24.8.6.5.1 Weather Prediction, Weather Forecast, Weather Radar Applications

Chapter Contents (Back)
Weather. Weather Precidtion. Weather Forecast.

Bingham, G.[Gail],
STORM: a sounding and tracking observatory for regional meteorology,
SPIE(Newsroom), October 29, 2013.
DOI Link 1311
Increases in storm intensity and occurrence are demanding improved real-time sensors and prediction capabilities in storm forecasting. BibRef

Rasmy, M.[Mohamed], Koike, T.[Toshio], Li, X.[Xin],
Applicability of Multi-Frequency Passive Microwave Observations and Data Assimilation Methods for Improving Numerical Weather Forecasting in Niger, Africa,
RS(6), No. 6, 2014, pp. 5306-5324.
DOI Link 1407
BibRef

Brunet, D., Sills, D.,
An Implicit Contour Morphing Framework Applied to Computer-Aided Severe Weather Forecasting,
SPLetters(22), No. 11, November 2015, pp. 1936-1939.
IEEE DOI 1509
atmospheric techniques BibRef

Ulmer, F.G.[Franz-Georg], Adam, N.[Nico],
A Synergy Method to Improve Ensemble Weather Predictions and Differential SAR Interferograms,
PandRS(109), No. 1, 2015, pp. 98-107.
Elsevier DOI 1512
APS BibRef

Pagano, T.[Tom],
CubeSat platform will lower cost of weather modeling and forecasting,
SPIE(Newsroom), December 14, 2016.
DOI Link 1612
The AIRS Instrument Suite makes monitoring water vapor and temperature possible on a global scale. BibRef

Bhomia, S.[Swati], Jaiswal, N.[Neeru], Kishtawal, C.M., Kumar, R.[Raj],
Multimodel Prediction of Monsoon Rain Using Dynamical Model Selection,
GeoRS(54), No. 5, May 2016, pp. 2911-2917.
IEEE DOI 1604
atmospheric techniques BibRef

Rani, S.I.[S. Indira], Doherty, A.[Amy], Atkinson, N.[Nigel], Bell, W.[William], Newman, S.[Stuart], Renshaw, R.[Richard], George, J.P.[John P.], Rajagopal, E.N.[Ekkattil N.],
Effect of new radiance observations on numerical weather prediction models,
SPIE(Newsroom), August 3, 2016
DOI Link 1610
The impact of humidity observations, from the Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometry instrument, on an existing unified model assimilation system is investigated. BibRef

Liu, C.Y.[Chian-Yi], Kuo, S.C.[Szu-Chen], Lim, A.H.N.[Agnes H. N.], Hsu, S.C.[Shen-Cha], Tseng, K.H.[Kuo-Hsin], Yeh, N.C.[Nan-Ching], Yang, Y.C.[Yu-Chi],
Optimal Use of Space-Borne Advanced Infrared and Microwave Soundings for Regional Numerical Weather Prediction,
RS(8), No. 10, 2016, pp. 816.
DOI Link 1609
BibRef

Das, M.[Monidipa], Ghosh, S.K.[Soumya K.],
semBnet: A semantic Bayesian network for multivariate prediction of meteorological time series data,
PRL(93), No. 1, 2017, pp. 192-201.
Elsevier DOI 1706
Bayesian, network BibRef

Brunet, D., Sills, D.,
A Generalized Distance Transform: Theory and Applications to Weather Analysis and Forecasting,
GeoRS(55), No. 3, March 2017, pp. 1752-1764.
IEEE DOI 1703
Forecasting BibRef

Ulmer, F.G.[Franz-Georg], Adam, N.[Nico],
Characterisation and improvement of the structure function estimation for application in PSI,
PandRS(128), No. 1, 2017, pp. 40-46.
Elsevier DOI 1706
Weather Research and Forecasting model, (WRF) BibRef

Das, M.[Monidipa], Ghosh, S.K.[Soumya K.],
Data-driven approaches for meteorological time series prediction: A comparative study of the state-of-the-art computational intelligence techniques,
PRL(105), 2018, pp. 155-164.
Elsevier DOI 1804
Computational intelligence, Data-driven modeling, Bayesian network, Time series prediction, Meteorology BibRef

Lawrence, H., Bormann, N., Geer, A.J., Lu, Q., English, S.J.,
Evaluation and Assimilation of the Microwave Sounder MWHS-2 Onboard FY-3C in the ECMWF Numerical Weather Prediction System,
GeoRS(56), No. 6, June 2018, pp. 3333-3349.
IEEE DOI 1806
Electromagnetic heating, Humidity, Instruments, Microwave imaging, Microwave measurement, Microwave radiometry, Weather forecasting, passive microwave remote sensing BibRef

Yoon, S.S.[Seong-Sim],
Adaptive Blending Method of Radar-Based and Numerical Weather Prediction QPFs for Urban Flood Forecasting,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Randriamampianina, R.[Roger], Schyberg, H.[Harald], Mile, M.[Máté],
Observing System Experiments with an Arctic Mesoscale Numerical Weather Prediction Model,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Manzoni, M.[Marco], Monti-Guarnieri, A.V.[Andrea Virgilio], Realini, E.[Eugenio], Venuti, G.[Giovanna],
Joint Exploitation of SAR and GNSS for Atmospheric Phase Screens Retrieval Aimed at Numerical Weather Prediction Model Ingestion,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Lee, J.H.[Jae-Hyeok], Lee, S.S.[Sangmin S.], Kim, H.G.[Hak Gu], Song, S.K.[Sa-Kwang], Kim, S.[Seongchan], Ro, Y.M.[Yong Man],
MCSIP Net: Multichannel Satellite Image Prediction via Deep Neural Network,
GeoRS(58), No. 3, March 2020, pp. 2212-2224.
IEEE DOI 2003
Weather prediction. Image prediction, multichannel satellite image prediction, satellite image prediction BibRef

Lee, H.[Hongtak], Won, J.S.[Joong-Sun], Park, W.[Wook],
An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Newman, S.[Stuart], Carminati, F.[Fabien], Lawrence, H.[Heather], Bormann, N.[Niels], Salonen, K.[Kirsti], Bell, W.[William],
Assessment of New Satellite Missions within the Framework of Numerical Weather Prediction,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Laverde-Barajas, M.[Miguel], Corzo, G.A.[Gerald A.], Poortinga, A.[Ate], Chishtie, F.[Farrukh], Meechaiya, C.[Chinaporn], Jayasinghe, S.[Susantha], Towashiraporn, P.[Peeranan], Markert, A.[Amanda], Saah, D.[David], Son, L.H.[Lam Hung], Khem, S.[Sothea], Boonya-Aroonnet, S.[Surajate], Chaowiwat, W.[Winai], Uijlenhoet, R.[Remko], Solomatine, D.P.[Dimitri P.],
ST-CORAbico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Esmaili, R.B.[Rebekah B.], Smith, N.[Nadia], Berndt, E.B.[Emily B.], Dostalek, J.F.[John F.], Kahn, B.H.[Brian H.], White, K.[Kristopher], Barnet, C.D.[Christopher D.], Sjoberg, W.[William], Goldberg, M.[Mitchell],
Adapting Satellite Soundings for Operational Forecasting within the Hazardous Weather Testbed,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Berndt, E.[Emily], Smith, N.[Nadia], Burks, J.[Jason], White, K.[Kris], Esmaili, R.[Rebekah], Kuciauskas, A.[Arunas], Duran, E.[Erika], Allen, R.[Roger], LaFontaine, F.[Frank], Szkodzinski, J.[Jeff],
Gridded Satellite Sounding Retrievals in Operational Weather Forecasting: Product Description and Emerging Applications,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Liu, Y.C.[Yu-Chen], Liu, J.[Jia], Li, C.Z.[Chuan-Zhe], Yu, F.L.[Fu-Liang], Wang, W.[Wei],
Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Dewitte, S.[Steven], Cornleis, J.P.[Jan P.], Müller, R.[Richard], Munteanu, A.[Adrian],
Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Wang, Y.Z.[Yuan-Zu], Amodeo, A.[Aldo], O'Connor, E.J.[Ewan J.], Baars, H.[Holger], Bortoli, D.[Daniele], Hu, Q.Y.[Qiao-Yun], Sun, D.S.[Dong-Song], d'Amico, G.[Giuseppe],
Numerical Weather Predictions and Re-Analysis as Input for Lidar Inversions: Assessment of the Impact on Optical Products,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Wang, Y.J.[Ying-Jie], Wu, J.P.[Jian-Ping], Yang, X.R.[Xiang-Rong], Peng, J.[Jun], Pan, X.T.[Xiao-Tian],
Orographic Construction of a Numerical Weather Prediction Spectral Model Based on ASTER Data and Its Application to Simulation of the Henan 20-7 Extreme Rainfall Event,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Albu, A.I.[Alexandra-Ioana], Czibula, G.[Gabriela], Mihai, A.[Andrei], Czibula, I.G.[Istvan Gergely], Burcea, S.[Sorin], Mezghani, A.[Abdelkader],
NeXtNow: A Convolutional Deep Learning Model for the Prediction of Weather Radar Data for Nowcasting Purposes,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zeng, Q.Y.[Qiang-Yu], Li, H.R.[Hao-Ran], Zhang, T.[Tao], He, J.X.[Jian-Xin], Zhang, F.[Fugui], Wang, H.[Hao], Qing, Z.P.[Zhi-Peng], Yu, Q.[Qiu], Shen, B.Y.[Bang-Yue],
Prediction of Radar Echo Space-Time Sequence Based on Improving TrajGRU Deep-Learning Model,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Song, H.J.[Hwan-Jin], Roh, S.[Soonyoung],
Impact of Horizontal Resolution on the Robustness of Radiation Emulators in a Numerical Weather Prediction Model,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Zhang, X.B.[Xin-Bang], Jin, Q.Z.[Qi-Zhao], Yu, T.Z.[Ting-Zhao], Xiang, S.M.[Shi-Ming], Kuang, Q.M.[Qiu-Ming], Prinet, V.[Véronique], Pan, C.H.[Chun-Hong],
Multi-Modal Spatio-Temporal Meteorological Forecasting with Deep Neural Network,
PandRS(188), 2022, pp. 380-393.
Elsevier DOI 2205
Meterological forecasting, Deep learning, Neural architecture search, AutoML BibRef

Ma, Z.[Zheng], Li, Z.L.[Zheng-Long], Li, J.[Jun], Min, M.[Min], Sun, J.H.[Jian-Hua], Wei, X.C.[Xiao-Cheng], Schmit, T.J.[Timothy J.], Cucurull, L.[Lidia],
An Enhanced Storm Warning and Nowcasting Model in Pre-Convection Environments,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Gong, A.[Aofan], Li, R.D.[Rui-Dong], Pan, B.X.[Bao-Xiang], Chen, H.[Haonan], Ni, G.[Guangheng], Chen, M.X.[Ming-Xuan],
Enhancing Spatial Variability Representation of Radar Nowcasting with Generative Adversarial Networks,
RS(15), No. 13, 2023, pp. 3306.
DOI Link 2307
BibRef

Khaira, U.[Ummul], Astitha, M.[Marina],
Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States,
RS(15), No. 13, 2023, pp. 3219.
DOI Link 2307
BibRef

Jiang, Y.H.[Yu-Hang], Gao, F.[Feng], Zhang, S.Q.[Shao-Qing], Cheng, W.[Wei], Liu, C.[Chang], Wang, S.D.[Shu-Dong],
MCSPF-Net: A Precipitation Forecasting Method Using Multi-Channel Cloud Observations of FY-4A Satellite by 3D Convolution Neural Network,
RS(15), No. 18, 2023, pp. 4536.
DOI Link 2310
BibRef

Cao, Y.J.[Yu-Jie], Shi, B.[Bingying], Zhao, X.Y.[Xin-Yu], Yang, T.[Ting], Min, J.Z.[Jin-Zhong],
Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall,
RS(15), No. 17, 2023, pp. 4314.
DOI Link 2310
BibRef

Ju, Y.[Yali], He, J.[Jieying], Ma, G.[Gang], Huang, J.[Jing], Guo, Y.[Yang], Liu, G.Q.[Gui-Qing], Zhang, M.J.[Min-Jie], Gong, J.[Jiandong], Zhang, P.[Peng],
Impact of the Detection Channels Added by Fengyun Satellite MWHS-II at 183 GHz on Global Numerical Weather Prediction,
RS(15), No. 17, 2023, pp. 4279.
DOI Link 2310
BibRef

Li, Z.[Zhouyayan], Xiang, Z.[Zhongrun], Demiray, B.Z.[Bekir Z.], Sit, M.[Muhammed], Demir, I.[Ibrahim],
MA-SARNet: A one-shot nowcasting framework for SAR image prediction with physical driving forces,
PandRS(205), 2023, pp. 176-190.
Elsevier DOI 2311
One-shot nowcasting, SAR image prediction, Deep learning, Image synthesis with physical forces, Floods, Remote sensing BibRef

d'Adderio, L.P.[Leo Pio], Casella, D.[Daniele], Dietrich, S.[Stefano], Panegrossi, G.[Giulia], Sanò, P.[Paolo],
A First Step towards Meteosat Third Generation Day-2 Precipitation Rate Product: Deep Learning for Precipitation Rate Retrieval from Geostationary Infrared Measurements,
RS(15), No. 24, 2023, pp. 5662.
DOI Link 2401
BibRef

Liu, R.X.[Rui-Xia], Lu, Q.F.[Qi-Feng], Wu, C.Q.[Chun-Qiang], Ni, Z.[Zhuoya], Wang, F.[Fu],
Assimilation of Hyperspectral Infrared Atmospheric Sounder Data of FengYun-3E Satellite and Assessment of Its Impact on Analyses and Forecasts,
RS(16), No. 5, 2024, pp. 908.
DOI Link 2403
BibRef

Hu, J.P.[Jian-Ping], Yin, B.[Bo], Guo, C.[Chaoqun],
METEO-DLNet: Quantitative Precipitation Nowcasting Net Based on Meteorological Features and Deep Learning,
RS(16), No. 6, 2024, pp. 1063.
DOI Link 2403
BibRef

Zhang, M.J.[Min-Jie], Ma, G.[Gang], He, J.[Jieying], Zhang, C.[Chao],
Impact of Channel Selection with Different Bandwidths on Retrieval at 50-60 GHz,
RS(16), No. 8, 2024, pp. 1323.
DOI Link 2405
Weather satellites. BibRef

Lin, K.H.[Keng-Hong], Li, X.[Xutao], Ye, Y.M.[Yun-Ming], Feng, S.S.[Shan-Shan], Zhang, B.Q.[Bao-Quan], Xu, G.N.[Guang-Ning], Wang, Z.[Ziye],
Spherical Neural Operator Network for Global Weather Prediction,
CirSysVideo(34), No. 6, June 2024, pp. 4899-4913.
IEEE DOI 2406
Convolution, Meteorology, Weather forecasting, Correlation, Predictive models, Mathematical models, Learning systems, spatial-temporal prediction BibRef

Sim, S.[Seongmun], Im, J.[Jungho], Jung, S.[Sihun], Han, D.[Daehyeon],
Improving Short-Term Prediction of Ocean Fog Using Numerical Weather Forecasts and Geostationary Satellite-Derived Ocean Fog Data Based on AutoML,
RS(16), No. 13, 2024, pp. 2348.
DOI Link 2407
BibRef

Shen, F.F.[Fei-Fei], Yuan, X.L.[Xiao-Lin], Li, H.[Hong], Xu, D.M.[Dong-Mei], Luo, J.Y.[Jing-Yao], Shu, A.[Aiqing], Huang, L.[Lizhen],
Improving Typhoon Muifa (2022) Forecasts with FY-3D and FY-3E MWHS-2 Satellite Data Assimilation under Clear Sky Conditions,
RS(16), No. 14, 2024, pp. 2614.
DOI Link 2408
BibRef


Zheng, X.F.[Xiao-Fan], Kong, H.[Hoiio],
Rain Radar and Meteorological Parameters Fusion for Precipitation Nowcasting: Effect Exploration and Lightweight Model,
CVIDL23(343-347)
IEEE DOI 2403
Deep learning, Meteorological radar, Wind, Rain, Computational modeling, Data integration, Data Fusion BibRef

Fang, W.[Wei], Qi, M.[Meihan],
Swinat-Unet: a new Backbone for Precipitation Nowcasting,
ICIP23(231-235)
IEEE DOI 2312
BibRef

Zhang, X.B.[Xin-Bang], Jin, Q.Z.[Qi-Zhao], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
AutoMF: Spatio-temporal Architecture Search for The Meteorological Forecasting Task,
ICPR22(4708-4714)
IEEE DOI 2212
Measurement, Correlation, Convolution, Image color analysis, Predictive models, Search problems, Spatiotemporal phenomena BibRef

Diaconu, C.A.[Codrut-Andrei], Saha, S.[Sudipan], Günnemann, S.[Stephan], Zhu, X.X.[Xiao Xiang],
Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model,
EarthVision22(1361-1370)
IEEE DOI 2210
Earth, Adaptation models, Uncertainty, Computational modeling, Land surface, Predictive models, Data models, Climate change BibRef

Molinari, M.E., Manzoni, M., Petrushevsky, N., Guarnieri, A.M., Venuti, G., Meroni, A.N., Mascitelli, A., Parodi, A.,
A Novel Procedure for Generation of SAR-derived ZTD Maps for Weather Prediction: Application to South Africa Use Case,
ISPRS21(B3-2021: 405-410).
DOI Link 2201
BibRef

Ramos, M.M.P.[Mery Milagros Paco], del Alamo, C.L.[Cristian López], Zapana, R.A.[Reynaldo Alfonte],
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation,
CAIP19(I:542-553).
Springer DOI 1909
BibRef

Wilson, K.A.[Katie A.], Choate, J.J.[Jessica J.], Clark, A.J.[Adam J.], Gallo, B.T.[Burkely T.], Heinselman, P.L.[Pamela L.], Knopfmeier, K.H.[Kent H.], Roberts, B.[Brett], Skinner, P.S.[Patrick S.], Yussouf, N.[Nusrat],
Exploring Applications of Storm-Scale Probabilistic Warn-on-Forecast Guidance in Weather Forecasting,
VAMR19(II:557-572).
Springer DOI 1909
BibRef

Saha, M.[Moumita], Mitra, P.[Pabitra],
Climate Network Based Index Discovery for Prediction of Indian Monsoon,
PReMI15(554-564).
Springer DOI 1511
BibRef

Sakaino, H.,
A unified prediction method for heterogeneous weather radar patterns,
WACV02(296-303).
IEEE DOI 0303
BibRef

Otsuka, K., Horikoshi, T., Suzuki, S.,
Image Sequence Retrieval for Forecasting Weather Radar Echo Pattern,
MVA98(xx-yy). BibRef 9800

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Convective Storm Analysis, Weather Radar Applications .


Last update:Sep 15, 2024 at 16:30:49