. 5, May 2020, pp. 1055-1066.
WWW Link.
2005
BibRef
Öfverstedt, J.[Johan],
Lindblad, J.[Joakim],
Sladoje, N.[Nataa],
Stochastic Distance Transform: Theory, Algorithms and Applications,
JMIV(62), No. 5, June 2020, pp. 751-769.
Springer DOI
2007
BibRef
Wang, L.L.[Liang-Liang],
Rajan, D.[Deepu],
An image similarity descriptor for classification tasks,
JVCIR(71), 2020, pp. 102847.
Elsevier DOI
2009
Image similarity, Similarity representation,
Deep features selection, Correlational descriptor
BibRef
Iwata, K.[Kazunori],
Revisiting a Nearest Neighbor Method for Shape Classification,
IEICE(E103-D), No. 12, December 2020, pp. 2649-2658.
WWW Link.
2012
BibRef
And:
Reducing the computational cost of shape matching with the distance
set,
ICPR16(1506-1511)
IEEE DOI
1705
Computational efficiency, Computers, Cost function,
Euclidean distance, Minimization, Shape, Sorting, Hilbert distance,
distance set, local descriptor of shape, shape matching
BibRef
Tao, J.[Jiong],
Zhang, J.Y.[Ju-Yong],
Deng, B.L.[Bai-Lin],
Fang, Z.[Zheng],
Peng, Y.[Yue],
He, Y.[Ying],
Parallel and Scalable Heat Methods for Geodesic Distance Computation,
PAMI(43), No. 2, February 2021, pp. 579-594.
IEEE DOI
2101
On triangular meshes.
Optimization, Linear systems, Memory management,
Computational modeling, Heat recovery, Approximation algorithms,
parallel algorithm
BibRef
Ryu, J.[Jegoon],
Kamata, S.I.[Sei-Ichiro],
An efficient computational algorithm for Hausdorff distance based on
points-ruling-out and systematic random sampling,
PR(114), 2021, pp. 107857.
Elsevier DOI
2103
Hausdorff distance, Computational complexity, Point matching, 3-D point sets
BibRef
Vaz, C.[Colin],
Narayanan, S.[Shrikanth],
Extending the Beta divergence to complex values,
PRL(144), 2021, pp. 105-111.
Elsevier DOI
2103
Information theory, KL divergence, Objective function, Young's inequality
BibRef
Cheng, C.P.[Cui-Ping],
Xiao, F.Y.[Fu-Yuan],
A distance for belief functions of orderable set,
PRL(145), 2021, pp. 165-170.
Elsevier DOI
2104
Belief function, Distance metric, Orderable sets,
Hesitant fuzzy linguistic set
BibRef
Rodrigues, É.O.[Érick Oliveira],
An efficient and locality-oriented Hausdorff distance algorithm:
Proposal and analysis of paradigms and implementations,
PR(117), 2021, pp. 107989.
Elsevier DOI
2106
Hausdorff distance, Mathematical morphology, Similarity,
Registration, Parallelism
BibRef
Antol, M.[Matej],
Jánoová, M.[Miriama],
Dohnal, V.[Vlastislav],
Metric hull as similarity-aware operator for representing
unstructured data,
PRL(149), 2021, pp. 91-98.
Elsevier DOI
2108
Similarity operators, Metric space, Data aggregation
BibRef
Terlep, T.A.[T. Arthur],
Bell, M.R.[Mark R.],
Talavage, T.M.[Thomas M.],
Smith, D.L.[Douglas L.],
Euclidean Distance Approximations From Replacement Product Graphs,
IP(31), 2022, pp. 125-137.
IEEE DOI
2112
Games, Garnets, Graph theory, Topology, Tools, Standards, Space heating,
Chamfer, euclidean distance, distance approximation,
Dijkstra's algorithm
BibRef
Cai, T.J.[Tian-Ji],
Cheng, J.Y.[Jun-Yi],
Schmitzer, B.[Bernhard],
Thorpe, M.[Matthew],
The Linearized Hellinger-Kantorovich Distance,
SIIMS(15), No. 1, 2022, pp. 45-83.
DOI Link
2204
BibRef
Kazemi, M.[Meysam],
Wecker, L.[Lakin],
Samavati, F.[Faramarz],
Efficient Calculation of Distance Transform on Discrete Global Grid
Systems,
IJGI(11), No. 6, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Beier, F.[Florian],
Beinert, R.[Robert],
Steidl, G.[Gabriele],
On a Linear Gromov-Wasserstein Distance,
IP(31), 2022, pp. 7292-7305.
IEEE DOI
2212
Extraterrestrial measurements, Level measurement, Shape,
Task analysis, Shape measurement, Minimization, Ear,
shape spaces
BibRef
Aziz, Y.[Yasir],
Memon, K.H.[Kashif Hussain],
Fast geometrical extraction of nearest neighbors from
multi-dimensional data,
PR(136), 2023, pp. 109183.
Elsevier DOI
2301
Nearest neighbors, Classification, Hashing, Windowing operation
BibRef
Turgay, N.D.[Neset Deniz],
Nagy, B.[Benedek],
Kovács, G.[Gergely],
Vizvári, B.[Béla],
Weighted distances in the Cairo pattern,
PRL(166), 2023, pp. 105-111.
Elsevier DOI
2302
Cairo pattern, Tiling, Minimal path, Linear programming, Chamfer distances
BibRef
Alvarez, S.A.[Sergio A.],
Gaussian RBF Centered Kernel Alignment (CKA) in the Large-Bandwidth
Limit,
PAMI(45), No. 5, May 2023, pp. 6587-6593.
IEEE DOI
2304
Similarity measure between kernels.
Kernel, Bandwidth, Symmetric matrices, Convergence, Encoding,
Behavioral sciences, Watermarking, Nonlinear kernels,
similarity
BibRef
Zhao, L.J.[Long-Jiao],
Wang, Y.[Yu],
Kato, J.[Jien],
Ishikawa, Y.[Yoshiharu],
Learning Local Similarity with Spatial Interrelations on Content-Based
Image Retrieval,
IEICE(E106-D), No. 5, May 2023, pp. 1069-1080.
WWW Link.
2305
BibRef
Blanco-Mallo, E.[Eva],
Morán-Fernández, L.[Laura],
Remeseiro, B.[Beatriz],
Bolón-Canedo, V.[Verónica],
Do all roads lead to Rome? Studying distance measures in the context
of machine learning,
PR(141), 2023, pp. 109646.
Elsevier DOI
2306
Distance measures, Similarity measures, Classification,
Clustering, Machine learning
BibRef
Beinert, R.[Robert],
Heiss, C.[Cosmas],
Steidl, G.[Gabriele],
On Assignment Problems Related to Gromov-Wasserstein Distances on the
Real Line,
SIIMS(16), No. 2, 2023, pp. 1028-1032.
DOI Link
2307
BibRef
Rezaei, M.[Mina],
Soleymani, F.[Farzin],
Bischl, B.[Bernd],
Azizi, S.[Shekoofeh],
Deep Bregman divergence for self-supervised representations learning,
CVIU(235), 2023, pp. 103801.
Elsevier DOI
2310
Self-supervised learning, Deep metric learning,
Bregman divergences, Non-Euclidean geometry
BibRef
van de Velden, M.[Michel],
d'Enza, A.I.[Alfonso Iodice],
Markos, A.[Angelos],
Cavicchia, C.[Carlo],
A general framework for implementing distances for categorical
variables,
PR(153), 2024, pp. 110547.
Elsevier DOI
2405
Categorical data, Distance, Cluster analysis, Classification, K-NN
BibRef
Franzoni, V.[Valentina],
Biondi, G.[Giulio],
Liu, Y.[Yang],
Milani, A.[Alfredo],
Evolving meta-correlation classes for binary similarity,
PR(157), 2025, pp. 110871.
Elsevier DOI
2409
Evolutionary computation, Network topology, Complex networks,
Link prediction, Binary similarity
BibRef
Lei, B.[Bohan],
Zhuang, Y.T.[Yue-Ting],
Xu, X.Y.[Xiao-Yin],
Zhang, M.[Min],
An Optimal Transport-Based Method for Medical Image Generation,
ICIP24(3640-3646)
IEEE DOI
2411
Training, Image resolution, Image synthesis,
Extraterrestrial phenomena, Memory management,
optimal transport
BibRef
Zhou, J.S.[Jun-Sheng],
Zhang, W.Q.[Wei-Qi],
Ma, B.R.[Bao-Rui],
Shi, K.[Kanle],
Liu, Y.S.[Yu-Shen],
Han, Z.Z.[Zhi-Zhong],
UDiFF: Generating Conditional Unsigned Distance Fields with Optimal
Wavelet Diffusion,
CVPR24(21496-21506)
IEEE DOI Code:
WWW Link.
2410
Wavelet transforms, Visualization, Wavelet domain, Shape,
Surface waves, Benchmark testing, Diffusion models, 3D shape generation
BibRef
Fainstein, M.[Miguel],
Siless, V.[Viviana],
Iarussi, E.[Emmanuel],
DUDF: Differentiable Unsigned Distance Fields with Hyperbolic Scaling,
CVPR24(4484-4493)
IEEE DOI
2410
Training, Surface reconstruction, Accuracy, Computational modeling,
Level set, Neural networks, Neural implicit representations, eikonal equation
BibRef
Chou, G.[Gene],
Bahat, Y.[Yuval],
Heide, F.[Felix],
Diffusion-SDF: Conditional Generative Modeling of Signed Distance
Functions,
ICCV23(2262-2272)
IEEE DOI Code:
WWW Link.
2401
BibRef
Liu, W.X.[Wei-Xiao],
Wu, Y.W.[Yu-Wei],
Ruan, S.[Sipu],
Chirikjian, G.S.[Gregory S.],
Marching-Primitives: Shape Abstraction from Signed Distance Function,
CVPR23(8771-8780)
IEEE DOI
2309
BibRef
Ma, B.R.[Bao-Rui],
Zhou, J.S.[Jun-Sheng],
Liu, Y.S.[Yu-Shen],
Han, Z.Z.[Zhi-Zhong],
Towards Better Gradient Consistency for Neural Signed Distance
Functions via Level Set Alignment,
CVPR23(17724-17734)
IEEE DOI
2309
BibRef
Rosa, N.[Nicholas],
Drummond, T.[Tom],
Harandi, M.[Mehrtash],
A Differentiable Distance Approximation for Fairer Image Classification,
ACCV22(VI:218-234).
Springer DOI
2307
BibRef
Huberman, S.[Saar],
Bracha, A.[Amit],
Kimmel, R.[Ron],
Deep Accurate Solver for the Geodesic Problem,
SSVM23(288-300).
Springer DOI
2307
Distance on surface.
BibRef
Ouasfi, A.[Amine],
Boukhayma, A.[Adnane],
Few 'Zero Level Set'-Shot Learning of Shape Signed Distance Functions
in Feature Space,
ECCV22(XXXII:561-578).
Springer DOI
2211
BibRef
Potamias, R.A.[Rolandos Alexandros],
Neofytou, A.[Alexandros],
Bintsi, K.M.[Kyriaki Margarita],
Zafeiriou, S.P.[Stefanos P.],
GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path
Estimation,
DLGC22(2967-2976)
IEEE DOI
2210
Shape, Pipelines, Estimation, Approximation algorithms
BibRef
Krayer, B.[Bastian],
Müller, S.[Stefan],
Hierarchical Point Distance Fields,
ISVC21(II:435-446).
Springer DOI
2112
BibRef
Hu, C.S.[Chuan-Shen],
Lawson, A.[Austin],
Chung, Y.M.[Yu-Min],
Keegan, K.[Kaitlin],
Two-parameter Persistence for Images via Distance Transform,
TAG-CV21(4159-4167)
IEEE DOI
2112
Data analysis, Filtration, Digital images, Transforms, Gray-scale
BibRef
Hartman, E.[Emmanuel],
Sukurdeep, Y.[Yashil],
Charon, N.[Nicolas],
Klassen, E.[Eric],
Bauer, M.[Martin],
Supervised deep learning of elastic SRV distances on the shape space
of curves,
Diff-CVML21(4420-4428)
IEEE DOI
2109
Square Root Velocity.
Computable distance between spatial curves.
Training, Deep learning, Shape, Transforms, Tools
BibRef
Nunez, E.[Elvis],
Lizarraga, A.[Andrew],
Joshi, S.H.[Shantanu H.],
SrvfNet: A Generative Network for Unsupervised Multiple Diffeomorphic
Functional Alignment,
CVSports21(4476-4484)
IEEE DOI
2109
Deep learning, Magnetic resonance imaging,
Computational modeling, Training data, Computer architecture
BibRef
Köhler, A.[Alexander],
Breuß, M.[Michael],
Towards Efficient Time Stepping for Numerical Shape Correspondence,
SSVM21(165-176).
Springer DOI
2106
BibRef
Sun, W.,
Shan, Z.,
Liu, F.,
Qiao, M.,
Gui, H.,
Li, X.,
Similarity Measure for Binary Function Based on Graph Mover's
Distance,
CVIDL20(255-259)
IEEE DOI
2102
computational complexity, graph theory, image matching,
neural nets, similarity measure, graph matching,
Binary Similarity.
BibRef
Chakraborty, R.[Rudrasis],
Xing, Y.F.[Yi-Fei],
Duan, M.X.[Min-Xuan],
Yu, S.X.[Stella X.],
C-SURE: Shrinkage Estimator and Prototype Classifier for
Complex-Valued Deep Learning,
PBVS20(360-367)
IEEE DOI
2008
Manifolds, Maximum likelihood estimation, Frequency modulation,
Gaussian distribution, Prototypes, Covariance matrices, Measurement
BibRef
Khrulkov, V.[Valentin],
Mirvakhabova, L.[Leyla],
Ustinova, E.[Evgeniya],
Oseledets, I.[Ivan],
Lempitsky, V.[Victor],
Hyperbolic Image Embeddings,
CVPR20(6417-6427)
IEEE DOI
2008
Task analysis, Visualization,
Natural language processing, Geometry, Extraterrestrial measurements
BibRef
Yuan, T.T.[Tong-Tong],
Deng, W.H.[Wei-Hong],
Tang, J.[Jian],
Tang, Y.[Yinan],
Chen, B.H.[Bing-Hui],
Signal-To-Noise Ratio:
A Robust Distance Metric for Deep Metric Learning,
CVPR19(4810-4819).
IEEE DOI
2002
BibRef
Dahl, V.A.[Vedrana Andersen],
Dahl, A.B.[Anders Bjorholm],
Global Similarity with Additive Smoothness for Spectral Segmentation,
SSVM19(357-368).
Springer DOI
1909
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
Normand, N.[Nicolas],
Distance Transform Based on Weight Sequences,
DGCI19(62-74).
Springer DOI
1905
BibRef
Öfverstedt, J.[Johan],
Lindblad, J.[Joakim],
Sladoje, N.[Nataa],
Stochastic Distance Transform,
DGCI19(75-86).
Springer DOI
1905
BibRef
Gabdulkhakova, A.[Aysylu],
Kropatsch, W.G.[Walter G.],
Confocal Ellipse-based Distance and Confocal Elliptical Field for
polygonal shapes,
ICPR18(3025-3030)
IEEE DOI
1812
Shape, Skeleton, Transforms, Image processing, Euclidean distance,
Pattern recognition
BibRef
Yu, T.[Tan],
Meng, J.J.[Jing-Jing],
Yuan, J.S.[Jun-Song],
Multi-view Harmonized Bilinear Network for 3D Object Recognition,
CVPR18(186-194)
IEEE DOI
1812
Object recognition, Feature extraction, Kernel, Shape
BibRef
Li, D.C.[Dong-Chang],
La Torre, D.[Davide],
Vrscay, E.R.[Edward R.],
The Use of Intensity-Based Measures to Produce Image Function Metrics
Which Accommodate Weber's Models of Perception,
ICIAR18(326-335).
Springer DOI
1807
BibRef
Huang, Y.,
Duan, L.Y.,
Wang, Z.,
Lin, J.,
Chandrasekhar, V.,
Huang, T.,
A Multi-Block N-ary trie structure for exact r-neighbour search in
hamming space,
ICIP17(1117-1121)
IEEE DOI
1803
Binary codes, Containers, Hamming distance, Indexing,
Search problems, Binary Code, Index, Trie
BibRef
Malmberg, F.[Filip],
Strand, R.[Robin],
Zhang, J.M.[Jian-Ming],
Sclaroff, S.[Stan],
The Boolean Map Distance: Theory and Efficient Computation,
DGCI17(335-346).
Springer DOI
1711
BibRef
Janusch, I.[Ines],
Artner, N.M.[Nicole M.],
Kropatsch, W.G.[Walter G.],
Euclidean and Geodesic Distance Profiles,
DGCI17(307-318).
Springer DOI
1711
BibRef
Géraud, T.[Thierry],
Xu, Y.C.[Yong-Chao],
Carlinet, E.[Edwin],
Boutry, N.[Nicolas],
Introducing the Dahu Pseudo-Distance,
ISMM17(55-67).
Springer DOI
1706
BibRef
Röwekamp, J.H.,
Fast thresholding of high dimensional Euclidean distances using
binary squaring,
ICPR16(3103-3108)
IEEE DOI
1705
Context, Euclidean distance, Petri nets,
Program processors, Search, problems
BibRef
Strand, R.[Robin],
Minimal Paths by Sum of Distance Transforms,
DGCI16(349-358).
WWW Link.
1606
BibRef
Shukla, A.[Ankita],
Anand, S.[Saket],
Distance Metric Learning by Optimization on the Stiefel Manifold,
DIFF-CV15(xx-yy).
DOI Link
1601
BibRef
Noyel, G.[Guillaume],
Jourlin, M.[Michel],
Double-Sided Probing by Map of Asplund's Distances Using Logarithmic
Image Processing in the Framework of Mathematical Morphology,
ISMM17(408-420).
Springer DOI
1706
BibRef
And:
Spatio-Colour Asplünd's Metric and Logarithmic Image Processing for
Colour Images (LIPC),
CIARP16(36-43).
Springer DOI
1703
BibRef
Earlier:
Asplünd's metric defined in the logarithmic image processing
(LIP) framework for colour and multivariate images,
ICIP15(3921-3925)
IEEE DOI
1512
Asplünd's distance
BibRef
Jia, D.[Di],
Xiao, C.L.[Cheng-Long],
Sun, J.G.[Jin-Guang],
Edge detection method of Gaussian block distance,
ICIP15(3049-3053)
IEEE DOI
1512
Euclidean distance
BibRef
Aiello, R.[Rosario],
Banterle, F.[Francesco],
Pietroni, N.[Nico],
Malomo, L.[Luigi],
Cignonii, P.[Paolo],
Scopigno, R.[Roberto],
Compression and Querying of Arbitrary Geodesic Distances,
CIAP15(I:282-293).
Springer DOI
1511
BibRef
Pinho, A.J.[Armando J.],
Pratas, D.[Diogo],
Ferreira, P.J.S.G.[Paulo J.S.G.],
A New Compressor for Measuring Distances among Images,
ICIAR14(I: 30-37).
Springer DOI
1410
BibRef
Savchenko, A.V.[Andrey V.],
Deep Convolutional Neural Networks and Maximum-Likelihood Principle in
Approximate Nearest Neighbor Search,
IbPRIA17(42-49).
Springer DOI
1706
BibRef
Earlier:
An Optimal Greedy Approximate Nearest Neighbor Method in Statistical
Pattern Recognition,
PReMI15(236-245).
Springer DOI
1511
BibRef
Earlier:
Nonlinear Transformation of the Distance Function in the Nearest
Neighbor Image Recognition,
CompIMAGE14(261-266).
Springer DOI
1407
BibRef
Figueroa, K.[Karina],
Paredes, R.[Rodrigo],
Boosting the Permutation Based Index for Proximity Searching,
MCPR15(103-112).
Springer DOI
1506
BibRef
Earlier:
An Effective Permutant Selection Heuristic for Proximity Searching in
Metric Spaces,
MCPR14(102-111).
Springer DOI
1407
BibRef
Rebatel, F.[Fabien],
Thiel, É.[Édouard],
On Dimension Partitions in Discrete Metric Spaces,
DGCI13(11-22).
Springer DOI
1304
BibRef
Maki, A.[Atsuto],
Gherardi, R.[Riccardo],
Conditional Variance of Differences:
A Robust Similarity Measure for Matching and Registration,
SSSPR12(657-665).
Springer DOI
1211
BibRef
Dubbelman, G.[Gijs],
Dorst, L.[Leo],
Pijls, H.[Henk],
Manifold Statistics for Essential Matrices,
ECCV12(II: 531-544).
Springer DOI
1210
BibRef
Wang, F.[Fan],
Guibas, L.J.[Leonidas J.],
Supervised Earth Mover's Distance Learning and Its Computer Vision
Applications,
ECCV12(I: 442-455).
Springer DOI
1210
BibRef
Fang, C.[Chen],
Torresani, L.[Lorenzo],
Measuring Image Distances via Embedding in a Semantic Manifold,
ECCV12(IV: 402-415).
Springer DOI
1210
BibRef
Nilsson, O.[Ola],
Reimers, M.[Martin],
Museth, K.[Ken],
Brun, A.[Anders],
A Novel Algorithm for Computing Riemannian Geodesic Distance in
Rectangular 2d Grids,
ISVC12(II: 265-274).
Springer DOI
1209
BibRef
Dimitrov, P.[Pavel],
Lawlor, M.[Matthew],
Zucker, S.W.[Steven W.],
Distance Images and Intermediate-Level Vision,
SSVM11(653-664).
Springer DOI
1201
BibRef
Chen, S.A.[Shu-Ang],
Li, J.L.[Jun-Li],
Wang, X.Y.[Xiu-Ying],
A Fast Exact Euclidean Distance Transform Algorithm,
ICIG11(45-49).
IEEE DOI
1109
BibRef
Veelaert, P.[Peter],
Distance between Separating Circles and Points,
DGCI11(346-357).
Springer DOI
1104
BibRef
Enficiaud, R.[Raffi],
Queue and Priority Queue Based Algorithms for Computing the
Quasi-distance Transform,
ICIAR10(I: 35-44).
Springer DOI
1006
BibRef
Pele, O.[Ofir],
Werman, M.[Michael],
Fast and robust Earth Mover's Distances,
ICCV09(460-467).
IEEE DOI
0909
BibRef
Omer, I.[Ido],
Werman, M.[Michael],
The Bottleneck Geodesic: Computing Pixel Affinity,
CVPR06(II: 1901-1907).
IEEE DOI
0606
Compute image specific measures for simmilarity of pixels.
Path in histogram space that is short and dense.
BibRef
Mémoli, F.[Facundo],
Metric Structures on Datasets:
Stability and Classification of Algorithms,
CAIP11(II: 1-33).
Springer DOI
1109
BibRef
Memoli, F.[Facundo],
Spectral Gromov-Wasserstein distances for shape matching,
NORDIA09(256-263).
IEEE DOI
0910
BibRef
Earlier:
Gromov-Hausdorff distances in Euclidean spaces,
NORDIA08(1-8).
IEEE DOI
0806
BibRef
Oka, A.[Aiko],
Wada, T.[Toshikazu],
Mahalanobis distance Minimization Mapping: M3,
Subspace09(93-100).
IEEE DOI
0910
BibRef
Niu, Y.[Yan],
Dick, A.,
Brooks, M.J.,
A new inconsistency measure for linear systems and two applications in
motion analysis,
IVCNZ09(12-17).
IEEE DOI
0911
BibRef
Zhou, Z.Q.[Zhi-Qiang],
Wang, B.[Bo],
A modified Hausdorff distance using edge gradient for robust object
matching,
IASP09(250-254).
IEEE DOI
0904
BibRef
Gurumoorthy, K.S.[Karthik S.],
Rangarajan, A.[Anand],
Banerjee, A.[Arunava],
The Complex Wave Representation of Distance Transforms,
EMMCVPR11(413-427).
Springer DOI
1107
BibRef
Rangarajan, A.[Anand],
Gurumoorthy, K.S.[Karthik S.],
A Schrödinger Wave Equation Approach to the Eikonal Equation:
Application to Image Analysis,
EMMCVPR09(140-153).
Springer DOI
0908
BibRef
And: A2, A1:
A Schrödinger Equation for the Fast Computation of Approximate
Euclidean Distance Functions,
SSVM09(100-111).
Springer DOI
0906
BibRef
Lou, Z.[Zhen],
Jin, Z.[Zhong],
Integrated probability function on local mean distance for image
recognition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Gupta, M.D.[Mithun Das],
Huang, T.S.[Thomas S.],
Bregman distance to L1 regularized logistic regression,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ebrahim, Y.,
Ahmed, M.,
Chau, S.C.,
Abdelsalam, W.,
A novel warping distance measure,
ICIP08(2172-2175).
IEEE DOI
0810
BibRef
Shirdhonkar, S.[Sameer],
Jacobs, D.W.[David W.],
Approximate earth mover's distance in linear time,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Combier, C.[Camille],
Damiand, G.[Guillaume],
Solnon, C.[Christine],
Measuring the Distance of Generalized Maps,
GbRPR11(82-91).
Springer DOI
1105
BibRef
Solnon, C.[Christine],
Jolion, J.M.[Jean-Michel],
Generalized vs Set Median Strings for Histogram-Based Distances:
Algorithms and Classification Results in the Image Domain,
GbRPR07(404-414).
Springer DOI
0706
BibRef
Felzenszwalb, P.F.[Pedro F.],
Huttenlocher, D.P.[Daniel P.],
Distance Transforms of Sampled Functions,
Cornell2004, Computing and Information Science TR2004-1963.
Code, Distance Transform.
WWW Link.
BibRef
0400
Harker, M.J.,
O'Leary, P.L.,
First Order Geometric Distance (The Myth of Sampsonus),
BMVC06(I:87).
PDF File.
0609
BibRef
Abdi, H.,
O'Toole, A.J.,
Valentin, D.,
Edelman, B.,
DISTATIS: The Analysis of Multiple Distance Matrices,
EEMCV05(III: 42-42).
IEEE DOI
0507
BibRef
Zhang, B.[Bin],
Srihari, S.,
Discovery of the tri-edge inequality with binary vector dissimilarity
measures,
ICPR04(IV: 669-672).
IEEE DOI
0409
Triangle: sum of 2 sides greater than the third.
Apply to distance measure analysis.
BibRef
Chen, W.J.[Wei-Jun],
Buhmann, J.M.[Joachim M.],
A New Distance Measure for Probabilistic Shape Modeling,
DAGM03(507-514).
Springer DOI
0310
BibRef
Donath, K.[Klaus],
Wolf, M.[Matthias],
Chrástek, R.[Radim],
Niemann, H.[Heinrich],
A Hybrid Distance Map Based and Morphologic Thinning Algorithm,
DAGM03(354-361).
Springer DOI
0310
BibRef
Aujol, J.F.[Jean-Francois],
Aubert, G.[Gilles],
Signed distance functions and viscosity solutions of discontinuous
Hamilton-Jacobi Equations,
INRIARR-4507, July 2002.
HTML Version.
0211
BibRef
Giannopoulos, P.[Panos],
Veltkamp, R.C.[Remco C.],
A Pseudo-Metric for Weighted Point Sets,
ECCV02(III: 715 ff.).
Springer DOI
0205
BibRef
Levina, E.[Elizaveta],
Bickel, P.[Peter],
The Earth Mover's Distance is the Mallows Distance:
Some Insights from Statistics,
ICCV01(II: 251-256).
IEEE DOI
0106
See also Earth Mover's Distance as a Metric for Image Retrieval, The.
BibRef
Cohen, S.D.,
Guibas, L.J.,
The Earth Mover's Distance under Transformation Sets,
ICCV99(1076-1083).
IEEE DOI
See also Earth Mover's Distance as a Metric for Image Retrieval, The.
BibRef
9900
Gustin, V.[Veselko],
Lapajne, A.[Ales],
Kodric, R.[Rober],
Zitko, T.[Tomislav],
Measurement of Ski-Jump Distances by the Use of Fuzzy Pattern
Comparator,
CAIP99(462-471).
Springer DOI
9909
BibRef
Jang, J.H.,
Hong, K.S.,
Detection of Curvilinear Structures Using the
Euclidean Distance Transform,
MVA98(xx-yy).
BibRef
9800
Forsmoo, A.,
The distance transform algorithm on a two-processor computer,
CIAP99(114-118).
IEEE DOI
9909
BibRef
Forsmoo, A.[Anders],
Borgefors, G.[Gunilla],
Parallel Distance Transform Algorithms on a General SIMD Computer,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Baglietto, P.,
Euclidean distance transform on a dedicated architecture based on a
reconfigurable mesh network,
CIAP99(235-240).
IEEE DOI
9909
BibRef
Shih, F.Y.,
Yang, C.H.T.,
On solving exact Euclidean distance transformation with invariance to
object size,
CVPR93(607-608).
IEEE DOI
0403
BibRef
Pridmore, T.P.[Tony P.],
Ablameyko, S.V.[Sergey V.],
The distance transform for line patterns:
Generalisation and development,
CAIP95(278-285).
Springer DOI
9509
BibRef
Buchowicz, A.,
Adaptive multichannel distance filter,
ICIP95(I: 175-178).
IEEE DOI
9510
BibRef
Buchowicz, A.,
Pitas, I.,
Multichannel distance filters,
ICIP94(II: 575-579).
IEEE DOI
9411
BibRef
Yang, D.L.[Dyi-Long],
Chen, C.H.[Chin-Hsing],
A real-time systolic array for distance transformation,
ICPR94(C:342-344).
IEEE DOI
9410
BibRef
Verbeek, F.J.,
Deformation correction using Euclidean contour distance maps,
ICPR92(III:347-351).
IEEE DOI
9208
BibRef
Segawa, H.,
Ukita, T.,
A similarity value transformation method for probabilistic scoring,
ICPR88(II: 1225-1209).
IEEE DOI
8811
Turn similarity into probability.
BibRef
Mouer, E.,
Schaerf, R.,
New Applications of Distance Transformation Methods for
Effective Structural Image Analysis,
ICPR86(666-668).
BibRef
8600
Okada, T.,
Kanade, T.,
Approximate Lengths Between Phalanges of Multijointed Fingers
for Stable Grasping,
AAAI-83(301-305).
BibRef
8300
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Three Dimensional Distance Transforms and Distance Functions .