Yang, H.[Hao],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Zhao, C.J.[Chun-Jiang],
Yang, G.J.[Gui-Jun],
Casa, R.[Raffaele],
Pignatti, S.[Stefano],
Feng, Q.[Qi],
Temporal Polarimetric Behavior of Oilseed Rape (Brassica napus L.) at
C-Band for Early Season Sowing Date Monitoring,
RS(6), No. 11, 2014, pp. 10375-10394.
DOI Link
1412
BibRef
Fang, S.H.[Sheng-Hui],
Tang, W.C.[Wen-Chao],
Peng, Y.[Yi],
Gong, Y.[Yan],
Dai, C.[Can],
Chai, R.[Ruhui],
Liu, K.[Kan],
Remote Estimation of Vegetation Fraction and Flower Fraction in
Oilseed Rape with Unmanned Aerial Vehicle Data,
RS(8), No. 5, 2016, pp. 416.
DOI Link
1606
BibRef
Han, J.H.[Jia-Hui],
Wei, C.W.[Chuan-Wen],
Chen, Y.L.[Yao-Liang],
Liu, W.W.[Wei-Wei],
Song, P.L.[Pei-Lin],
Zhang, D.D.[Dong-Dong],
Wang, A.Q.[An-Qi],
Song, X.D.[Xiao-Dong],
Wang, X.Z.[Xiu-Zhen],
Huang, J.F.[Jing-Feng],
Mapping Above-Ground Biomass of Winter Oilseed Rape Using High
Spatial Resolution Satellite Data at Parcel Scale under Waterlogging
Conditions,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
See also Mapping Water-Logging Damage on Winter Wheat at Parcel Level Using High Spatial Resolution Satellite Data.
BibRef
Wei, C.W.[Chuan-Wen],
Huang, J.F.[Jing-Feng],
Mansaray, L.R.[Lamin R.],
Li, Z.H.[Zhen-Hai],
Liu, W.W.[Wei-Wei],
Han, J.H.[Jia-Hui],
Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial
Resolution Satellite Data Based on a Hybrid Method,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhang, W.F.[Wang-Fei],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Zhang, Y.H.[Ya-Hong],
Yang, H.[Hao],
Zhao, L.[Lei],
Ji, Y.J.[Yong-Jie],
Compact Polarimetric Response of Rape (Brassica napus L.) at C-Band:
Analysis and Growth Parameters Inversion,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
oil seed crop.
BibRef
Wang, D.[Dong],
Fang, S.H.[Sheng-Hui],
Yang, Z.Z.[Zhen-Zhong],
Wang, L.[Lin],
Tang, W.C.[Wen-Chao],
Li, Y.C.[Yu-Cui],
Tong, C.Y.[Chun-Yan],
A Regional Mapping Method for Oilseed Rape Based on HSV
Transformation and Spectral Features,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhang, W.F.[Wang-Fei],
Chen, E.[Erxue],
Li, Z.Y.[Zeng-Yuan],
Zhao, L.[Lei],
Ji, Y.J.[Yong-Jie],
Zhang, Y.H.[Ya-Hong],
Liu, Z.Q.[Zhi-Qin],
Rape (Brassica napus L.) Growth Monitoring and Mapping Based on
Radarsat-2 Time-Series Data,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Wan, L.[Liang],
Li, Y.J.[Yi-Jian],
Cen, H.Y.[Hai-Yan],
Zhu, J.P.[Jiang-Peng],
Yin, W.X.[Wen-Xin],
Wu, W.[Weikang],
Zhu, H.Y.[Hong-Yan],
Sun, D.W.[Da-Wei],
Zhou, W.J.[Wei-Jun],
He, Y.[Yong],
Combining UAV-Based Vegetation Indices and Image Classification to
Estimate Flower Number in Oilseed Rape,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Abdalla, A.[Alwaseela],
Cen, H.Y.[Hai-Yan],
Abdel-Rahman, E.[Elfatih],
Wan, L.[Liang],
He, Y.[Yong],
Color Calibration of Proximal Sensing RGB Images of Oilseed Rape
Canopy via Deep Learning Combined with K-Means Algorithm,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ashourloo, D.[Davoud],
Shahrabi, H.S.[Hamid Salehi],
Azadbakht, M.[Mohsen],
Aghighi, H.[Hossein],
Nematollahi, H.[Hamed],
Alimohammadi, A.[Abbas],
Matkan, A.A.[Ali Akbar],
Automatic canola mapping using time series of sentinel 2 images,
PandRS(156), 2019, pp. 63-76.
Elsevier DOI
1909
Precision agriculture, Canola, Flowering date,
Automatic crop mapping, Spectral index, Sentinel-2 time-series
BibRef
Meng, S.[Shiyao],
Zhong, Y.F.[Yan-Fei],
Luo, C.[Chang],
Hu, X.[Xin],
Wang, X.Y.[Xin-Yu],
Huang, S.X.[Sheng-Xiang],
Optimal Temporal Window Selection for Winter Wheat and Rapeseed
Mapping with Sentinel-2 Images: A Case Study of Zhongxiang in China,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Mercier, A.[Audrey],
Betbeder, J.[Julie],
Baudry, J.[Jacques],
Le Roux, V.[Vincent],
Spicher, F.[Fabien],
Lacoux, J.[Jérôme],
Roger, D.[David],
Hubert-Moy, L.[Laurence],
Evaluation of Sentinel-1 and 2 time series for predicting wheat and
rapeseed phenological stages,
PandRS(163), 2020, pp. 231-256.
Elsevier DOI
2005
Remote sensing, Multi-temporal optical and SAR data,
Polarimetry, C-band, Crop phenology
BibRef
Zhang, J.[Jian],
Xie, T.J.[Tian-Jin],
Yang, C.H.[Cheng-Hai],
Song, H.B.[Huai-Bo],
Jiang, Z.[Zhao],
Zhou, G.S.[Guang-Sheng],
Zhang, D.Y.[Dong-Yan],
Feng, H.[Hui],
Xie, J.[Jing],
Segmenting Purple Rapeseed Leaves in the Field from UAV RGB Imagery
Using Deep Learning as an Auxiliary Means for Nitrogen Stress
Detection,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Jelowicki, L.[Lukasz],
Sosnowicz, K.[Konrad],
Ostrowski, W.[Wojciech],
Osinska-Skotak, K.[Katarzyna],
Bakula, K.[Krzysztof],
Evaluation of Rapeseed Winter Crop Damage Using UAV-Based
Multispectral Imagery,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Hussain, S.[Sadeed],
Gao, K.X.[Kai-Xiu],
Din, M.[Mairaj],
Gao, Y.K.[Yong-Kang],
Shi, Z.H.[Zhi-Hua],
Wang, S.Q.[Shan-Qin],
Assessment of UAV-Onboard Multispectral Sensor for Non-Destructive
Site-Specific Rapeseed Crop Phenotype Variable at Different
Phenological Stages and Resolutions,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Zang, Y.Z.[Yun-Ze],
Chen, X.H.[Xue-Hong],
Chen, J.[Jin],
Tian, Y.G.[Yu-Gang],
Shi, Y.S.[Yu-Sheng],
Cao, X.[Xin],
Cui, X.H.[Xi-Hong],
Remote Sensing Index for Mapping Canola Flowers Using MODIS Data,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Liu, S.[Shishi],
Yang, X.[Xin],
Guan, Q.F.[Qing-Feng],
Lu, Z.F.[Zhi-Feng],
Lu, J.W.[Jian-Wei],
An Ensemble Modeling Framework for Distinguishing Nitrogen,
Phosphorous and Potassium Deficiencies in Winter Oilseed Rape
(Brassica napus L.) Using Hyperspectral Data,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Han, J.C.[Ji-Chong],
Zhang, Z.[Zhao],
Cao, J.[Juan],
Developing a New Method to Identify Flowering Dynamics of Rapeseed
Using Landsat 8 and Sentinel-1/2,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zhang, W.F.[Wang-Fei],
Zhang, Y.X.[Yong-Xin],
Yang, Y.[Yue],
Chen, E.[Erxue],
Oilseed Rape (Brassica napus L.) Phenology Estimation by Averaged
Stokes-Related Parameters,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Zhang, H.Y.[Hong-Yan],
Liu, W.B.[Wen-Bin],
Zhang, L.P.[Liang-Pei],
Seamless and automated rapeseed mapping for large cloudy regions
using time-series optical satellite imagery,
PandRS(184), 2022, pp. 45-62.
Elsevier DOI
2202
Rapeseed mapping, Time-series optical satellite imagery,
Large cloudy region, Winter Rapeseed Index, Phenology, Machine learning
BibRef
Mouret, F.[Florian],
Albughdadi, M.[Mohanad],
Duthoit, S.[Sylvie],
Kouamé, D.[Denis],
Rieu, G.[Guillaume],
Tourneret, J.Y.[Jean-Yves],
Outlier Detection at the Parcel-Level in Wheat and Rapeseed Crops
Using Multispectral and SAR Time Series,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Tian, H.F.[Hai-Feng],
Chen, T.[Ting],
Li, Q.Z.[Qiang-Zi],
Mei, Q.Y.[Qiu-Yi],
Wang, S.[Shuai],
Yang, M.D.[Meng-Dan],
Wang, Y.J.[Yong-Jiu],
Qin, Y.C.[Yao-Chen],
A Novel Spectral Index for Automatic Canola Mapping by Using
Sentinel-2 Imagery,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Tang, W.C.[Wen-Chao],
Tang, R.X.[Rong-Xin],
Guo, T.[Tao],
Wei, J.B.[Jing-Bo],
Remote Prediction of Oilseed Rape Yield via Gaofen-1 Images and a
Crop Model,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chen, S.M.[Shao-Mei],
Li, Z.F.[Zhao-Fu],
Ji, T.L.[Ting-Li],
Zhao, H.Y.[Hai-Yan],
Jiang, X.S.[Xiao-San],
Gao, X.[Xiang],
Pan, J.J.[Jian-Jun],
Zhang, W.M.[Wen-Min],
Two-Stepwise Hierarchical Adaptive Threshold Method for Automatic
Rapeseed Mapping over Jiangsu Using Harmonized Landsat/Sentinel-2,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Fernando, H.[Hansanee],
Ha, T.[Thuan],
Attanayake, A.[Anjika],
Benaragama, D.[Dilshan],
Nketia, K.A.[Kwabena Abrefa],
Kanmi-Obembe, O.[Olakorede],
Shirtliffe, S.J.[Steven J.],
High-Resolution Flowering Index for Canola Yield Modelling,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Lukas, V.[Vojtech],
Hunady, I.[Igor],
Kintl, A.[Antonín],
Mezera, J.[Jirí],
Hammerschmiedt, T.[Tereza],
Sobotková, J.[Julie],
Brtnický, M.[Martin],
Elbl, J.[Jakub],
Using UAV to Identify the Optimal Vegetation Index for Yield
Prediction of Oil Seed Rape (Brassica napus L.) at the Flowering
Stage,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Yang, Y.[Yang],
Wei, X.[Xinbei],
Wang, J.[Jiang],
Zhou, G.S.[Guang-Sheng],
Wang, J.[Jian],
Jiang, Z.T.[Zi-Tong],
Zhao, J.[Jie],
Ren, Y.L.[Yi-Lin],
Prediction of Seedling Oilseed Rape Crop Phenotype by Drone-Derived
Multimodal Data,
RS(15), No. 16, 2023, pp. 3951.
DOI Link
2309
BibRef
Maleki, S.[Saeideh],
Baghdadi, N.[Nicolas],
Najem, S.[Sami],
Dantas, C.F.[Cassio Fraga],
Bazzi, H.[Hassan],
Ienco, D.[Dino],
Determining Effective Temporal Windows for Rapeseed Detection Using
Sentinel-1 Time Series and Machine Learning Algorithms,
RS(16), No. 3, 2024, pp. 549.
DOI Link
2402
BibRef
Mckay, M.[Michael],
Danilevicz, M.F.[Monica F.],
Ashworth, M.B.[Michael B.],
Rocha, R.L.[Roberto Lujan],
Upadhyaya, S.R.[Shriprabha R.],
Bennamoun, M.[Mohammed],
Edwards, D.[David],
Focus on the Crop Not the Weed: Canola Identification for Precision
Weed Management Using Deep Learning,
RS(16), No. 11, 2024, pp. 2041.
DOI Link
2406
BibRef
Liu, T.T.[Ting-Ting],
Li, P.P.[Pei-Pei],
Zhao, F.[Feng],
Liu, J.[Jie],
Meng, R.[Ran],
Early-Stage Mapping of Winter Canola by Combining Sentinel-1 and
Sentinel-2 Data in Jianghan Plain China,
RS(16), No. 17, 2024, pp. 3197.
DOI Link
2409
BibRef
Wu, F.[Fazhe],
Lu, P.[Peng],
Chen, S.B.[Sheng-Bo],
Xu, Y.C.[Yu-Cheng],
Wang, Z.[Zibo],
Dai, R.[Rui],
Zhang, S.Y.[Shu-Ya],
Identifying the Peak Flowering Dates of Winter Rapeseed with a NBYVI
Index Using Sentinel-1/2,
RS(17), No. 6, 2025, pp. 1051.
DOI Link
2503
BibRef
Zhu, Y.Q.[Yi-Qing],
Cao, H.[Hong],
Wu, S.R.[Shang-Rong],
Guo, Y.L.[Yong-Li],
Song, Q.[Qian],
Rapeseed Area Extraction Based on Time-Series Dual-Polarization Radar
Vegetation Indices,
RS(17), No. 8, 2025, pp. 1479.
DOI Link
2505
BibRef
Zhang, Y.[Yanni],
Niu, Y.X.[Ya-Xiao],
Cui, Z.H.[Zhi-Hong],
Chai, X.Y.[Xiao-Yu],
Xu, L.Z.[Li-Zhang],
Cross-Year Rapeseed Yield Prediction for Harvesting Management Using
UAV-Based Imagery,
RS(17), No. 12, 2025, pp. 2010.
DOI Link
2506
BibRef
Fallas-Calderón, I.D.[Ileana De_los_Ángeles],
Heenkenda, M.K.[Muditha K.],
Sahota, T.S.[Tarlok S.],
Serrano, L.S.[Laura Segura],
Canola Yield Estimation Using Remotely Sensed Images and M5P Model
Tree Algorithm,
RS(17), No. 13, 2025, pp. 2127.
DOI Link
2507
BibRef
Lussem, U.,
Hütt, C.,
Waldhoff, G.,
Combined Analysis Of Sentinel-1 And Rapideye Data For Improved Crop
Type Classification: An Early Season Approach For Rapeseed And Cereals,
ISPRS16(B8: 959-963).
DOI Link
1610
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Pasture, Grassland, Rangeland Analysis .