Ginesu, G.[Giaime],
Massidda, F.[Francesco],
Giusto, D.D.[Daniele D.],
A multi-factors approach for image quality assessment based on a human
visual system model,
SP:IC(20), No. 4, April 2006, pp. 316-333.
Elsevier DOI Image quality assessment; Human visual system
0605
BibRef
Perra, C.,
Massidda, F.[Francesco],
Giusto, D.D.[Daniele D.],
Image Blockiness Evaluation Based on Sobel Operator,
ICIP05(I: 389-392).
IEEE DOI
0512
BibRef
Zhai, G.T.[Guang-Tao],
Zhang, W.J.,
Yang, X.K.[Xiao-Kang],
Xu, Y.,
Image quality metric with an integrated bottom-up and top-down HVS
approach,
VISP(153), No. 4, August 2006, pp. 456-460.
WWW Link.
0705
BibRef
Carnec, M.[Mathieu],
Le Callet, P.[Patrick],
Barba, D.[Dominique],
Objective quality assessment of color images based on a generic
perceptual reduced reference,
SP:IC(23), No. 4, April 2008, pp. 239-256.
Elsevier DOI
0711
BibRef
Earlier:
Visual Features for Image Quality Assessment with Reduced Reference,
ICIP05(I: 421-424).
IEEE DOI
0512
BibRef
Earlier:
An image quality assessment method based on perception of structural
information,
ICIP03(III: 185-188).
IEEE DOI
0312
BibRef
Earlier: A2, A3, Only:
A robust quality metric for color image quality assessment,
ICIP03(I: 437-440).
IEEE DOI
0312
Image quality; Image quality assessment; Reduced reference;
Human visual system; Visual perception
BibRef
Sandic-Stankovic, D.,
Kukolj, D.,
Le Callet, P.[Patrick],
DIBR synthesized image quality assessment based on morphological
pyramids,
3DTV-CON15(1-4)
IEEE DOI
1508
Band-pass filters
BibRef
Liu, D.[Delei],
Xu, Y.[Yong],
Quan, Y.H.[Yu-Hui],
Le Callet, P.[Patrick],
Reduced reference image quality assessment using regularity of phase
congruency,
SP:IC(29), No. 8, 2014, pp. 844-855.
Elsevier DOI
1410
Reduced-reference image quality assessment
BibRef
Liu, D.[Delei],
Li, F.Z.[Fu-Zhong],
Song, H.B.[Hou-Bing],
Regularity of spectral residual for reduced reference image quality
assessment,
IET-IPR(11), No. 12, Decmeber 2017, pp. 1135-1141.
DOI Link
1712
BibRef
Chen, Y.[Yin],
Blum, R.S.[Rick S.],
A new automated quality assessment algorithm for image fusion,
IVC(27), No. 10, 2 September 2009, pp. 1421-1432.
Elsevier DOI
0906
Image fusion; Image quality; Human visual system model; Contrast
BibRef
Lin, W.S.[Wei-Si],
Kuo, C.C.J.[C.C. Jay],
Perceptual visual quality metrics: A survey,
JVCIR(22), No. 4, May 2011, pp. 297-312.
Elsevier DOI
1104
Human visual system (HVS); Vision-based model; Signal-driven model;
Signal decomposition; Just-noticeable distortion; Visual attention;
Common feature and artifact detection; Full reference; No reference;
Reduced reference
BibRef
Liu, J.[Jun],
Huang, J.[Junyi],
Liu, S.G.[Shu-Guang],
Li, H.[Huali],
Zhou, Q.M.[Qi-Ming],
Liu, J.C.[Jun-Chen],
Human visual system consistent quality assessment for remote sensing
image fusion,
PandRS(105), No. 1, 2015, pp. 79-90.
Elsevier DOI
1506
Image fusion
BibRef
Pei, S.C.[Soo-Chang],
Chen, L.H.[Li-Heng],
Image Quality Assessment Using Human Visual DOG Model Fused With
Random Forest,
IP(24), No. 11, November 2015, pp. 3282-3292.
IEEE DOI
1509
feature extraction
BibRef
Kim, H.,
Kim, J.,
Oh, T.,
Lee, S.,
Blind Sharpness Prediction for Ultrahigh-Definition Video Based on
Human Visual Resolution,
CirSysVideo(27), No. 5, May 2017, pp. 951-964.
IEEE DOI
1705
Geometry, High definition video, Image edge detection, Retina,
Spatial resolution, Visualization, Perceptual pooling,
perceptual sharpness, video sharpness assessment, viewing, geometry
BibRef
Hadizadeh, H.[Hadi],
Rajati, A.,
Bajic, I.V.[Ivan V.],
Saliency-Guided Just Noticeable Distortion Estimation Using the
Normalized Laplacian Pyramid,
SPLetters(24), No. 8, August 2017, pp. 1218-1222.
IEEE DOI
1708
distortion, estimation theory, image processing, HVS, JND threshold,
human visual system, noise-contaminated version,
normalized Laplacian pyramid, pixel-wise JND estimation method,
saliency-guided just noticeable distortion estimation,
Measurement, Visualization.
BibRef
Heydari, M.[Maryam],
Cheraaqee, P.[Pooryaa],
Mansouri, A.[Azadeh],
Mahmoudi-Aznaveh, A.[Ahmad],
A low complexity wavelet-based blind image quality evaluator,
SP:IC(74), 2019, pp. 280-288.
Elsevier DOI
1904
Human visual system, Image quality assessment, Wavelet, NR-IQA, BIQA
BibRef
Mansouri, A.[Azadeh],
Mahmoudi-Aznaveh, A.[Ahmad],
SSVD: Structural SVD-based image quality assessment,
SP:IC(74), 2019, pp. 54-63.
Elsevier DOI
1904
Human visual system, Image quality assessment,
Singular value decomposition(SVD), SSVD
BibRef
Chen, W.,
Gu, K.,
Lin, W.,
Yuan, F.,
Cheng, E.,
Statistical and Structural Information Backed Full-Reference Quality
Measure of Compressed Sonar Images,
CirSysVideo(30), No. 2, February 2020, pp. 334-348.
IEEE DOI
2002
Sonar measurements, Entropy, Image quality, Image edge detection,
Underwater acoustics, Sonar image, quality evaluation,
human visual system
BibRef
Zhao, F.[Feng],
Huang, S.[Shiwang],
Long, R.[Renyan],
Zhang, T.T.[Tian-Tian],
Na, S.G.[Sang-Gyun],
Perceptual visual quality assessment using deeply-learned gaze
shifting kernel,
JVCIR(70), 2020, pp. 102701.
Elsevier DOI
2007
Image quality assessment, Human visual system, SSIM
BibRef
Wen, W.Y.[Wen-Ying],
Wei, K.K.[Kang-Kang],
Fang, Y.M.[Yu-Ming],
Zhang, Y.S.[Yu-Shu],
Visual Quality Assessment for Perceptually Encrypted Light Field
Images,
CirSysVideo(31), No. 7, July 2021, pp. 2522-2534.
IEEE DOI
2107
Visualization, Encryption, Image databases, Measurement,
Visual quality assessment, perceptual encryption,
epipolar plane image
BibRef
Zhang, L.[Luming],
Shang, Y.H.[Yong-Heng],
Li, P.[Ping],
Luo, H.[Hao],
Shao, L.[Ling],
Community-Aware Photo Quality Evaluation by Deeply Encoding Human
Perception,
Cyber(52), No. 5, May 2022, pp. 3136-3146.
IEEE DOI
2206
Visualization, Semantics, Image quality, Visual perception, Training,
Computational modeling, Adaptation models, Community, deep feature,
topic model
BibRef
Dolhasz, A.,
Harvey, C.,
Williams, I.,
Learning to Observe: Approximating Human Perceptual Thresholds for
Detection of Suprathreshold Image Transformations,
CVPR20(4796-4806)
IEEE DOI
2008
Observers, Distortion, Task analysis, Sensitivity,
Image segmentation, Visualization, Image quality
BibRef
Ahn, S.,
Lee, K.,
Lee, S.,
Visual entropy: A new framework for quantifying visual information
based on human perception,
ICIP17(3485-3489)
IEEE DOI
1803
Discrete cosine transforms, Entropy, Information theory,
Sensitivity,
visual information
BibRef
Mahamud, S.T.,
Rahmatullah, B.,
Image quality assessment based on properties of HVS and principle of
image structure,
ICVNZ15(1-6)
IEEE DOI
1701
image processing
BibRef
Dimauro, G.,
Altomare, N.,
Scalera, M.,
PQMET: A digital image quality metric based on human visual system,
IPTA14(1-6)
IEEE DOI
1503
discrete cosine transforms
BibRef
Wajid, R.[Rameez],
Mansoor, A.B.[Atif Bin],
Pedersen, M.[Marius],
A Human Perception Based Performance Evaluation of Image Quality
Metrics,
ISVC14(I: 303-312).
Springer DOI
1501
BibRef
Fan, S.J.[Shao-Jing],
Ng, T.T.[Tian-Tsong],
Herberg, J.S.[Jonathan S.],
Koenig, B.L.[Bryan L.],
Tan, C.Y.C.[Cheston Y.C.],
Wang, R.D.[Rang-Ding],
An Automated Estimator of Image Visual Realism Based on Human
Cognition,
CVPR14(4201-4208)
IEEE DOI
1409
Visual realism; human cognition; perception
Perceptual realism.
BibRef
Ponomarenko, N.N.[Nikolay N.],
Jin, L.[Lina],
Lukin, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Self-Similarity Measure for Assessment of Image Visual Quality,
ACIVS11(459-470).
Springer DOI
1108
BibRef
Ponomarenko, N.N.[Nikolay N.],
Lukin, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
HVS-metric-based performance analysis of image denoising algorithms,
EUVIP11(156-161).
IEEE DOI
1110
BibRef
Mayache, A.,
Eude, T.,
Cherifi, H.,
A comparison of image quality models and metrics based on human visual
sensitivity,
ICIP98(III: 409-413).
IEEE DOI
9810
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Compressed Image Quality Evaluation, JPEG Quality Evaluation .