Belaid, N.,
Martens, J.B.,
Grey-Scale, the Crispening Effect, and Perceptual Linearization,
SP(70), No. 3, November 1998, pp. 231-245.
9812
BibRef
Damera-Venkata, N.,
Kite, T.D.,
Geisler, W.S.,
Evans, B.L.,
Bovik, A.C.,
Image Quality Assessment Based on a Degradation Model,
IP(9), No. 4, April 2000, pp. 636-650.
IEEE DOI
0004
BibRef
Wang, Z.,
Bovik, A.C.,
Sheikh, H.R.,
Simoncelli, E.P.,
Image Quality Assessment:
From Error Visibility to Structural Similarity,
IP(13), No. 4, April 2004, pp. 600-612.
IEEE DOI
0404
BibRef
Wang, Z.[Zhou],
Bovik, A.C.[Alan C.],
Modern Image Quality Assessment,
Morgan Claypool2006.
Synthesis Lectures on Image, Video, and Multimedia Processing
Survey, Image Quality.
WWW Link.
BibRef
0600
Chen, M.J.[Ming-Jun],
Bovik, A.C.[Alan C.],
Fast structural similarity index algorithm,
RealTimeIP(6), No. 4, December 2011, pp. 281-287.
Springer DOI
1111
Image and video quality assessment.
build on SSIM and MS-SSIM techniques for real-time implementation.
BibRef
Wang, Z.[Zhou],
Bovik, A.C.,
Reduced- and No-Reference Image Quality Assessment,
SPMag(28), No. 1, 2011, pp. 29-40.
IEEE DOI
1112
BibRef
Wang, Z.[Zhou],
Applications of Objective Image Quality Assessment Methods,
SPMag(28), No. 1, 2011, pp. 137-142.
IEEE DOI
1112
Applications Corner
BibRef
Rehman, A.,
Wang, Z.,
Reduced-Reference Image Quality Assessment by Structural Similarity
Estimation,
IP(21), No. 8, August 2012, pp. 3378-3389.
IEEE DOI
1208
BibRef
Li, Q.A.[Qi-Ang],
Wang, Z.[Zhou],
General-purpose reduced-reference image quality assessment based on
perceptually and statistically motivated image representation,
ICIP08(1192-1195).
IEEE DOI
0810
BibRef
Soundararajan, R.,
Bovik, A.C.,
RRED Indices: Reduced Reference Entropic Differencing for Image Quality
Assessment,
IP(21), No. 2, February 2012, pp. 517-526.
IEEE DOI
1201
See also Video Quality Assessment by Reduced Reference Spatio-Temporal Entropic Differencing.
BibRef
Mittal, A.,
Muralidhar, G.S.,
Ghosh, J.,
Bovik, A.C.,
Blind Image Quality Assessment Without Human Training Using Latent
Quality Factors,
SPLetters(19), No. 2, February 2012, pp. 75-78.
IEEE DOI
1201
BibRef
Sang, Q.B.[Qing-Bing],
Wu, X.J.[Xiao-Jun],
Li, C.F.[Chao-Feng],
Bovik, A.C.[Alan C.],
Blind image quality assessment using a reciprocal singular value
curve,
SP:IC(29), No. 10, 2014, pp. 1149-1157.
Elsevier DOI
1411
Image quality assessment
BibRef
Deng, C.,
Wang, S.,
Bovik, A.C.,
Huang, G.,
Zhao, B.,
Blind Noisy Image Quality Assessment Using Sub-Band Kurtosis,
Cyber(50), No. 3, March 2020, pp. 1146-1156.
IEEE DOI
2001
Noise measurement, Image quality, Discrete wavelet transforms,
Discrete cosine transforms, Distortion, AWGN,
sub-band
BibRef
Jia, S.[Sen],
Zhang, Y.[Yang],
Agrafiotis, D.[Dimitris],
Bull, D.R.[David R.],
Blind High Dynamic Range Image Quality Assessment Using Deep Learning,
ICIP17(765-769)
IEEE DOI
1803
Distortion, Dynamic range, Feature extraction, Image quality,
Machine learning, Training, Transform coding, Deep Learning, HDR,
Saliency Map
BibRef
Li, C.F.[Chao-Feng],
Zhang, Y.[Yu],
Wu, X.J.[Xiao-Jun],
Fang, W.[Wei],
Mao, L.[Li],
Blind Multiply Distorted Image Quality Assessment Using Relevant
Perceptual Features,
ICIP15(4883-4886)
IEEE DOI
1512
Blind image quality assessment
BibRef
Xue, W.,
Mou, X.,
Zhang, L.,
Bovik, A.C.,
Feng, X.,
Blind Image Quality Assessment Using Joint Statistics of Gradient
Magnitude and Laplacian Features,
IP(23), No. 11, November 2014, pp. 4850-4862.
IEEE DOI
1410
Adaptation models
BibRef
Zeng, H.,
Zhang, L.,
Bovik, A.C.[Alan Conrad],
Blind Image Quality Assessment with a Probabilistic Quality
Representation,
ICIP18(609-613)
IEEE DOI
1809
Training, Databases, Probabilistic logic, Image quality,
Task analysis, Distortion, Computational modeling,
score distribution
BibRef
Mittal, A.,
Moorthy, A.K.,
Bovik, A.C.,
No-Reference Image Quality Assessment in the Spatial Domain,
IP(21), No. 12, December 2012, pp. 4695-4708.
IEEE DOI
1212
BibRef
Liu, L.X.[Li-Xiong],
Liu, B.[Bao],
Huang, H.[Hua],
Bovik, A.C.[Alan Conrad],
No-reference image quality assessment based on spatial and spectral
entropies,
SP:IC(29), No. 8, 2014, pp. 856-863.
Elsevier DOI
1410
Image quality assessment
BibRef
Liu, L.X.[Li-Xiong],
Dong, H.P.[Hong-Ping],
Huang, H.[Hua],
Bovik, A.C.[Alan C.],
No-reference image quality assessment in curvelet domain,
SP:IC(29), No. 4, 2014, pp. 494-505.
Elsevier DOI
1404
Image quality assessment (IQA)
BibRef
Liu, L.X.[Li-Xiong],
Liu, B.[Bao],
Su, C.C.[Che-Chun],
Huang, H.[Hua],
Bovik, A.C.[Alan Conrad],
Binocular spatial activity and reverse saliency driven no-reference
stereopair quality assessment,
SP:IC(58), No. 1, 2017, pp. 287-299.
Elsevier DOI
1710
Stereopair, quality, assessment
BibRef
Bovik, A.C.,
Automatic Prediction of Perceptual Image and Video Quality,
PIEEE(101), No. 9, 2013, pp. 2008-2024.
IEEE DOI
1309
Mobile communication
BibRef
Sheikh, H.R.,
Bovik, A.C.,
Image Information and Visual Quality,
IP(15), No. 2, February 2006, pp. 430-444.
IEEE DOI
0602
See also Joint Source-Channel Distortion Model for JPEG Compressed Images, A.
BibRef
Wang, Z.,
Wu, G.,
Sheikh, H.R.,
Simoncelli, E.P.,
Yang, E.H.,
Bovik, A.C.,
Quality-Aware Images,
IP(15), No. 6, June 2006, pp. 1680-1689.
IEEE DOI
0606
BibRef
Sheikh, H.R.,
Bovik, A.C.,
de Veciana, G.,
An Information Fidelity Criterion for Image Quality Assessment Using
Natural Scene Statistics,
IP(14), No. 12, December 2005, pp. 2117-2128.
IEEE DOI
0512
BibRef
Sheikh, H.R.,
Sabir, M.F.,
Bovik, A.C.,
A Statistical Evaluation of Recent Full Reference Image Quality
Assessment Algorithms,
IP(15), No. 11, November 2006, pp. 3440-3451.
IEEE DOI
0610
See also Motion Tuned Spatio-Temporal Quality Assessment of Natural Videos.
BibRef
Moorthy, A.K.[Anush K.],
Bovik, A.C.[Alan C.],
Blind Image Quality Assessment:
From Natural Scene Statistics to Perceptual Quality,
IP(20), No. 12, December 2011, pp. 3350-3364.
IEEE DOI
1112
BibRef
Earlier:
A two-stage framework for blind image quality assessment,
ICIP10(2481-2484).
IEEE DOI
1009
BibRef
Liu, L.X.[Li-Xiong],
Hua, Y.[Yi],
Zhao, Q.J.[Qing-Jie],
Huang, H.[Hua],
Bovik, A.C.[Alan Conrad],
Blind image quality assessment by relative gradient statistics and
adaboosting neural network,
SP:IC(40), No. 1, 2016, pp. 1-15.
Elsevier DOI
1601
No reference (NR)
BibRef
Li, C.F.[Chao-Feng],
Guan, T.[Tuxin],
Zheng, Y.H.[Yu-Hui],
Jin, B.[Bo],
Wu, X.J.[Xiao-Jun],
Bovik, A.C.[Alan C.],
Completely blind image quality assessment via contourlet energy
statistics,
IET-IPR(15), No. 2, 2021, pp. 443-453.
DOI Link
2106
BibRef
Li, C.F.[Chao-Feng],
Guan, T.[Tuxin],
Zheng, Y.H.[Yu-Hui],
Zhong, X.C.[Xiao-Chun],
Wu, X.J.[Xiao-Jun],
Bovik, A.C.[Alan C.],
Blind image quality assessment in the contourlet domain,
SP:IC(91), 2021, pp. 116064.
Elsevier DOI
2012
No-reference image quality assessment,
Contourlet transformation, CIELAB color space, Support vector regression
BibRef
Saad, M.A.[Michele A.],
Bovik, A.C.[Alan C.],
Charrier, C.[Christophe],
Blind Image Quality Assessment: A Natural Scene Statistics Approach in
the DCT Domain,
IP(21), No. 8, August 2012, pp. 3339-3352.
IEEE DOI
1208
BibRef
And:
DCT Statistics Model-Based Blind Image Quality Assessment,
ICIP11(3093-3096).
IEEE DOI
1201
BibRef
And:
Natural DCT statistics approach to no-reference image quality
assessment,
ICIP10(313-316).
IEEE DOI
1009
BibRef
Charrier, C.[Christophe],
Saadane, A.[Abdelhakim],
Fernandez-Maloigne, C.[Christine],
Blind Image Quality Assessment Based on the Use of Saliency Maps and a
Multivariate Gaussian Distribution,
CIAP19(II:137-147).
Springer DOI
1909
BibRef
Saad, M.A.[Michele A.],
Bovik, A.C.[Alan C.],
Charrier, C.[Christophe],
A DCT Statistics-Based Blind Image Quality Index,
SPLetters(17), No. 6, June 2010, pp. 583-586.
IEEE DOI
1006
BibRef
Saad, M.A.[Michele A.],
Bovik, A.C.[Alan C.],
Charrier, C.[Christophe],
Blind Prediction of Natural Video Quality,
IP(23), No. 3, March 2014, pp. 1352-1365.
IEEE DOI
1403
discrete cosine transforms
BibRef
Zhang, Y.[Yi],
Moorthy, A.K.[Anush K.],
Chandler, D.M.[Damon M.],
Bovik, A.C.[Alan C.],
C-DIIVINE: No-reference Image Quality Assessment Based on Local
Magnitude and Phase Statistics of Natural Scenes,
SP:IC(29), No. 7, 2014, pp. 725-747.
Elsevier DOI
1407
Image quality assessment
See also No-Reference Quality Assessment Using Natural Scene Statistics: JPEG2000.
BibRef
Wang, Z.[Zhou],
Bovik, A.C.,
A universal image quality index,
SPLetters(9), No. 3, March 2002, pp. 81-84.
IEEE Top Reference.
0204
BibRef
Li, C.F.[Chao-Feng],
Bovik, A.C.[Alan C.],
Content-partitioned structural similarity index for image quality
assessment,
SP:IC(25), No. 7, August 2010, pp. 517-526.
Elsevier DOI
1008
Four-component image model; Image quality assessment; Structural
similarity (SSIM); Multi-scale structural similarity (MS-SSIM);
Gradient structural similarity (G-SSIM)
BibRef
Bruggeman, H.,
Legge, G.E.,
Psychophysics of reading. XIX:
hypertext search and retrieval with low vision,
PIEEE(90), No. 1, January 2002, pp. 94-103.
IEEE DOI
0201
BibRef
Albin, S.,
Rougeron, G.,
Peroche, B.,
Tremeau, A.,
Quality image metrics for synthetic images based on perceptual color
differences,
IP(11), No. 9, September 2002, pp. 961-971.
IEEE DOI
0210
BibRef
Tong, Y.B.[Yu-Bing],
Konik, H.,
Tremeau, A.,
Color face-tuned salient detection for image quality assessment,
EUVIP10(253-260).
IEEE DOI
1110
BibRef
Martens, J.B.,
Multidimensional modeling of image quality,
PIEEE(90), No. 1, January 2002, pp. 133-153.
IEEE DOI
0201
BibRef
Martens, J.B.,
Kayargadde, V.,
Image quality prediction in a multidimensional perceptual space,
ICIP96(I: 877-880).
IEEE DOI
9610
BibRef
Moore, M.S.[Michael S.],
Foley, J.M.[John M.],
Mitra, S.K.[Sanjit K.],
Defect visibility and content importance:
Effects on Perceived Impairment,
SP:IC(19), No. 2, February 2004, pp. 185-203.
Elsevier DOI
0401
BibRef
Lin, W.S.,
Gai, Y.L.,
Kassim, A.A.,
Perceptual impact of edge sharpness in images,
VISP(153), No. 2, April 2006, pp. 215-223.
DOI Link
0604
BibRef
Pechard, S.,
Carnec, M.,
Le Callet, P.[Patrick],
Barba, D.,
From SD to HD Television: Effects of H.264 Distortions Versus Display
Size on Quality of Experience,
ICIP06(409-412).
IEEE DOI
0610
BibRef
Engelke, U.[Ulrich],
Kusuma, M.[Maulana],
Zepernick, H.J.[Hans-Jurgen],
Caldera, M.[Manora],
Reduced-reference metric design for objective perceptual quality
assessment in wireless imaging,
SP:IC(24), No. 7, August 2009, pp. 525-547.
Elsevier DOI
0909
BibRef
Earlier: A2, A3, A4, Only:
Utilising objective perceptual image quality metrics for implicit link
adaptation,
ICIP04(IV: 2319-2322).
IEEE DOI
0505
Objective perceptual image quality; Normalized hybrid image quality
metric; Perceptual relevance weighted Lp-norm; Reduced-reference;
Wireless imaging
BibRef
Engelke, U.[Ulrich],
Maeder, A.[Anthony],
Zepernick, H.J.[Hans-Jürgen],
Human observer confidence in image quality assessment,
SP:IC(27), No. 9, October 2012, pp. 935-947.
Elsevier DOI
1210
BibRef
Earlier:
Analysing inter-observer saliency variations in task-free viewing of
natural images,
ICIP10(1085-1088).
IEEE DOI
1009
Analysis of human attention.
Image quality; Observer confidence; Reaction time; Psychophysical
experiment
BibRef
Engelke, U.[Ulrich],
Zepernick, H.J.[Hans-Jurgen],
Psychophysical assessment of perceived interest in natural images:
The ROI-D database,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Engelke, U.[Ulrich],
Zepernick, H.J.[Hans-Jurgen],
Pareto optimal weighting of structural impairments for wireless imaging
quality assessment,
ICIP08(373-376).
IEEE DOI
0810
BibRef
Kim, Y.J.[Youn Jin],
Luo, M.R.[M. Ronnier],
Choe, W.[Wonhee],
Kim, H.S.[Hong Suk],
Park, S.O.[Seung Ok],
Baek, Y.[Yeseul],
Rhodes, P.[Peter],
Lee, S.D.[Seong-Deok],
Kim, C.Y.[Chang Yeong],
Factors affecting the psychophysical image quality evaluation of mobile
phone displays: the case of transmissive liquid-crystal displays,
JOSA-A(25), No. 9, September 2008, pp. 2215-2222.
DOI Link
0804
BibRef
Liu, H.T.[Han-Tao],
Heynderickx, I.[Ingrid],
Visual Attention in Objective Image Quality Assessment:
Based on Eye-Tracking Data,
CirSysVideo(21), No. 7, July 2011, pp. 971-982.
IEEE DOI
1107
BibRef
Earlier:
Studying the added value of visual attention in objective image quality
metrics based on eye movement data,
ICIP09(3097-3100).
IEEE DOI
0911
BibRef
Iqbal, M.I.[Muhammad Imran],
Zepernick, H.J.[Hans-Jurgen],
A framework for error protection of region of interest coded images and
videos,
SP:IC(26), No. 4-5, April 2011, pp. 236-249.
Elsevier DOI
1101
Region of interest; UEP; Dynamic programming; JPEG2000; Motion
JPEG2000; Objective perceptual quality
BibRef
Streijl, R.C.,
Winkler, S.,
Hands, D.S.,
Perceptual Quality Measurement:
Towards a More Efficient Process for Validating Objective Models,
SPMag(27), No. 4, 2010, pp. 136-140.
IEEE DOI
1007
Standards in a Nutshell paper.
BibRef
Redi, J.A.,
Gastaldo, P.,
Heynderickx, I.,
Zunino, R.,
Color Distribution Information for the Reduced-Reference Assessment of
Perceived Image Quality,
CirSysVideo(20), No. 12, December 2010, pp. 1757-1769.
IEEE DOI
1102
BibRef
Liu, H.,
Engelke, U.,
Wang, J.,
Le Callet, P.[Patrick],
Heynderickx, I.,
How Does Image Content Affect the Added Value of Visual Attention in
Objective Image Quality Assessment?,
SPLetters(20), No. 4, April 2013, pp. 355-358.
IEEE DOI
1303
BibRef
Cavaro-Menard, C.,
Zhang, L.,
Le Callet, P.[Patrick],
Diagnostic quality assessment of medical images: Challenges and trends,
EUVIP10(277-284).
IEEE DOI
1110
BibRef
Narvekar, N.D.,
Karam, L.J.[Lina J.],
A No-Reference Image Blur Metric Based on the Cumulative Probability of
Blur Detection (CPBD),
IP(20), No. 9, September 2011, pp. 2678-2683.
IEEE DOI
1109
BibRef
Sadaka, N.G.[Nabil G.],
Karam, L.J.[Lina J.],
Ferzli, R.[Rony],
Abousleman, G.P.[Glen P.],
A no-reference perceptual image sharpness metric based on
saliency-weighted foveal pooling,
ICIP08(369-372).
IEEE DOI
0810
BibRef
Varadarajan, S.[Srenivas],
Karam, L.J.[Lina J.],
An improved perception-based no-reference objective image sharpness
metric using iterative edge refinement,
ICIP08(401-404).
IEEE DOI
0810
BibRef
Zhai, G.T.[Guang-Tao],
Wu, X.L.,
Yang, X.K.[Xiao-Kang],
Lin, W.S.[Wei-Si],
Zhang, W.J.[Wen-Jun],
A Psychovisual Quality Metric in Free-Energy Principle,
IP(21), No. 1, January 2012, pp. 41-52.
IEEE DOI
1112
See also Using Free Energy Principle For Blind Image Quality Assessment.
BibRef
Gu, K.[Ke],
Zhai, G.T.[Guang-Tao],
Yang, X.K.[Xiao-Kang],
Zhang, W.J.[Wen-Jun],
An efficient color image quality metric with local-tuned-global model,
ICIP14(506-510)
IEEE DOI
1502
Color
BibRef
Vu, C.T.[Cuong T.],
Phan, T.D.,
Chandler, D.M.,
S_3: A Spectral and Spatial Measure of Local Perceived Sharpness in
Natural Images,
IP(21), No. 3, March 2012, pp. 934-945.
IEEE DOI
1203
BibRef
Vu, P.V.,
Chandler, D.M.[Damon M.],
A Fast Wavelet-Based Algorithm for Global and Local Image Sharpness
Estimation,
SPLetters(19), No. 7, July 2012, pp. 423-426.
IEEE DOI
1206
BibRef
Phan, T.D.[Thien D.],
Sohoni, S.[Sohum],
Chandler, D.M.[Damon M.],
Larson, E.C.[Eric C.],
Performance-analysis-based acceleration of image quality assessment,
Southwest12(81-84).
IEEE DOI
1205
BibRef
Han, Y.,
Cai, Y.,
Cao, Y.,
Xu, X.,
Monotonic Regression: A New Way for Correlating Subjective and
Objective Ratings in Image Quality Research,
IP(21), No. 4, April 2012, pp. 2309-2313.
IEEE DOI
1204
BibRef
Obafemi-Ajayi, T.,
Agam, G.,
Character-Based Automated Human Perception Quality Assessment in
Document Images,
SMC-A(42), No. 3, May 2012, pp. 584-595.
IEEE DOI
1204
BibRef
Fiorucci, F.[Federico],
Baruffa, G.[Giuseppe],
Frescura, F.[Fabrizio],
Objective and subjective quality assessment between JPEG XR with
overlap and JPEG 2000,
JVCIR(23), No. 6, August 2012, pp. 835-844.
Elsevier DOI
1208
JPEG XR; JPEG 2000; Overlap operator; Subjective assessment; Stimulus
comparison; Digital projection; VIF; Coding complexity
BibRef
Fei, X.[Xuan],
Xiao, L.[Liang],
Sun, Y.[Yubao],
Wei, Z.H.[Zhi-Hui],
Perceptual image quality assessment based on structural similarity and
visual masking,
SP:IC(27), No. 7, August 2012, pp. 772-783.
Elsevier DOI
1208
Perceptual image quality assessment; Structural similarity; Structure
tensor; Contrast masking; Neighborhood masking
BibRef
Martini, M.G.[Maria G.],
Hewage, C.T.E.R.[Chaminda T.E.R.],
Villarini, B.[Barbara],
Image quality assessment based on edge preservation,
SP:IC(27), No. 8, September 2012, pp. 875-882.
Elsevier DOI
1209
Image quality assessment; Perceptual quality; Reduced-reference; Edge
detection; Sobel filtering
BibRef
Wu, J.J.[Jin-Jian],
Lin, W.S.[Wei-Si],
Shi, G.M.[Guang-Ming],
Liu, A.[Anmin],
Perceptual Quality Metric With Internal Generative Mechanism,
IP(22), No. 1, January 2013, pp. 43-54.
IEEE DOI
1301
BibRef
Dong, L.,
Fang, Y.M.[Yu-Ming],
Lin, W.S.[Wei-Si],
Seah, H.S.,
Perceptual Quality Assessment for 3D Triangle Mesh Based on Curvature,
MultMed(17), No. 12, December 2015, pp. 2174-2184.
IEEE DOI
1512
Computational modeling
BibRef
Mittal, A.,
Soundararajan, R.,
Bovik, A.C.,
Making a 'Completely Blind' Image Quality Analyzer,
SPLetters(20), No. 3, March 2013, pp. 209-212.
IEEE DOI
1303
BibRef
Feichtenhofer, C.,
Fassold, H.[Hannes],
Schallauer, P.[Peter],
A Perceptual Image Sharpness Metric Based on Local Edge Gradient
Analysis,
SPLetters(20), No. 4, April 2013, pp. 379-382.
IEEE DOI
1303
BibRef
Nikvand, N.[Nima],
Wang, Z.[Zhou],
Image distortion analysis based on normalized perceptual information
distance,
SIViP(7), No. 3, May 2013, pp. 403-410.
WWW Link.
1305
BibRef
Wu, G.L.[Guan-Lin],
Fu, Y.J.[Yu-Jie],
Huang, S.C.[Sheng-Chieh],
Chien, S.Y.[Shao-Yi],
Perceptual Quality-Regulable Video Coding System With Region-Based Rate Control Scheme,
IP(22), No. 6, 2013, pp. 2247-2258.
IEEE DOI
1307
BibRef
Earlier: A1, A2, A4, Only:
Region-Based perceptual quality regulable bit allocation and rate
control for video coding applications,
VCIP12(1-6).
IEEE DOI
1302
distortion; distortion-quantization modeling; quality error)
BibRef
Wu, H.R.,
Reibman, A.R.,
Lin, W.,
Pereira, F.,
Hemami, S.S.,
Perceptual Visual Signal Compression and Transmission,
PIEEE(101), No. 9, 2013, pp. 2025-2043.
IEEE DOI
1309
Channel coding
BibRef
Tan, H.L.[Hui Li],
Li, Z.G.[Zheng-Guo],
Tan, Y.H.[Yih Han],
Rahardja, S.,
Yeo, C.H.[Chuo-Huo],
A Perceptually Relevant MSE-Based Image Quality Metric,
IP(22), No. 11, 2013, pp. 4447-4459.
IEEE DOI
1310
Wiener filters
BibRef
Gu, K.[Ke],
Zhai, G.T.[Guang-Tao],
Yang, X.K.[Xiao-Kang],
Zhang, W.J.[Wen-Jun],
A new psychovisual paradigm for image quality assessment: from
differentiating distortion types to discriminating quality conditions,
SIViP(7), No. 3, May 2013, pp. 423-436.
1305
BibRef
Earlier:
A new no-reference stereoscopic image quality assessment based on
ocular dominance theory and degree of parallax,
ICPR12(206-209).
WWW Link.
1302
BibRef
Gu, K.[Ke],
Zhai, G.T.[Guang-Tao],
Liu, M.[Min],
Xu, Q.[Qi],
Yang, X.K.[Xiao-Kang],
Zhou, J.[Jun],
Zhang, W.J.[Wen-Jun],
Adaptive high-frequency clipping for improved image quality
assessment,
VCIP13(1-5)
IEEE DOI
1402
BibRef
Earlier: A1, A2, A5, A7, A3, Only:
Subjective and objective quality assessment for images with contrast
change,
ICIP13(383-387)
IEEE DOI
1402
image resolution.
Databases
BibRef
Moorthy, A.K.[Anush Krishna],
Mittal, A.[Anish],
Bovik, A.C.[Alan Conrad],
Perceptually optimized blind repair of natural images,
SP:IC(28), No. 10, 2013, pp. 1478-1493.
Elsevier DOI
1312
Image quality
BibRef
Garcia-Alvarez, J.C.,
Führ, H.,
Castellanos-Dominguez, G.,
Evaluation of Region-of-Interest coders using perceptual image
quality assessments,
JVCIR(24), No. 8, 2013, pp. 1316-1327.
Elsevier DOI
1312
Region-of-Interest
BibRef
Tang, X.[Xiaoou],
Luo, W.[Wei],
Wang, X.G.[Xiao-Gang],
Content-Based Photo Quality Assessment,
MultMed(15), No. 8, December 2013, pp. 1930-1943.
IEEE DOI
1402
BibRef
Earlier: A2, A3, A1:
ICCV11(2206-2213).
IEEE DOI
1201
computer vision
BibRef
Xue, W.[Wufeng],
Zhang, L.[Lei],
Mou, X.Q.[Xuan-Qin],
Bovik, A.C.,
Gradient Magnitude Similarity Deviation:
A Highly Efficient Perceptual Image Quality Index,
IP(23), No. 2, February 2014, pp. 684-695.
IEEE DOI
1402
distortion
BibRef
Chang, H.W.[Hua-Wen],
Yang, H.[Hua],
Gan, Y.,
Wang, M.H.[Ming-Hui],
Sparse Feature Fidelity for Perceptual Image Quality Assessment,
IP(22), No. 10, 2013, pp. 4007-4018.
IEEE DOI
1309
Image quality assessment
BibRef
Chang, H.W.[Hua-Wen],
Wang, M.H.[Ming-Hui],
Chen, S.Q.[Shu-Qing],
Yang, H.[Hua],
Huang, Z.J.[Zu-Jian],
Sparse feature fidelity for image quality assessment,
ICPR12(1619-1622).
WWW Link.
1302
BibRef
Jin, L.[Lina],
Boev, A.[Atanas],
Egiazarian, K.O.[Karen O.],
Gotchev, A.[Atanas],
Quantifying the importance of cyclopean view and binocular
rivalry-related features for objective quality assessment of mobile
3D video,
JIVP(2014), No. 1, 2014, pp. 6.
DOI Link
1402
BibRef
Zhu, T.[Tong],
Karam, L.[Lina],
A no-reference objective image quality metric based on perceptually
weighted local noise,
JIVP(2014), No. 1, 2014, pp. 5.
DOI Link
1402
BibRef
Hanhart, P.[Philippe],
Ebrahimi, T.[Touradj],
Calculation of average coding efficiency based on subjective quality
scores,
JVCIR(25), No. 3, 2014, pp. 555-564.
Elsevier DOI
1403
Coding efficiency
BibRef
Gohshi, S.[Seiichi],
Hiroi, T.[Takayuki],
Echizen, I.[Isao],
Subjective assessment of HDTV with superresolution function,
JIVP(2014), No. 1, 2014, pp. 11.
DOI Link
1403
BibRef
Tanchenko, A.[Alexander],
Visual-PSNR measure of image quality,
JVCIR(25), No. 5, 2014, pp. 874-878.
Elsevier DOI
1406
Image quality
BibRef
Ou, Y.,
Xue, Y.,
Wang, Y.,
Q-STAR: A Perceptual Video Quality Model Considering Impact of
Spatial, Temporal, and Amplitude Resolutions,
IP(23), No. 6, June 2014, pp. 2473-2486.
IEEE DOI
1406
Analytical models
BibRef
Barri, A.,
Dooms, A.,
Jansen, B.,
Schelkens, P.,
A Locally Adaptive System for the Fusion of Objective Quality
Measures,
IP(23), No. 6, June 2014, pp. 2446-2458.
IEEE DOI
1406
image processing
BibRef
Barri, A.[Adriaan],
Dooms, A.[Ann],
Schelkens, P.[Peter],
Interactive demonstrations of the locally adaptive fusion for
combining objective quality measures,
ICIP14(2180-2182)
IEEE DOI
1502
Accuracy
BibRef
González-Castro, V.[Víctor],
Adaptive Texture Description and Estimation of the Class Prior
Probabilities for Seminal Quality Control,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Buchinger, S.[Shelley],
Robitza, W.[Werner],
Nezveda, M.[Matej],
Hotop, E.[Ewald],
Hummelbrunner, P.[Patrik],
Sack, M.C.[Martijn C.],
Hlavacs, H.[Helmut],
Evaluating feedback devices for time-continuous mobile multimedia
quality assessment,
SP:IC(29), No. 9, 2014, pp. 921-934.
Elsevier DOI
1410
Subjective quality assessment
BibRef
Zhang, L.[Lin],
Shen, Y.[Ying],
Li, H.Y.[Hong-Yu],
VSI: A Visual Saliency-Induced Index for Perceptual Image Quality
Assessment,
IP(23), No. 10, October 2014, pp. 4270-4281.
IEEE DOI
1410
computational complexity
BibRef
Jung, C.[Chanho],
Hybrid Integration of Visual Attention Model into Image Quality Metric,
IEICE(E97-D), No. 11, November 2014, pp. 2971-2973.
WWW Link.
1412
BibRef
Ponomarenko, N.[Nikolay],
Jin, L.[Lina],
Ieremeiev, O.[Oleg],
Lukin, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Astola, J.T.[Jaakko T.],
Vozel, B.[Benoit],
Chehdi, K.[Kacem],
Carli, M.[Marco],
Battisti, F.[Federica],
Kuo, C.C.J.[C.C. Jay],
Image database TID2013: Peculiarities, results and perspectives,
SP:IC(30), No. 1, 2015, pp. 57-77.
Elsevier DOI
1412
Image visual quality metrics
BibRef
Wunderlich, A.,
Noo, F.,
Gallas, B.D.,
Heilbrun, M.E.,
Exact Confidence Intervals for Channelized Hotelling Observer
Performance in Image Quality Studies,
MedImg(34), No. 2, February 2015, pp. 453-464.
IEEE DOI
1502
Manganese
BibRef
Yang, H.[Huan],
Fang, Y.M.[Yu-Ming],
Yuan, Y.[Yuan],
Lin, W.S.[Wei-Si],
Subjective quality evaluation of compressed digital compound images,
JVCIR(26), No. 1, 2015, pp. 105-114.
Elsevier DOI
1502
Digital compound image
BibRef
Ghadiyaram, D.[Deepti],
Bovik, A.C.[Alan C.],
Automatic quality prediction of authentically distorted pictures,
SPIE(Newsroom), February 6, 2015.
DOI Link
1504
Biologically inspired computational models automatically predict the
quality of any given image, as perceived by a human observer.
BibRef
Saha, A.,
Wu, Q.M.J.,
Utilizing Image Scales Towards Totally Training Free Blind Image
Quality Assessment,
IP(24), No. 6, June 2015, pp. 1879-1892.
IEEE DOI
1504
Databases
BibRef
Tarko, A.[Agnieszka],
de Bruin, S.[Sytze],
Fasbender, D.[Dominique],
Devos, W.[Wim],
Bregt, A.K.[Arnold K.],
Users' Assessment of Orthoimage Photometric Quality for Visual
Interpretation of Agricultural Fields,
RS(7), No. 4, 2015, pp. 4919-4936.
DOI Link
1505
BibRef
Janowski, L.,
Pinson, M.,
The Accuracy of Subjects in a Quality Experiment:
A Theoretical Subject Model,
MultMed(17), No. 12, December 2015, pp. 2210-2224.
IEEE DOI
1512
Accuracy
BibRef
Torkhani, F.[Fakhri],
Wang, K.[Kai],
Chassery, J.M.[Jean-Marc],
Perceptual quality assessment of 3D dynamic meshes:
Subjective and objective studies,
SP:IC(31), No. 1, 2015, pp. 185-204.
Elsevier DOI
1502
BibRef
Earlier:
A Curvature Tensor Distance for Mesh Visual Quality Assessment,
ICCVG12(253-263).
Springer DOI
1210
Dynamic mesh
BibRef
Xu, J.X.[Jing-Xi],
Wah, B.W.[Benjamin W.],
Optimizing the Perceptual Quality of Real-Time Multimedia
Applications,
MultMedMag(22), No. 4, October 2015, pp. 14-28.
IEEE DOI
1512
Analytical models
BibRef
Wah, B.W.[Benjamin W.],
Xu, J.X.X.[Jing-Xi X.],
Optimizing Multidimensional Perceptual Quality in Online Interactive
Multimedia,
MultMedMag(30), No. 3, July 2023, pp. 119-128.
IEEE DOI
2310
BibRef
Xu, J.X.[Jing-Xi],
Wah, B.W.[Benjamin W.],
Optimality of Greedy Algorithm for Generating Just-Noticeable
Difference Surfaces,
MultMed(18), No. 7, July 2016, pp. 1330-1337.
IEEE DOI
1608
greedy algorithms
BibRef
Gu, K.,
Zhai, G.,
Lin, W.,
Liu, M.,
The Analysis of Image Contrast:
From Quality Assessment to Automatic Enhancement,
Cyber(46), No. 1, January 2016, pp. 284-297.
IEEE DOI
1601
Compounds
BibRef
Ghadiyaram, D.[Deepti],
Bovik, A.C.[Alan C.],
Massive Online Crowdsourced Study of Subjective and Objective Picture
Quality,
IP(25), No. 1, January 2016, pp. 372-387.
IEEE DOI
1601
BibRef
Earlier:
Scene statistics of authentically distorted images in perceptually
relevant color spaces for blind image quality assessment,
ICIP15(3851-3855)
IEEE DOI
1512
Perceptual color spaces
BibRef
Goodall, T.R.,
Bovik, A.C.,
Paulter, N.G.,
Tasking on Natural Statistics of Infrared Images,
IP(25), No. 1, January 2016, pp. 65-79.
IEEE DOI
1601
BibRef
Earlier: A1, A2, Only:
No-reference task performance prediction on distorted LWIR images,
Southwest14(89-92)
IEEE DOI
1406
band-pass filters.
distortion
BibRef
Bae, S.H.,
Kim, M.,
A Novel Image Quality Assessment With Globally and Locally Consilient
Visual Quality Perception,
IP(25), No. 5, May 2016, pp. 2392-2406.
IEEE DOI
1604
BibRef
Earlier:
A novel image quality assessment based on an adaptive feature for
image characteristics and distortion types,
VCIP15(1-4)
IEEE DOI
1605
BibRef
And:
A novel SSIM index for image quality assessment using a new luminance
adaptation effect model in pixel intensity domain,
VCIP15(1-4)
IEEE DOI
1605
Complexity theory.
Adaptation models.
Discrete cosine transforms.
BibRef
Bae, S.H.[Sung-Ho],
Kim, M.,
DCT-QM: A DCT-Based Quality Degradation Metric for Image Quality
Optimization Problems,
IP(25), No. 10, October 2016, pp. 4916-4930.
IEEE DOI
1610
discrete cosine transforms
BibRef
MacGahan, C.J.[Christopher J.],
Kupinski, M.A.[Matthew A.],
Hilton, N.R.[Nathan R.],
Brubaker, E.M.[Erik M.],
Johnson, W.C.[William C.],
Development of an ideal observer that incorporates nuisance
parameters and processes list-mode data,
JOSA-A(33), No. 4, April 2016, pp. 689-697.
DOI Link
1604
Image quality assessment
BibRef
Wang, T.H.[Tong-Han],
Zhang, L.[Lu],
Jia, H.Z.[Hui-Zhen],
Li, B.S.[Bao-Sheng],
Shu, H.Z.[Hua-Zhong],
Multiscale contrast similarity deviation: An effective and efficient
index for perceptual image quality assessment,
SP:IC(45), No. 1, 2016, pp. 1-9.
Elsevier DOI
1605
Contrast similarity
BibRef
Kao, Y.Y.[Yue-Ying],
Huang, K.Q.[Kai-Qi],
Maybank, S.J.[Steve J.],
Hierarchical aesthetic quality assessment using deep convolutional
neural networks,
SP:IC(47), No. 1, 2016, pp. 500-510.
Elsevier DOI
1610
Aesthetic image analysis
BibRef
Temel, D.[Dogancan],
Al Regib, G.[Ghassan],
CSV: Image quality assessment based on color, structure, and visual
system,
SP:IC(48), No. 1, 2016, pp. 92-103.
Elsevier DOI
1609
Full-reference image quality assessment
BibRef
Jung, C.[Chanho],
Joo, S.[Sanghyun],
Nam, D.W.[Do-Won],
Kim, W.J.[Won-Jun],
Revisiting the Regression between Raw Outputs of Image Quality Metrics
and Ground Truth Measurements,
IEICE(E99-D), No. 11, November 2016, pp. 2778-2787.
WWW Link.
1611
BibRef
Burmania, A.,
Parthasarathy, S.,
Busso, C.,
Increasing the Reliability of Crowdsourcing Evaluations Using Online
Quality Assessment,
AffCom(7), No. 4, October 2016, pp. 374-388.
IEEE DOI
1612
Behavioral sciences
BibRef
Hadizadeh, H.[Hadi],
A saliency-modulated just-noticeable-distortion model with non-linear
saliency modulation functions,
PRL(84), No. 1, 2016, pp. 49-55.
Elsevier DOI
1612
Just noticeable distortion
BibRef
Minin, P.[Peter],
Shumilov, Y.[Yury],
Sharpness estimation in facial images by spectrum approximation,
SIViP(11), No. 1, January 2017, pp. 163-170.
WWW Link.
1702
BibRef
Zhang, X.,
Wang, S.,
Gu, K.,
Lin, W.,
Ma, S.,
Gao, W.,
Just-Noticeable Difference-Based Perceptual Optimization for JPEG
Compression,
SPLetters(24), No. 1, January 2017, pp. 96-100.
IEEE DOI
1702
discrete cosine transforms
BibRef
Alaei, A.,
Raveaux, R.,
Conte, D.,
Image quality assessment based on regions of interest,
SIViP(11), No. 4, May 2017, pp. 673-680.
WWW Link.
1704
BibRef
Yang, X.C.[Xi-Chen],
Sun, Q.S.[Quan-Sen],
Wang, T.S.[Tian-Shu],
A Usability-Based Subjective Remote Sensing Image Quality Assessment
Database,
SIViP(11), No. 4, May 2017, pp. 697-704.
WWW Link.
1704
BibRef
Zhang, W.,
Liu, H.,
Toward a Reliable Collection of Eye-Tracking Data for Image Quality
Research: Challenges, Solutions, and Applications,
IP(26), No. 5, May 2017, pp. 2424-2437.
IEEE DOI
1704
Data models
BibRef
Xia, Y.,
Liu, Z.,
Yan, Y.,
Chen, Y.,
Zhang, L.,
Zimmermann, R.,
Media Quality Assessment by Perceptual Gaze-Shift Patterns Discovery,
MultMed(19), No. 8, August 2017, pp. 1811-1820.
IEEE DOI
1708
Computational modeling, Flickr, Image color analysis, Media,
Probabilistic logic, Support vector machines, Visualization,
Gaze-shift, perceptual, probabilistic model, quality model, sparse, encoding
BibRef
Uzair, M.[Muhammad],
Dony, R.D.[Robert D.],
Estimating just-noticeable distortion for images/videos in pixel domain,
IET-IPR(11), No. 8, August 2017, pp. 559-567.
DOI Link
1708
BibRef
Laparra, V.[Valero],
Berardino, A.[Alexander],
Balle, J.[Johannes],
Simoncelli, E.P.[Eero P.],
Perceptually optimized image rendering,
JOSA-A(34), No. 9, September 2017, pp. 1511-1525.
DOI Link
1709
Halftone image reproduction, Image enhancement,
Inverse problems, Image quality assessment,
Vision-contrast sensitivity , Computational imaging
BibRef
Guan, J.,
Yi, S.,
Zeng, X.,
Cham, W.K.,
Wang, X.,
Visual Importance and Distortion Guided Deep Image Quality Assessment
Framework,
MultMed(19), No. 11, November 2017, pp. 2505-2520.
IEEE DOI
1710
Boats, Distortion, Estimation, Feature extraction, Image quality,
Visualization, White noise, Distortion sensitive features,
image quality assessment (IQA), visual importance, visual, quality, maps
BibRef
Fan, Z.,
Jiang, T.,
Huang, T.,
Active Sampling Exploiting Reliable Informativeness for Subjective
Image Quality Assessment Based on Pairwise Comparison,
MultMed(19), No. 12, December 2017, pp. 2720-2735.
IEEE DOI
1712
Crowdsourcing, Fans, Image quality, Multimedia communication,
Reliability, Testing, Active sampling, pairwise comparison,
subjective image quality assessment (IQA)
BibRef
Ahar, A.,
Barri, A.,
Schelkens, P.,
From Sparse Coding Significance to Perceptual Quality:
A New Approach for Image Quality Assessment,
IP(27), No. 2, February 2018, pp. 879-893.
IEEE DOI
1712
Correlation, Distortion measurement, Feature extraction,
Image coding, Quality assessment, Sensitivity, Visualization,
structural information
BibRef
Reisenhofer, R.[Rafael],
Bosse, S.[Sebastian],
Kutyniok, G.[Gitta],
Wiegand, T.[Thomas],
A Haar wavelet-based perceptual similarity index for image quality
assessment,
SP:IC(61), No. 1, 2018, pp. 33-43.
Elsevier DOI
1801
Image quality
BibRef
Kundu, D.[Debarati],
Choi, L.K.[Lark Kwon],
Bovik, A.C.[Alan C.],
Evans, B.L.[Brian L.],
Perceptual quality evaluation of synthetic pictures distorted by
compression and transmission,
SP:IC(61), No. 1, 2018, pp. 54-72.
Elsevier DOI
1801
Image quality assessment
BibRef
Wu, Q.,
Li, H.,
Meng, F.,
Ngan, K.N.,
A Perceptually Weighted Rank Correlation Indicator for Objective
Image Quality Assessment,
IP(27), No. 5, May 2018, pp. 2499-2513.
IEEE DOI
1804
Correlation, Databases, Image coding, Image quality, Measurement,
Sorting, Uncertainty, Rank correlation indicator,
subjective uncertainty
BibRef
Zhang, W.,
Martin, R.R.,
Liu, H.,
A Saliency Dispersion Measure for Improving Saliency-Based Image
Quality Metrics,
CirSysVideo(28), No. 6, June 2018, pp. 1462-1466.
IEEE DOI
1806
Correlation, Databases, Dispersion, Entropy, Image quality,
Performance gain, Visualization, Dispersion, image quality, saliency
BibRef
Hu, B.[Bo],
Li, L.[Leida],
Qian, J.S.[Jian-Sheng],
Perceptual quality evaluation for motion deblurring,
IET-CV(12), No. 6, September 2018, pp. 796-805.
DOI Link
1808
BibRef
Usman, M.A.,
Usman, M.R.,
Shin, S.Y.,
A Novel No-Reference Metric for Estimating the Impact of Frame
Freezing Artifacts on Perceptual Quality of Streamed Videos,
MultMed(20), No. 9, September 2018, pp. 2344-2359.
IEEE DOI
1809
motion estimation, quality of experience, quality of service,
statistical analysis, video databases, video signal processing,
temporal features
BibRef
Temel, D.[Dogancan],
AlRegib, G.[Ghassan],
Perceptual image quality assessment through spectral analysis of
error representations,
SP:IC(70), 2019, pp. 37-46.
Elsevier DOI
1812
Full-reference image quality assessment, Visual system,
Error spectrum, Spectral analysis, Color perception, Multi-resolution
BibRef
Lu, P.[Peng],
Peng, X.[XuJun],
Yu, J.[JinBei],
Peng, X.[Xiang],
Gated CNN for visual quality assessment based on color perception,
SP:IC(72), 2019, pp. 105-112.
Elsevier DOI
1902
Aesthetic quality, Deep neural networks, Conditional random fields
BibRef
Agudelo-Medina, O.A.[Oscar A.],
Benitez-Restrepo, H.D.[Hernan Dario],
Vivone, G.[Gemine],
Bovik, A.C.[Alan C.],
Perceptual Quality Assessment of Pan-Sharpened Images,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Xie, X.W.[Xin-Wen],
Carré, P.[Philippe],
Perrine, C.[Clency],
Pousset, Y.[Yannis],
Zhou, N.[Nanrun],
Wu, J.H.[Jian-Hua],
Reduced-reference image quality metric based on statistic model in
complex wavelet transform domain,
SP:IC(74), 2019, pp. 218-230.
Elsevier DOI
1904
Reduced-reference image quality metric,
Dual-tree complex wavelet transform, Information criterion,
Generalized regression neural network
BibRef
Choudhury, A.[Anustup],
Daly, S.[Scott],
HDR Display Quality Evaluation by incorporating Perceptual Component
Models into a Machine Learning framework,
SP:IC(74), 2019, pp. 201-217.
Elsevier DOI
1904
Display quality assessment, High Dynamic Range (HDR),
Subjective study, Machine learning, Visual quality
BibRef
Li, D.,
Jiang, T.,
Lin, W.,
Jiang, M.,
Which Has Better Visual Quality:
The Clear Blue Sky or a Blurry Animal?,
MultMed(21), No. 5, May 2019, pp. 1221-1234.
IEEE DOI
1905
data compression, feature extraction, Gaussian noise,
Gaussian processes, image classification, image coding,
statistical aggregation
BibRef
Triantaphillidou, S.[Sophie],
Jarvis, J.[John],
Psarrou, A.[Alexandra],
Gupta, G.[Gaurav],
Contrast sensitivity in images of natural scenes,
SP:IC(75), 2019, pp. 64-75.
Elsevier DOI
1906
Contrast sensitivity function, Image quality,
Contrast detection, Image quality modeling, Visual modeling
BibRef
Fan, C.L.[Chun-Ling],
Zhang, Y.[Yun],
Zhang, H.[Huan],
Hamzaoui, R.[Raouf],
Jiang, Q.S.[Qing-Shan],
Picture-level just noticeable difference for symmetrically and
asymmetrically compressed stereoscopic images: Subjective quality
assessment study and datasets,
JVCIR(62), 2019, pp. 140-151.
Elsevier DOI
1908
Picture-level JND, Subjective quality assessment test, Stereoscopic image
BibRef
Fong, C.M.[Cher-Min],
Wang, H.W.[Hui-Wen],
Kuo, C.H.[Chien-Hung],
Hsieh, P.C.[Pei-Chun],
Image quality assessment for advertising applications based on neural
network,
JVCIR(63), 2019, pp. 102593.
Elsevier DOI
1909
Deep learning, Image quality assessment, Image classification
BibRef
Madhusudana, P.C.,
Soundararajan, R.,
Subjective and Objective Quality Assessment of Stitched Images for
Virtual Reality,
IP(28), No. 11, November 2019, pp. 5620-5635.
IEEE DOI
1909
Distortion, Databases, Image color analysis, Solid modeling,
Quality assessment, Cameras, Virtual reality,
Gaussian mixture model
BibRef
Appina, B.,
Dendi, S.V.R.,
Manasa, K.,
Channappayya, S.S.,
Bovik, A.C.,
Study of Subjective Quality and Objective Blind Quality Prediction of
Stereoscopic Videos,
IP(28), No. 10, October 2019, pp. 5027-5040.
IEEE DOI
1909
Videos, Quality assessment, Stereo image processing,
Computational modeling,
joint statistics
BibRef
Zhang, X.D.[Xiao-Dan],
Gao, X.B.[Xin-Bo],
Lu, W.[Wen],
Yu, Y.[Ying],
He, L.[Lihuo],
Fusion global and local deep representations with neural attention
for aesthetic quality assessment,
SP:IC(78), 2019, pp. 42-50.
Elsevier DOI
1909
Image quality assessment, Image aesthetics analysis, Deep neural network
BibRef
Liu, H.,
Zhang, Y.,
Zhang, H.,
Fan, C.,
Kwong, S.,
Kuo, C.C.J.,
Fan, X.,
Deep Learning-Based Picture-Wise Just Noticeable Distortion
Prediction Model for Image Compression,
IP(29), No. 1, 2020, pp. 641-656.
IEEE DOI
1910
data compression, error statistics, image coding,
learning (artificial intelligence), neural nets,
image quality assessment
BibRef
Zhang, Y.[Yun],
Lin, H.Q.[Hao-Qin],
Sun, J.[Jing],
Zhu, L.W.[Lin-Wei],
Kwong, S.[Sam],
Learning to Predict Object-Wise Just Recognizable Distortion for
Image and Video Compression,
MultMed(26), 2024, pp. 5925-5938.
IEEE DOI
2404
Image coding, Machine vision, Distortion, Visualization,
Predictive models, Image recognition, Task analysis, Deep learning,
video coding for machine
BibRef
Zhang, Y.[Yun],
Liu, H.H.[Huan-Hua],
Yang, Y.[You],
Fan, X.P.[Xiao-Ping],
Kwong, S.[Sam],
Kuo, C.C.J.[C. C. Jay],
Deep Learning Based Just Noticeable Difference and Perceptual Quality
Prediction Models for Compressed Video,
CirSysVideo(32), No. 3, March 2022, pp. 1197-1212.
IEEE DOI
2203
Predictive models, Visualization, Deep learning, Distortion,
Image coding, Quality assessment, Video recording,
deep learning
BibRef
Qi, F.[Feng],
Zhao, D.B.[De-Bin],
Fan, X.P.[Xiao-Peng],
Jiang, T.T.[Ting-Ting],
Stereoscopic Video Quality Assessment Based on Visual Attention and
Just-Noticeable Difference Models,
SIViP(10), No. 4, April 2016, pp. 737-744.
WWW Link.
1604
BibRef
Li, X.M.[Xiao-Ming],
Wang, Y.[Yue],
Zhao, D.B.[De-Bin],
Jiang, T.T.[Ting-Ting],
Zhang, N.[Nan],
Joint just noticeable difference model based on depth perception for
stereoscopic images,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Qi, F.[Feng],
Jiang, T.T.[Ting-Ting],
Fan, X.P.[Xiao-Peng],
Ma, S.W.[Si-Wei],
Zhao, D.B.[De-Bin],
Stereoscopic video quality assessment based on stereo just-noticeable
difference model,
ICIP13(34-38)
IEEE DOI
1402
Adaptation models
See also Soft mobile video broadcast based on side information refining.
BibRef
Ahn, Y.J.[Yong-Jo],
Sim, D.G.[Dong-Gyu],
Fast mode decision and early termination based on perceptual visual
quality for HEVC encoders,
RealTimeIP(16), No. 6, December 2019, pp. 1927-1942.
WWW Link.
1912
BibRef
Artusi, A.,
Banterle, F.,
Carra, F.,
Moreno, A.,
Efficient Evaluation of Image Quality via Deep-Learning Approximation
of Perceptual Metrics,
IP(29), No. 1, 2020, pp. 1843-1855.
IEEE DOI
1912
Measurement, Image quality, Visualization, Distortion, Indexes,
Feature extraction, Convolutional neural networks (CNNs),
and HDR imaging
BibRef
Wang, H.,
Wang, S.,
Li, T.,
Yin, H.,
Yu, L.,
Surprise-Based JND Estimation for Images,
SPLetters(27), 2020, pp. 181-185.
IEEE DOI
2002
Visualization, Estimation, Entropy, Neurons, Visual perception,
Neuroscience, Brain modeling, JND estimation, perceptual surprise, masking
BibRef
Krasula, L.,
Baveye, Y.,
Le Callet, P.[Patrick],
Training Objective Image and Video Quality Estimators Using Multiple
Databases,
MultMed(22), No. 4, April 2020, pp. 961-969.
IEEE DOI
2004
Quality assessment, Databases, Training, Video recording,
Measurement, Visualization, Biological neural networks,
machine learning
BibRef
Kim, H.G.,
Lim, H.,
Ro, Y.M.,
Deep Virtual Reality Image Quality Assessment With Human Perception
Guider for Omnidirectional Image,
CirSysVideo(30), No. 4, April 2020, pp. 917-928.
IEEE DOI
2004
Visualization, Image quality, Measurement, Image coding, Distortion,
Deep learning, Quality assessment, Adversarial learning,
virtual reality
BibRef
Mason, A.,
Rioux, J.,
Clarke, S.E.,
Costa, A.,
Schmidt, M.,
Keough, V.,
Huynh, T.,
Beyea, S.,
Comparison of Objective Image Quality Metrics to Expert Radiologists'
Scoring of Diagnostic Quality of MR Images,
MedImg(39), No. 4, April 2020, pp. 1064-1072.
IEEE DOI
2004
Image quality, Degradation, Measurement, Image reconstruction,
Standards, Medical diagnostic imaging,
image quality metric
BibRef
Hu, B.[Bo],
Li, L.[Leida],
Wu, J.J.[Jin-Jian],
Qian, J.S.[Jian-Sheng],
Subjective and objective quality assessment for image restoration: A
critical survey,
SP:IC(85), 2020, pp. 115839.
Elsevier DOI
2005
Image restoration, Subjective quality databases,
Objective quality metrics, Parameter selection,
Benchmarking image restoration algorithms
BibRef
Shen, X.L.[Xue-Lin],
Ni, Z.K.[Zhang-Kai],
Yang, W.H.[Wen-Han],
Zhang, X.F.[Xin-Feng],
Wang, S.Q.[Shi-Qi],
Kwong, S.[Sam],
Just Noticeable Distortion Profile Inference:
A Patch-Level Structural Visibility Learning Approach,
IP(30), 2021, pp. 26-38.
IEEE DOI
2011
Visualization, Estimation, Image coding, Distortion, Video coding,
Frequency-domain analysis, Sensitivity,
perceptual video coding
BibRef
Chen, L.H.,
Bampis, C.G.,
Li, Z.,
Sole, J.,
Bovik, A.C.,
Perceptual Video Quality Prediction Emphasizing Chroma Distortions,
IP(30), 2021, pp. 1408-1422.
IEEE DOI
2012
Distortion, Streaming media, Video recording, Quality assessment,
Databases, Quantization (signal), Predictive models,
video codec optimization
BibRef
Chen, L.H.,
Bampis, C.G.,
Li, Z.,
Bovik, A.C.,
Learning to Distort Images Using Generative Adversarial Networks,
SPLetters(27), 2020, pp. 2144-2148.
IEEE DOI
2012
Nonlinear distortion, Generators, Transform coding,
Generative adversarial networks, Training,
perceptual image quality
BibRef
Zeggari, A.[Ahmed],
Seghir, Z.A.[Zianou Ahmed],
Hemam, M.[Mounir],
Perceptual image quality assessment based on gradient similarity and
Ruderman operator,
IJCVR(11), No. 2, 2021, pp. 151-174.
DOI Link
2103
BibRef
Chen, W.,
Gu, K.,
Zhao, T.,
Jiang, G.,
Callet, P.L.,
Semi-Reference Sonar Image Quality Assessment Based on Task and
Visual Perception,
MultMed(23), 2021, pp. 1008-1020.
IEEE DOI
2103
Task analysis, Sonar measurements, Image quality,
Feature extraction, Sonar detection, Sonar image, semi-reference,
task-aware quality assessment
BibRef
Seo, S.[Soomin],
Ki, S.[Sehwan],
Kim, M.C.[Mun-Churl],
A Novel Just-Noticeable-Difference-Based Saliency-Channel Attention
Residual Network for Full-Reference Image Quality Predictions,
CirSysVideo(31), No. 7, July 2021, pp. 2602-2616.
IEEE DOI
2107
Image quality, Visualization, Sensitivity, Predictive models,
Distortion, Feature extraction, Visual systems,
spatial and channel attention
BibRef
Zhai, G.T.[Guang-Tao],
Zhu, Y.C.[Yu-Cheng],
Min, X.K.[Xiong-Kuo],
Comparative Perceptual Assessment of Visual Signals Using Free Energy
Features,
MultMed(23), 2021, pp. 3700-3713.
IEEE DOI
2110
Distortion, Visualization, Prediction algorithms,
Quality assessment, Brain modeling, Distortion measurement,
autoregressive model
BibRef
Javaheri, A.[Alireza],
Brites, C.[Catarina],
Pereira, F.[Fernando],
Ascenso, J.[João],
Point Cloud Rendering After Coding:
Impacts on Subjective and Objective Quality,
MultMed(23), 2021, pp. 4049-4064.
IEEE DOI
2112
Encoding, Rendering (computer graphics), Measurement, Geometry, rendering
BibRef
Xing, F.C.[Feng-Chuang],
Wang, Y.G.[Yuan-Gen],
Wang, H.[Hanpin],
He, J.F.[Jie-Feng],
Yuan, J.C.[Jin-Chun],
DVL2021: An ultra high definition video dataset for perceptual
quality study,
JVCIR(82), 2022, pp. 103374.
Elsevier DOI
2201
UHD video dataset, Video quality assessment,
Authentic distortion, Synthetic distortion
BibRef
Sadbhawna,
Jakhetiya, V.[Vinit],
Chaudhary, S.[Shubham],
Subudhi, B.N.[Badri Narayan],
Lin, W.S.[Wei-Si],
Guntuku, S.C.[Sharath Chandra],
Perceptually Unimportant Information Reduction and Cosine
Similarity-Based Quality Assessment of 3D-Synthesized Images,
IP(31), 2022, pp. 2027-2039.
IEEE DOI
2203
Distortion, Prediction algorithms, Laplace equations,
Feature extraction, Rendering (computer graphics), Laplacian pyramid
BibRef
Kiruthika, S.,
Masilamani, V.,
Goal oriented image quality assessment,
IET-IPR(16), No. 4, 2022, pp. 1054-1066.
DOI Link
2203
BibRef
Yang, X.D.[Xiao-Dong],
Han, Z.Q.[Zhen-Qi],
Wang, Y.D.[Ye-Dong],
Liu, L.Z.[Li-Zhuang],
Zhao, D.[Dan],
Exploring Contrast Multi-Attribute Representation With Deep Network
for No-Reference Perceptual Quality Assessment,
SPLetters(29), 2022, pp. 902-906.
IEEE DOI
2205
Measurement, Histograms, Databases, Distortion, Semantics,
Feature extraction, Training, Image quality assessment,
deep network
BibRef
Madhusudana, P.C.[Pavan C.],
Birkbeck, N.[Neil],
Wang, Y.L.[Yi-Lin],
Adsumilli, B.[Balu],
Bovik, A.C.[Alan C.],
Image Quality Assessment Using Contrastive Learning,
IP(31), 2022, pp. 4149-4161.
IEEE DOI
2206
BibRef
Earlier:
Image Quality Assessment using Synthetic Images,
VAQuality22(93-102)
IEEE DOI
2202
Distortion, Task analysis, Image quality, Predictive models,
Training, Convolutional neural networks, Computational modeling,
deep learning.
Training, Training data.
BibRef
Pérez, P.[Pablo],
Janowski, L.[Lucjan],
García, N.[Narciso],
Pinson, M.[Margaret],
Subjective Assessment Experiments That Recruit Few Observers With
Repetitions (FOWR),
MultMed(24), 2022, pp. 3442-3454.
IEEE DOI
2207
Measurement, Video recording, Reliability, Quality assessment,
Observers, Adaptation models, Visualization, Subjective assessment,
video quality
BibRef
Lin, H.H.[Han-He],
Chen, G.G.[Guan-Gan],
Jenadeleh, M.[Mohsen],
Hosu, V.[Vlad],
Reips, U.D.[Ulf-Dietrich],
Hamzaoui, R.[Raouf],
Saupe, D.[Dietmar],
Large-Scale Crowdsourced Subjective Assessment of Picturewise Just
Noticeable Difference,
CirSysVideo(32), No. 9, September 2022, pp. 5859-5873.
IEEE DOI
2209
Image coding, Distortion, Transform coding, Crowdsourcing, Observers,
Image resolution, Visualization, dataset
BibRef
Guan, X.D.[Xiao-Di],
Li, F.[Fan],
Huang, Z.W.[Zhi-Wei],
Liu, H.T.[Han-Tao],
Study of Subjective and Objective Quality Assessment of Night-Time
Videos,
CirSysVideo(32), No. 10, October 2022, pp. 6627-6641.
IEEE DOI
2210
Videos, Databases, Quality assessment, Feature extraction,
Visualization, Distortion, Convolutional neural networks,
subjective quality assessment
BibRef
Tian, C.Z.[Chong-Zhen],
Chai, X.L.[Xiong-Li],
Chen, G.[Gang],
Shao, F.[Feng],
Jiang, Q.P.[Qiu-Ping],
Meng, X.C.[Xiang-Chao],
Xu, L.[Long],
Ho, Y.S.[Yo-Sung],
VSOIQE: A Novel Viewport-Based Stitched 360° Omnidirectional Image
Quality Evaluator,
CirSysVideo(32), No. 10, October 2022, pp. 6557-6572.
IEEE DOI
2210
Distortion, Image quality, Measurement, Image color analysis, Strain,
Quality assessment, Image stitching, Stitched image,
360° omnidirectional image
BibRef
Tian, C.Z.[Chong-Zhen],
Shao, F.[Feng],
Chai, X.L.[Xiong-Li],
Jiang, Q.P.[Qiu-Ping],
Xu, L.[Long],
Ho, Y.S.[Yo-Sung],
Viewport-Sphere-Branch Network for Blind Quality Assessment of
Stitched 360° Omnidirectional Images,
CirSysVideo(33), No. 6, June 2023, pp. 2546-2560.
IEEE DOI
2306
Distortion, Distortion measurement, Image coding, Task analysis,
Quality assessment, Image quality, Feature extraction,
distortion rectification
BibRef
Su, S.L.[Shao-Lin],
Yan, Q.S.[Qing-Sen],
Zhu, Y.[Yu],
Sun, J.Q.[Jin-Qiu],
Zhang, Y.N.[Yan-Ning],
From Distortion Manifold to Perceptual Quality: a Data Efficient
Blind Image Quality Assessment Approach,
PR(133), 2023, pp. 109047.
Elsevier DOI
2210
Image quality assessment, No-Reference, Generalizability, Distortion manifold
BibRef
Yu, M.Z.[Meng-Zhu],
Tang, Z.J.[Zhen-Jun],
Zhang, X.Q.[Xian-Quan],
Zhong, B.N.[Bi-Neng],
Zhang, X.P.[Xin-Peng],
Perceptual Hashing With Complementary Color Wavelet Transform and
Compressed Sensing for Reduced-Reference Image Quality Assessment,
CirSysVideo(32), No. 11, November 2022, pp. 7559-7574.
IEEE DOI
2211
Feature extraction, Image color analysis, Distortion, Robustness,
Transforms, Image coding, Visualization, Image quality assessment,
Sobel operator
BibRef
Chen, H.W.[Hang-Wei],
Chai, X.L.[Xiong-Li],
Shao, F.[Feng],
Wang, X.J.[Xue-Jin],
Jiang, Q.P.[Qiu-Ping],
Meng, X.C.[Xiang-Chao],
Ho, Y.S.[Yo-Sung],
Perceptual Quality Assessment of Cartoon Images,
MultMed(25), 2023, pp. 140-153.
IEEE DOI
2301
Image color analysis, Distortion, Measurement, Image coding,
Quality assessment, Image quality, Feature extraction, color measure
BibRef
Zhang, Z.C.[Zi-Cheng],
sun, W.[Wei],
Wu, W.[Wei],
Cheng, Y.[Ying],
Min, X.K.[Xiong-Kuo],
Zhai, G.T.[Guang-Tao],
Perceptual quality assessment for fine-grained compressed images,
JVCIR(90), 2023, pp. 103696.
Elsevier DOI
2301
Image compression, Full-reference, Image quality assessment, Fine-grained
BibRef
Latorre-Carmona, P.[Pedro],
Huertas, R.[Rafael],
Pedersen, M.[Marius],
Morillas, S.[Samuel],
Proposal of a new fidelity measure between computed image quality and
observers quality scores accounting for scores variability,
JVCIR(90), 2023, pp. 103704.
Elsevier DOI
2301
STRESS, Psycophysics, Image quality metric, Evaluation
BibRef
Fotio-Tiotsop, L.[Lohic],
Servetti, A.[Antonio],
Barkowsky, M.[Marcus],
Pocta, P.[Peter],
Mizdos, T.[Tomas],
van Wallendae, G.[Glenn],
Masala, E.[Enrico],
Predicting individual quality ratings of compressed images through
deep CNNs-based artificial observers,
SP:IC(112), 2023, pp. 116917.
Elsevier DOI
2302
Image quality assessment, AI observer, Deep neural network, Transfer learning
BibRef
Yang, Z.[Zetao],
Gao, W.[Wei],
Li, G.[Ge],
Yan, Y.Q.[Yi-Qiang],
SUR-Driven Video Coding Rate Control for Jointly Optimizing
Perceptual Quality and Buffer Control,
IP(32), 2023, pp. 5451-5464.
IEEE DOI
2310
BibRef
Yue, G.H.[Guang-Hui],
Cheng, D.[Di],
Zhou, T.W.[Tian-Wei],
Hou, J.W.[Jing-Wen],
Liu, W.[Weide],
Xu, L.[Long],
Wang, T.F.[Tian-Fu],
Cheng, J.[Jun],
Perceptual Quality Assessment of Enhanced Colonoscopy Images: A
Benchmark Dataset and an Objective Method,
CirSysVideo(33), No. 10, October 2023, pp. 5549-5561.
IEEE DOI
2310
BibRef
Liu, Q.[Qi],
Su, H.L.[Hong-Lei],
Chen, T.X.[Tian-Xin],
Yuan, H.[Hui],
Hamzaoui, R.[Raouf],
No-Reference Bitstream-Layer Model for Perceptual Quality Assessment
of V-PCC Encoded Point Clouds,
MultMed(25), 2023, pp. 4533-4546.
IEEE DOI
2310
BibRef
Ak, A.[Ali],
Goswami, A.[Abhishek],
Hauser, W.[Wolf],
Le Callet, P.[Patrick],
Dufaux, F.[Frederic],
RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone
Mapped Images,
MultMed(25), 2023, pp. 6013-6025.
IEEE DOI
2311
BibRef
Xian, W.Z.[Wei-Zhi],
Zhou, M.L.[Ming-Liang],
Fang, B.[Bin],
Xiang, T.[Tao],
Jia, W.J.[Wei-Jia],
Chen, B.[Bin],
Perceptual Quality Analysis in Deep Domains Using Structure
Separation and High-Order Moments,
MultMed(26), 2024, pp. 2219-2234.
IEEE DOI
2402
Distortion, Visualization, Feature extraction,
Computational modeling, Predictive models, Optimization, Indexes,
structure representations
BibRef
Mitra, S.[Shankhanil],
Jogani, S.[Saiyam],
Soundararajan, R.[Rajiv],
Semi-Supervised Learning of Perceptual Video Quality by Generating
Consistent Pairwise Pseudo-Ranks,
MultMed(26), 2024, pp. 6215-6227.
IEEE DOI
2404
Quality assessment, Video recording, Feature extraction,
Solid modeling, Semisupervised learning, Predictive models,
pairwise ranks
BibRef
Chen, W.L.[Wei-Ling],
Cai, B.Q.[Bo-Qin],
Zheng, S.[Sumei],
Zhao, T.S.[Tie-Song],
Gu, K.[Ke],
Perception-and-Cognition-Inspired Quality Assessment for Sonar Image
Super-Resolution,
MultMed(26), 2024, pp. 6398-6410.
IEEE DOI
2404
Task analysis, Sonar, Visualization, Silicon, Image reconstruction,
Superresolution, Object recognition, Sonar image,
hierarchical feature fusion
BibRef
Zhang, K.[Keke],
Zhao, T.S.[Tie-Song],
Chen, W.L.[Wei-Ling],
Niu, Y.Z.[Yu-Zhen],
Hu, J.S.[Jin-Song],
Lin, W.S.[Wei-Si],
Perception-Driven Similarity-Clarity Tradeoff for Image
Super-Resolution Quality Assessment,
CirSysVideo(34), No. 7, July 2024, pp. 5897-5907.
IEEE DOI Code:
WWW Link.
2407
Measurement, Adaptation models, Distortion, Task analysis,
Quality assessment, Feature extraction, Superresolution,
image super-resolution
BibRef
Liao, L.[Liang],
Xu, K.[Kangmin],
Wu, H.N.[Hao-Ning],
Chen, C.F.[Chao-Feng],
Sun, W.X.[Wen-Xiu],
Yan, Q.[Qiong],
Kuo, C.C.J.[C.C. Jay],
Lin, W.S.[Wei-Si],
Blind Video Quality Prediction by Uncovering Human Video Perceptual
Representation,
IP(33), 2024, pp. 4998-5013.
IEEE DOI
2410
Distortion, Quality assessment, Feature extraction,
Streaming media, Visualization, Distortion measurement,
perceptually temporal quality evaluator
BibRef
Liao, X.R.[Xing-Ran],
Wei, X.K.[Xue-Kai],
Zhou, M.L.[Ming-Liang],
Li, Z.G.[Zheng-Guo],
Kwong, S.[Sam],
Image Quality Assessment: Measuring Perceptual Degradation via
Distribution Measures in Deep Feature Spaces,
IP(33), 2024, pp. 4044-4059.
IEEE DOI Code:
WWW Link.
2407
Pollution measurement, Distortion measurement, Task analysis,
Image quality, Distortion, Degradation, Computational modeling, training-free
BibRef
Nami, S.[Sanaz],
Pakdaman, F.[Farhad],
Hashemi, M.R.[Mahmoud Reza],
Shirmohammadi, S.[Shervin],
Gabbouj, M.[Moncef],
Lightweight Multitask Learning for Robust JND Prediction Using Latent
Space and Reconstructed Frames,
CirSysVideo(34), No. 9, September 2024, pp. 8657-8671.
IEEE DOI
2410
BibRef
Earlier:
MTJND: Multi-Task Deep Learning Framework for Improved JND Prediction,
ICIP23(1245-1249)
IEEE DOI
2312
Predictive models, Streaming media, Image reconstruction,
Frequency-domain analysis, Distortion, Visualization, Training,
compressed domain
BibRef
Zhang, Y.J.[Yu-Jie],
Yang, Q.[Qi],
Xu, Y.L.[Yi-Ling],
Liu, S.[Shan],
Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid
Strategy,
IP(33), 2024, pp. 5755-5770.
IEEE DOI Code:
WWW Link.
2410
Measurement, Point cloud compression, Visualization, Degradation,
Distortion measurement, Feature extraction, Image color analysis,
spectral graph theory
BibRef
Jiang, Q.P.[Qiu-Ping],
Liu, F.[Feiyang],
Wang, Z.H.[Zhi-Hua],
Wang, S.Q.[Shi-Qi],
Lin, W.S.[Wei-Si],
Rethinking and Conceptualizing Just Noticeable Difference Estimation
by Residual Learning,
CirSysVideo(34), No. 10, October 2024, pp. 9515-9527.
IEEE DOI Code:
WWW Link.
2411
Visualization, Image reconstruction, Training, Predictive models,
Image coding, Estimation, Buildings, Just noticeable difference,
human visual system
BibRef
Pakdaman, F.[Farhad],
Nami, S.[Sanaz],
Gabbouj, M.[Moncef],
Perceptual Learned Image Compression via End-to-End JND-Based
Optimization,
ICIP24(1146-1151)
IEEE DOI
2411
Training, Degradation, Visualization, Image coding, Neural networks,
Rate-distortion, Optimization methods,
perceptual optimization
BibRef
Cao, L.[Linhan],
Sun, W.[Wei],
Min, X.K.[Xiong-Kuo],
Jia, J.[Jun],
Zhang, Z.C.[Zi-Cheng],
Chen, Z.J.[Zi-Jian],
Zhu, Y.C.[Yu-Cheng],
Liu, L.[Lizhou],
Chen, Q.[Qiubo],
Chen, J.[Jing],
Zhai, G.T.[Guang-Tao],
SG-JND: Semantic-Guided Just Noticeable Distortion Predictor for
Image Compression,
ICIP24(1139-1145)
IEEE DOI
2411
Image quality, Image coding, Semantics, Prediction methods,
Visual systems, Feature extraction, Distortion,
human visual system
BibRef
Sendjasni, A.[Abderrezzaq],
Larabi, M.C.[Mohamed-Chaker],
Enhancing Perceptual Quality Assessment for 360-Degree Images Based
on Adaptive Patch Labeling and Multi-Label Learning,
ICIP24(1267-1273)
IEEE DOI
2411
Training, Image quality, Adaptation models, Pipelines,
Neural networks, Predictive models, Image quality assessment,
Convolutional neural networks
BibRef
Yang, L.[Liu],
Duan, H.Y.[Hui-Yu],
Teng, L.[Long],
Zhu, Y.C.[Yu-Cheng],
Liu, X.H.[Xiao-Hong],
Hu, M.[Menghan],
Min, X.K.[Xiong-Kuo],
Zhai, G.T.[Guang-Tao],
Callet, P.L.[Patrick Le],
AIGCOIQA2024: Perceptual Quality Assessment of AI Generated
Omnidirectional Images,
ICIP24(1239-1245)
IEEE DOI Code:
WWW Link.
2411
Image quality, Solid modeling, Visualization, Databases,
Generative AI, Benchmark testing, AI generated content (AIGC),
image quality assessment
BibRef
Lou, J.X.[Jian-Xun],
Wu, X.B.[Xin-Bo],
Wu, Y.Y.[Ying-Ying],
Corcoran, P.[Padraig],
Colombo, G.[Gualtiero],
Whitaker, R.[Roger],
Liu, H.T.[Han-Tao],
A Benchmark of Variance of Opinion Scores in Image Quality Assessment,
ICIP24(1232-1238)
IEEE DOI
2411
Image quality, Deep learning, Computational modeling,
Digital images, Benchmark testing, Distortion,
deep learning
BibRef
Ak, A.[Ali],
Gera, A.[Abhishek],
Noyes, D.[Denise],
Tmar, H.[Hassene],
Katsavounidis, I.[Ioannis],
Callet, P.L.[Patrick Le],
Comparison of Crowdsourcing And Laboratory Settings for Subjective
Assessment of Video Quality and Acceptability & Annoyance,
ICIP24(1159-1164)
IEEE DOI
2411
Crowdsourcing, Image coding, Social networking (online), Pipelines,
Streaming media, Observers, Quality assessment,
user generated content
BibRef
Zhou, Y.J.[Ying-Jie],
Zhang, Z.C.[Zi-Cheng],
Sun, W.[Wei],
Liu, X.H.[Xiao-Hong],
Min, X.K.[Xiong-Kuo],
Wang, Z.H.[Zhi-Hua],
Zhang, X.P.[Xiao-Ping],
Zhai, G.T.[Guang-Tao],
Thqa: A Perceptual Quality Assessment Database for Talking Heads,
ICIP24(15-21)
IEEE DOI Code:
WWW Link.
2411
Visualization, Databases, Shape, Mouth, Manuals, Media,
Digital human head, Speech-driven methods,
Multimedia processing
BibRef
Yang, J.F.[Jun-Feng],
Fu, J.[Jing],
Zhang, W.[Wei],
Cao, W.Z.[Wen-Zhi],
Liu, L.[Limei],
Peng, H.[Han],
MoE-AGIQA: Mixture-of-Experts Boosted Visual Perception-Driven and
Semantic-Aware Quality Assessment for AI-Generated Images,
NTIRE24(6395-6404)
IEEE DOI Code:
WWW Link.
2410
Degradation, Image quality, Visualization, Source coding, Semantics,
Benchmark testing, Quality assessment
BibRef
Jenab, M.[Maryam],
Shirani, S.[Shahram],
Deep CNN-Based Pre-Encoding Perceptual Quality Control and Prediction,
ICIP23(3558-3562)
IEEE DOI
2312
BibRef
Yue, G.H.[Guang-Hui],
Zhang, S.P.[Shao-Ping],
Li, Y.[Yuan],
Zhou, X.Y.[Xiao-Yan],
Zhou, T.W.[Tian-Wei],
Zhou, W.[Wei],
Subjective Quality Assessment of Enhanced Retinal Images,
ICIP23(3005-3009)
IEEE DOI
2312
BibRef
Zhu, J.W.[Jing-Wen],
Le Callet, P.[Patrick],
Perrin, A.F.[Anne-Flore],
Sethuraman, S.[Sriram],
Rahul, K.[Kumar],
On The Benefit of Parameter-Driven Approaches for the Modeling and
the Prediction of Satisfied User Ratio for Compressed Video,
ICIP22(4213-4217)
IEEE DOI
2211
Degradation, Image coding, Pipelines, Predictive models,
Video compression, Gaussian distribution, Distortion, Satisfied User Ratio
BibRef
Mahmoudpour, S.[Saeed],
Schelkens, P.[Peter],
Revisiting Natural Scene Statistical Modeling Using Deep Features for
Opinion-Unaware Image Quality Assessment,
ICIP22(1471-1475)
IEEE DOI
2211
Training, Image quality, Visualization, Computational modeling,
Visual systems, Feature extraction, Brain modeling, Image quality,
Visual cortex
BibRef
Krasula, L.[Lukáš],
Li, Z.[Zhi],
Bampis, C.G.[Christos G.],
Afonso, M.[Mariana],
Miret, N.F.[Nil Fons],
Sole, J.[Joel],
Banding vs. Quality: perceptual impact and objective assessment,
ICIP22(2236-2240)
IEEE DOI
2211
Measurement, Image coding, Quantization (signal), Correlation,
Quality assessment, Indexes, Video recording, Banding, CAMBI
BibRef
Chen, C.[Cheng],
Geng, R.Q.[Rui-Qi],
Li, B.[Bohan],
Ustarroz-Calonge, M.[Maryla],
Galligan, F.[Frank],
Han, J.N.[Jing-Ning],
Xu, Y.W.[Yao-Wu],
Learned Image Compression Guided Adaptive Quantization for Perceptual
Quality,
ICIP23(1815-1819)
IEEE DOI
2312
BibRef
Han, J.N.[Jing-Ning],
Chen, C.[Cheng],
Galligan, F.[Frank],
Massimino, P.[Pascal],
Wilkins, P.[Paul],
Chang, W.T.[Wan-Teh],
Guyon, Y.[Yannis],
Xu, Y.W.[Yao-Wu],
Bankoski, J.[James],
Differential Contrast Based Adaptive Quantization for Perceptual
Quality Optimization in Image Coding,
ICIP22(3026-3030)
IEEE DOI
2211
Visualization, Adaptation models, Quantization (signal),
Image coding, Sensitivity, Rate-distortion, Distortion, Image coding,
perceptual quality
BibRef
Caviedes, J.E.,
Patel, B.K.,
Gutzwiller, R.,
Li, B.,
Bhat, R.,
Chhabra, S.,
A Cognitive Perspective on Subjective and Objective Diagnostic Image
Quality Models,
ICIP22(246-250)
IEEE DOI
2211
Image quality, Text mining, Measurement, Visualization, Protocols,
Annotations, Diagnostic image quality, mammography image quality,
image quality model
BibRef
Cherepkova, O.[Olga],
Amirshahi, S.A.[Seyed Ali],
Pedersen, M.[Marius],
Analyzing the Variability of Subjective Image Quality Ratings for
Different Distortions,
IPTA22(1-6)
IEEE DOI
2206
Image quality, Quantization (signal), Image processing, Observers,
Distortion, Lenses, image quality, subjective evaluation,
individual differences
BibRef
Nehmé, Y.[Yana],
Abid, M.[Mona],
Lavoué, G.[Guillaume],
da Silva, M.P.[Matthieu Perreira],
Le Callet, P.[Patrick],
CMDM-VAC: Improving A Perceptual Quality Metric for 3D Graphics by
Integrating a Visual Attention Complexity Measure,
ICIP21(3368-3372)
IEEE DOI
2201
Measurement, Geometry, Visualization, Image color analysis,
Stability analysis, Complexity theory, Perceptual quality metric,
diffuse color
BibRef
Chaudhary, S.[Shubham],
Mazumder, A.[Alokendu],
Mumtaz, D.[Deebha],
Jakhetiya, V.[Vinit],
Subudhi, B.N.[Badri N.],
Perceptual Quality Assessment of DIBR Synthesized Views Using
Saliency Based Deep Features,
ICIP21(2628-2632)
IEEE DOI
2201
Training, Visualization, Fuses, Visual systems, Media,
Feature extraction, DIBR synthesized views, saliency map, cosine similarity
BibRef
Mier, J.C.[Juan Carlos],
Huang, E.[Eddie],
Talebi, H.[Hossein],
Yang, F.[Feng],
Milanfar, P.[Peyman],
Deep Perceptual Image Quality Assessment for Compression,
ICIP21(1484-1488)
IEEE DOI
2201
Measurement, Image quality, Deep learning, Training,
Learning systems, Image coding, Imaging, Perceptual Quality Dataset
BibRef
Wang, Y.L.[Yi-Lin],
Ke, J.J.[Jun-Jie],
Talebi, H.[Hossein],
Yim, J.G.[Joong Gon],
Birkbeck, N.[Neil],
Adsumilli, B.[Balu],
Milanfar, P.[Peyman],
Yang, F.[Feng],
Rich features for perceptual quality assessment of UGC videos,
CVPR21(13430-13439)
IEEE DOI
2111
Industries, Correlation, User-generated content,
Quality assessment, Video recording
BibRef
Ayyoubzadeh, S.M.[Seyed Mehdi],
Royat, A.[Ali],
(ASNA) An Attention-based Siamese-Difference Neural Network with
Surrogate Ranking Loss function for Perceptual Image Quality
Assessment,
NTIRE21(388-397)
IEEE DOI
2109
Image quality, Training, Visualization, Technological innovation,
PSNR, Neural networks, Computer architecture
BibRef
Cheon, M.[Manri],
Yoon, S.J.[Sung-Jun],
Kang, B.[Byungyeon],
Lee, J.[Junwoo],
Perceptual Image Quality Assessment with Transformers,
NTIRE21(433-442)
IEEE DOI
2109
Image quality, Measurement, Image resolution, Head,
Feature extraction, Quality assessment
BibRef
Gu, J.J.[Jin-Jin],
Cai, H.M.[Hao-Ming],
Dong, C.[Chao],
Ren, J.S.[Jimmy S.],
Timofte, R.[Radu],
Gong, Y.[Yuan],
Lao, S.S.[Shan-Shan],
Shi, S.W.[Shu-Wei],
Wang, J.H.[Jia-Hao],
Yang, S.[Sidi],
Wu, T.[Tianhe],
Xia, W.H.[Wei-Hao],
Yang, Y.J.[Yu-Jiu],
Cao, M.D.[Ming-Deng],
Heng, C.[Cong],
Fu, L.Z.[Ling-Zhi],
Zhang, R.Y.[Rong-Yu],
Zhang, Y.S.[Yu-Sheng],
Wang, H.[Hao],
Song, H.J.[Hong-Jian],
Wang, J.[Jing],
Fan, H.T.[Hao-Tian],
Hou, X.X.[Xiao-Xia],
Sun, M.[Ming],
Li, M.[Mading],
Zhao, K.[Kai],
Yuan, K.[Kun],
Kong, Z.S.[Zi-Shang],
Wu, M.[Mingda],
Zheng, C.C.[Chuan-Chuan],
Conde, M.V.[Marcos V.],
Burchi, M.[Maxime],
Feng, L.T.[Long-Tao],
Zhang, T.[Tao],
Li, Y.[Yang],
Xu, J.W.[Jing-Wen],
Wang, H.Q.[Hai-Qiang],
Liao, Y.T.[Yi-Ting],
Li, J.L.[Jun-Lin],
Xu, K.[Kele],
Sun, T.[Tao],
Xiong, Y.S.[Yun-Sheng],
Keshari, A.[Abhisek],
Komal, K.[Komal],
Thakur, S.[Sadbhawana],
Jakhetiya, V.[Vinit],
Subudhi, B.N.[Badri N],
Yang, H.H.[Hao-Hsiang],
Chang, H.E.[Hua-En],
Huang, Z.K.[Zhi-Kai],
Chen, W.T.[Wei-Ting],
Kuo, S.Y.[Sy-Yen],
Dutta, S.[Saikat],
Das, S.D.[Sourya Dipta],
Shah, N.A.[Nisarg A.],
Tiwari, A.K.[Anil Kumar],
NTIRE 2022 Challenge on Perceptual Image Quality Assessment,
NTIRE22(950-966)
IEEE DOI
2210
Image quality, Computational modeling, Distortion
BibRef
Gu, J.J.[Jin-Jin],
Cai, H.M.[Hao-Ming],
Dong, C.[Chao],
Ren, J.S.[Jimmy S.],
Qiao, Y.[Yu],
Gu, S.H.[Shu-Hang],
Timofte, R.[Radu],
Cheon, M.[Manri],
Yoon, S.J.[Sung-Jun],
Kang, B.K.[Byungyeon Kangg],
Lee, J.[Junwoo],
Zhang, Q.[Qing],
Guo, H.Y.[Hai-Yang],
Bin, Y.[Yi],
Hou, Y.Q.[Yu-Qing],
Luo, H.L.[Heng-Liang],
Guo, J.Y.[Jing-Yu],
Wang, Z.R.[Zi-Rui],
Wang, H.[Hai],
Yang, W.[Wenming],
Bai, Q.Y.[Qing-Yan],
Shi, S.W.[Shu-Wei],
Xia, W.H.[Wei-Hao],
Cao, M.D.[Ming-Deng],
Wang, J.H.[Jia-Hao],
Chen, Y.F.[Yi-Fan],
Yang, Y.J.[Yu-Jiu],
Li, Y.[Yang],
Zhang, T.[Tao],
Feng, L.T.[Long-Tao],
Liao, Y.T.[Yi-Ting],
Li, J.L.[Jun-Lin],
Thong, W.[William],
Pereira, J.C.[Jose Costa],
Leonardis, A.[Ales],
McDonagh, S.[Steven],
Xu, K.[Kele],
Yang, L.[Lehan],
Cai, H.X.[Heng-Xing],
Sun, P.F.[Peng-Fei],
Ayyoubzadeh, S.M.[Seyed Mehdi],
Royat, A.[Ali],
Fezza, S.A.[Sid Ahmed],
Hammou, D.[Dounia],
Hamidouche, W.[Wassim],
Ahn, S.[Sewoong],
Yoon, G.[Gwangjin],
Tsubota, K.[Koki],
Akutsu, H.[Hiroaki],
Aizawa, K.[Kiyoharu],
NTIRE 2021 Challenge on Perceptual Image Quality Assessment,
NTIRE21(677-690)
IEEE DOI
2109
Image quality, Training, Visualization,
Generative adversarial networks, Distortion
BibRef
Trioux, A.,
Valenzise, G.,
Cagnazzo, M.,
Kieffer, M.,
Coudoux, F.X.,
Corlay, P.,
Gharbi, M.,
Subjective and Objective Quality Assessment of the SoftCast Video
Transmission Scheme,
VCIP20(96-99)
IEEE DOI
2102
Snow, Visualization, Observers, Transmitters, Transforms,
Quality assessment, Metadata, SoftCast, Linear Video Coding,
Visual Artifacts
BibRef
Meng, S.,
Li, Y.,
Liao, Y.,
Li, J.,
Wang, S.,
Learning to encode user-generated short videos with lower bitrate and
the same perceptual quality,
VCIP20(383-386)
IEEE DOI
2102
Videos, Encoding, Bit rate, Training, Support vector machines,
Quality assessment, Measurement
BibRef
Gu, J.J.[Jin-Jin],
Cai, H.M.[Hao-Ming],
Chen, H.Y.[Hao-Yu],
Ye, X.X.[Xiao-Xing],
Ren, J.S.[Jimmy S.],
Chao, D.[Dong],
Pipal: A Large-scale Image Quality Assessment Dataset for Perceptual
Image Restoration,
ECCV20(XI:633-651).
Springer DOI
2011
BibRef
Tariq, T.[Taimoor],
Tursun, O.T.[Okan Tarhan],
Kim, M.C.[Mun-Churl],
Didyk, P.[Piotr],
Why Are Deep Representations Good Perceptual Quality Features?,
ECCV20(XXII:445-461).
Springer DOI
2011
BibRef
Zhu, W.,
Zhai, G.,
Han, Z.,
Min, X.,
Wang, T.,
Zhang, Z.,
Yangand, X.,
A Multiple Attributes Image Quality Database for Smartphone Camera
Photo Quality Assessment,
ICIP20(2990-2994)
IEEE DOI
2011
Cameras, Image color analysis, Databases, Colored noise, Measurement,
Quality assessment, Image quality, no-reference (NR) metrics
BibRef
Lévêque, L.,
Yang, J.,
Yang, X.,
Guo, P.,
Dasalla, K.,
Li, L.,
Wu, Y.,
Liu, H.,
CUID: A New Study Of Perceived Image Quality And Its Subjective
Assessment,
ICIP20(116-120)
IEEE DOI
2011
Image quality assessment, visual perception, subjective testing,
mean opinion score, objective metric
BibRef
Talebi, H.,
Amid, E.,
Milanfar, P.,
Warmuth, M.K.,
Rank-Smoothed Pairwise Learning In Perceptual Quality Assessment,
ICIP20(3413-3417)
IEEE DOI
2011
Training, Smoothing methods, Image quality, Entropy,
Quality assessment, Machine learning, Reliability
BibRef
Lee, J.,
Kim, D.,
Kim, Y.,
Kwon, H.,
Kim, J.,
Lee, T.,
A Training Method for Image Compression Networks to Improve
Perceptual Quality of Reconstructions,
CLIC20(585-589)
IEEE DOI
2008
Image coding, Image reconstruction, Indexes, Training, Measurement,
Decoding
BibRef
Fang, Y.,
Zhu, H.,
Zeng, Y.,
Ma, K.,
Wang, Z.,
Perceptual Quality Assessment of Smartphone Photography,
CVPR20(3674-3683)
IEEE DOI
2008
Cameras, Databases, Distortion, Image quality, Photography, Brightness,
Computational modeling
BibRef
Ying, Z.,
Niu, H.,
Gupta, P.,
Mahajan, D.,
Ghadiyaram, D.,
Bovik, A.,
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of
Picture Quality,
CVPR20(3572-3582)
IEEE DOI
2008
Distortion, Databases, Predictive models, Social network services,
Visualization, Prediction algorithms, Streaming media
BibRef
Kim, Y.,
Cho, S.,
Lee, J.,
Jeong, S.,
Choi, J.S.,
Do, J.,
Towards the Perceptual Quality Enhancement of Low Bit-rate Compressed
Images,
CLIC20(565-569)
IEEE DOI
2008
Pattern recognition
BibRef
Korhonen, J.[Jari],
Assessing Personally Perceived Image Quality via Image Features and
Collaborative Filtering,
CVPR19(8161-8169).
IEEE DOI
2002
BibRef
Bhat, M.,
Thiesse, J.,
Le Callet, P.[Patrick],
On Accuracy of Objective Metrics for Assessment of Perceptual
Pre-Processing for Video Coding,
ICIP19(136-140)
IEEE DOI
1910
Perceptual pre-processing, Objective quality metrics,
Paired comparison, critical pairs, perceptual performance
BibRef
Moan, S.L.,
Pedersen, M.,
Subjective Image Fidelity Assessment:
Effect of the Spatial Distance Between Stimuli,
ICIP19(445-449)
IEEE DOI
1910
Image Quality Assessment, Perception, Visual Memory, Change Blindness.
BibRef
Cheng, Z.,
Akyazi, P.,
Sun, H.,
Katto, J.,
Ebrahimi, T.,
Perceptual Quality Study on Deep Learning Based Image Compression,
ICIP19(719-723)
IEEE DOI
1910
Subjective and objective quality evaluation,
learning image compression, compression standards
BibRef
Upenik, E.,
Ebrahimi, T.,
Saliency Driven Perceptual Quality Metric for Omnidirectional Visual
Content,
ICIP19(4335-4339)
IEEE DOI
1910
omnidirectional imaging, virtual reality, visual attention, perceptual quality
BibRef
Leveque, L.,
Zhang, W.,
Liu, H.,
Subjective Assessment of Image Quality Induced Saliency Variation,
ICIP19(1024-1028)
IEEE DOI
1910
Image quality, distortion, eye-tracking, saliency, visual attention
BibRef
Chetouani, A.,
Pedersen, M.,
On the Use of a Convolutional Neural Network to Predict Perceptual
Quality of Images without Reference for Different Viewing Distances,
ICIP19(1009-1013)
IEEE DOI
1910
Image Quality, Convolutional Neural Network, Patch Selection, Viewing distances
BibRef
Hasnat, A.,
Shvai, N.,
Sanogo, A.,
Khata, M.,
Llanza, A.,
Meicler, A.,
Nakib, A.,
Application Guided Image Quality Estimation Based on Classification,
ICIP19(549-553)
IEEE DOI
1910
IQA, Classification, CNN
BibRef
Christaki, K.[Kyriaki],
Christakis, E.[Emmanouil],
Drakoulis, P.[Petros],
Doumanoglou, A.[Alexandros],
Zioulis, N.[Nikolaos],
Zarpalas, D.[Dimitrios],
Daras, P.[Petros],
Subjective Visual Quality Assessment of Immersive 3D Media Compressed
by Open-Source Static 3D Mesh Codecs,
MMMod19(I:80-91).
Springer DOI
1901
BibRef
Prashnani, E.,
Cai, H.,
Mostofi, Y.,
Sen, P.,
PieAPP: Perceptual Image-Error Assessment Through Pairwise Preference,
CVPR18(1808-1817)
IEEE DOI
1812
Computational modeling, Distortion, Feature extraction,
Learning systems, Estimation, Measurement
BibRef
Pan, D.[Da],
Shi, P.[Ping],
Hou, M.[Ming],
Ying, Z.F.[Ze-Feng],
Fu, S.Z.[Si-Zhe],
Zhang, Y.[Yuan],
Blind Predicting Similar Quality Map for Image Quality Assessment,
CVPR18(6373-6382)
IEEE DOI
1812
Image quality, Distortion, Indexes, Predictive models,
Feature extraction, Degradation, Convolutional neural networks
BibRef
Shi, L.,
Zhao, S.,
Zhou, W.,
Chen, Z.,
Perceptual Evaluation of Light Field Image,
ICIP18(41-45)
IEEE DOI
1809
Databases, Interpolation, Image quality, Distortion,
Transform coding, Image coding, Image reconstruction, Light field,
Perceptual evaluation
BibRef
Chinen, T.,
Ballé, J.,
Gu, C.,
Hwang, S.J.,
Ioffe, S.,
Johnston, N.,
Leung, T.,
Minnen, D.,
O'Malley, S.,
Rosenberg, C.,
Toderici, G.,
Towards A Semantic Perceptual Image Metric,
ICIP18(624-628)
IEEE DOI
1809
Measurement, Distortion, Semantics, Image coding, Task analysis,
Training, Image quality, image quality, full reference, machine learning
BibRef
Ling, S.,
Le Callet, P.[Patrick],
How to Learn the Effect of Non-Uniform Distortion on Perceived Visual
Quality? Case Study Using Convolutional Sparse Coding for Quality
Assessment of Synthesized Views,
ICIP18(286-290)
IEEE DOI
1809
Kernel, Distortion, Convolutional codes, Feature extraction,
Measurement, Training, Convolution, Convolutional Sparse Coding,
FTV
BibRef
Le Moan, S.[Steven],
Can image quality features predict visual change blindness?,
IVCNZ17(1-5)
IEEE DOI
1902
feature extraction, object detection, visual perception,
object colour, object position, suprathreshold indices,
Image fidelity
BibRef
Le Moan, S.,
Pedersen, M.,
Measuring the Effect of High-Level Visual Masking in Subjective Image
Quality Assessment with Priming,
ICIP18(3553-3557)
IEEE DOI
1809
Visualization, Blindness, Image quality, Measurement, Image coding,
Correlation, Predictive models, Image Quality Assessment,
Change Blindness
BibRef
Le, H.,
Marshall, C.,
Doan, T.,
Mai, L.,
Liu, F.,
Visual Quality Assessment for Projected Content,
CRV17(225-231)
IEEE DOI
1804
cameras, data visualisation, human computer interaction,
image capture, interactive systems,
projector-camera system
BibRef
Sun, W.,
Gu, K.,
Zhai, G.,
Ma, S.,
Lin, W.,
Le Callet, P.,
CVIQD: Subjective quality evaluation of compressed virtual reality
images,
ICIP17(3450-3454)
IEEE DOI
1803
Correlation, Databases, Image coding, Image quality, Measurement,
Transform coding, Videos, 360-degree spherical image,
virtual reality (VR)
BibRef
Wang, G.,
Li, L.,
Li, Q.,
Gu, K.,
Lu, Z.,
Qian, J.,
Perceptual evaluation of single-image super-resolution reconstruction,
ICIP17(3145-3149)
IEEE DOI
1803
Databases, Image enhancement, Image quality, Image reconstruction,
Image resolution, Interpolation, Measurement, Database,
Super-resolution reconstruction
BibRef
Loock, S.,
Grogna, D.,
Jaspar, M.,
Verly, J.G.,
Nyssen, A.S.,
Impact of image brightness reduction on perceived quality of 3D
experience for 3D cinema spectators,
IC3D16(1-4)
IEEE DOI
1703
brightness
BibRef
Darukumalli, S.,
Kara, P.A.,
Barsi, A.,
Martini, M.G.,
Balogh, T.,
Subjective quality assessment of zooming levels and image
reconstructions based on region of interest for light field displays,
IC3D16(1-6)
IEEE DOI
1703
image reconstruction
BibRef
Zhou, R.,
Huang, M.,
Tan, S.,
Zhang, L.,
Chen, D.,
Wu, J.,
Yue, T.,
Cao, X.,
Ma, Z.,
Modeling the impact of spatial resolutions on perceptual quality of
immersive image/video,
IC3D16(1-6)
IEEE DOI
1703
image resolution
BibRef
Kara, P.A.,
Martini, M.G.,
Kovacs, P.T.,
Imre, S.,
Barsi, A.,
Lackner, K.,
Balogh, T.,
Perceived quality of angular resolution for light field displays and
the validy of subjective assessment,
IC3D16(1-7)
IEEE DOI
1703
image resolution
BibRef
Yao, J.,
Liu, G.,
Ying, C.,
Image quality assessment based on the visual perception of image
contents,
VCIP16(1-4)
IEEE DOI
1701
Databases
BibRef
Sun, C.,
Li, H.,
Li, W.,
No-reference image quality assessment based on global and local
content perception,
VCIP16(1-4)
IEEE DOI
1701
Databases
BibRef
Tomaszewska, A.L.[Anna Lewandowska],
Perceptual Experiments Optimisation by Initial Database Reduction,
ICCVG16(49-60).
Springer DOI
1611
BibRef
Shen, Y.[Yeji],
Jiang, T.T.[Ting-Ting],
Ranking Consistent Rate:
New evaluation criterion on pairwise subjective experiments,
ICIP16(2077-2081)
IEEE DOI
1610
Correlation
BibRef
Liu, Y.,
Allebach, J.P.[Jan P.],
Near-threshold perceptual distortion prediction based on optimal
structure classification,
ICIP16(106-110)
IEEE DOI
1610
Adaptation models
BibRef
Golestaneh, S.A.,
Karam, L.J.[Lina J.],
Synthesized Texture Quality Assessment via Multi-scale Spatial and
Statistical Texture Attributes of Image and Gradient Magnitude
Coefficients,
Restoration18(851-8516)
IEEE DOI
1812
BibRef
Earlier:
Reduced-reference synthesized-texture quality assessment based on
multi-scale spatial and statistical texture attributes,
ICIP16(3783-3786)
IEEE DOI
1610
Feature extraction, Visualization, Quality assessment, Measurement,
Entropy, Indexes, Standards
BibRef
Gide, M.S.,
Dodge, S.F.,
Karam, L.J.,
Visual attention quality database for benchmarking performance
evaluation metrics,
ICIP16(2792-2796)
IEEE DOI
1610
Benchmark testing
BibRef
Le Moan, S.,
Pedersen, M.,
Evidence of change blindness in subjective image fidelity assessment,
ICIP17(3155-3159)
IEEE DOI
1803
Blindness, Distortion, Image color analysis, Image quality, Indexes,
Observers, Visualization, Change Blindness,
Visual Memory
BibRef
Le Moan, S.[Steven],
Pedersen, M.,
Farup, I.,
Blahová, J.,
The influence of short-term memory in subjective image quality
assessment,
ICIP16(91-95)
IEEE DOI
1610
Distortion
BibRef
Kundu, D.,
Evans, B.L.,
Visual attention guided quality assessment of Tone-Mapped images
using scene statistics,
ICIP16(96-100)
IEEE DOI
1610
Dynamic range
BibRef
Haccius, C.[Christopher],
Herfet, T.[Thorsten],
An Image Database for Design and Evaluation of Visual Quality Metrics
in Synthetic Scenarios,
ICIAR16(148-153).
Springer DOI
1608
BibRef
Monteiro, E.C.,
Scholz, R.E.P.,
Ferraz, C.A.G.,
Ren, T.I.,
Barros, R.S.M.,
Perceptual video quality assessment for adaptive streaming encoding,
VCIP15(1-4)
IEEE DOI
1605
Correlation
BibRef
Wechtitsch, S.[Stefanie],
Fassold, H.[Hannes],
Thaler, M.[Marcus],
Kozlowski, K.[Krzysztof],
Bailer, W.[Werner],
Quality Analysis on Mobile Devices for Real-Time Feedback,
MMMod16(I: 359-369).
Springer DOI
1601
BibRef
Nasrinpour, H.R.[Hamid Reza],
Bruce, N.D.B.[Neil D.B.],
Saliency weighted quality assessment of tone-mapped images,
ICIP15(4947-4951)
IEEE DOI
1512
High dynamic range; Image quality; Tone-mapping; perception; saliency
BibRef
Liu, T.J.[Tsung-Jung],
Liu, K.H.[Kuan-Hsien],
Liu, H.H.[Hsin-Hua],
Pei, S.C.[Soo-Chang],
Comparison of subjective viewing test methods for image quality
assessment,
ICIP15(3155-3159)
IEEE DOI
1512
3-stimulus PC; ACR; hypothesis testing; subjective viewing test
BibRef
Kundu, D.[Debarati],
Evans, B.L.[Brian L.],
Full-reference visual quality assessment for synthetic images:
A subjective study,
ICIP15(2374-2378)
IEEE DOI
1512
BibRef
Temel, D.[Dogancan],
Al Regib, G.[Ghassan],
PerSIM: Multi-resolution image quality assessment in the perceptually
uniform color domain,
ICIP15(1682-1686)
IEEE DOI
1512
LoG features
BibRef
Zhang, P.[Peng],
Zhou, W.G.[Wen-Gang],
Wu, L.[Lei],
Li, H.Q.[Hou-Qiang],
SOM: Semantic obviousness metric for image quality assessment,
CVPR15(2394-2402)
IEEE DOI
1510
BibRef
Takagi, M.,
Fujii, H.,
Shimizu, A.,
Optimized spatial and temporal resolution based on subjective quality
estimation without encoding,
VCIP14(33-36)
IEEE DOI
1504
video coding
BibRef
Tsai, W.J.[Wen-Jiin],
Liu, Y.S.[Yi-Shih],
Foveation-based image quality assessment,
VCIP14(25-28)
IEEE DOI
1504
image resolution
BibRef
McFadden, S.B.[Steven B.],
Ward, P.A.S.[Paul A.S.],
Towards a new image quality metric for evaluating the effects of
tiled displays,
ICIP14(561-565)
IEEE DOI
1502
Correlation
BibRef
Ajaj, T.[Tamer],
Muller, K.R.[Klaus-Robert],
Curio, G.[Gabriel],
and, T.W.[Thomas Wieg],
Bosse, S.[Sebastian],
EEG-Based Assessment of Perceived Quality in Complex Natural Images,
ICIP20(136-140)
IEEE DOI
2011
Electrodes, Distortion, Electroencephalography, Harmonic analysis,
Visualization, Videos, Quality assessment, Quality perception,
EEG
BibRef
Bosse, S.[Sebastian],
Acqualagna, L.[Laura],
Porbadnigk, A.K.[Anne K.],
Blankertz, B.[Benjamin],
Curio, G.[Gabriel],
Muller, K.R.[Klaus-Robert],
Wiegand, T.[Thomas],
Neurally informed assessment of perceived natural texture image
quality,
ICIP14(1987-1991)
IEEE DOI
1502
Degradation
BibRef
Lewandowska-Tomaszewska, A.[Anna],
Time Compensation in Perceptual Experiments,
ICCVG14(33-40).
Springer DOI
1410
BibRef
Hsu, C.C.[Chih-Chung],
Lin, C.W.[Chia-Wen],
Objective quality assessment for video retargeting based on
spatio-temporal distortion analysis,
VCIP17(1-4)
IEEE DOI
1804
video signal processing, objective quality assessment,
objective quality metric, perceptual geometric distortion,
video retargeting
BibRef
Hsu, C.C.[Chih-Chung],
Lin, C.W.[Chia-Wen],
Fang, Y.M.[Yu-Ming],
Lin, W.S.[Wei-Si],
Objective quality assessment for image retargeting based on
perceptual distortion and information loss,
VCIP13(1-6)
IEEE DOI
1402
distortion
BibRef
Zhai, G.T.[Guang-Tao],
Kaup, A.,
Wang, J.[Jia],
Yang, X.K.[Xiao-Kang],
Retina model inspired image quality assessment,
VCIP13(1-6)
IEEE DOI
1402
adaptive filters
BibRef
Xue, W.F.[Wu-Feng],
Mou, X.Q.[Xuan-Qin],
Zhang, L.[Lei],
Feng, X.C.[Xiang-Chu],
Perceptual Fidelity Aware Mean Squared Error,
ICCV13(705-712)
IEEE DOI
1403
perceptual quality of natural images.
BibRef
Gu, Z.Y.[Zhong-Yi],
Zhang, L.[Lin],
Li, H.Y.[Hong-Yu],
Learning a blind image quality index based on visual saliency guided
sampling and Gabor filtering,
ICIP13(186-190)
IEEE DOI
1402
Databases
BibRef
Le Moan, S.[Steven],
Quality Assessment of Spectral Reproductions: The Camera's Perspective,
ICIAR16(141-147).
Springer DOI
1608
BibRef
Le Moan, S.[Steven],
Urban, P.[Philipp],
Evaluating the perceived quality of spectral images,
ICIP13(2024-2028)
IEEE DOI
1402
Image quality;Multispectral imaging
BibRef
Chamaret, C.[Christel],
Urban, F.[Fabrice],
No-reference Harmony-Guided Quality Assessment,
BeySem13(961-967)
IEEE DOI
1309
BibRef
Ribeiro, F.[Filomena],
Castanheira-Dinis, A.[Antonio],
Sanches, J.M.[João Miguel],
Dias, J.M.[João M.],
Assessment of Image Quality Using a Pseudophakic Eye Model for
Refractive Evaluation,
IbPRIA13(543-550).
Springer DOI
1307
BibRef
Saha, S.,
Tahtali, M.,
Lambert, A.,
Pickering, M.R.,
Perceptual Dissimilarity:
A Measure to Quantify the Degradation of Medical Images,
DICTA12(1-6).
IEEE DOI
1303
BibRef
Zhang, D.Q.[Dong-Qing],
Yu, H.[Heather],
Perceptual quality metric guided blocking artifact reduction,
VCIP12(1-4).
IEEE DOI
1302
BibRef
Whitehill, J.[Jacob],
Movellan, J.[Javier],
Discriminately decreasing discriminability with learned image filters,
CVPR12(2488-2495).
IEEE DOI
1208
BibRef
Wong, A.[Alexander],
Perceptual Structure Distortion Ratio: An Image Quality Metric Based on
Robust Measures of Complex Phase Order,
CRV12(56-62).
IEEE DOI
1207
BibRef
Cheng, I.,
Firouzmanesh, A.,
Basu, A.,
Perceptual Factors in Graphics: From JND to PAM,
NCVPRIPG11(6-10).
IEEE DOI
1205
BibRef
Marchesotti, L.[Luca],
Perronnin, F.[Florent],
Larlus, D.[Diane],
Csurka, G.[Gabriela],
Assessing the aesthetic quality of photographs using generic image
descriptors,
ICCV11(1784-1791).
IEEE DOI
1201
BibRef
Wu, O.[Ou],
Hu, W.M.[Wei-Ming],
Gao, J.[Jun],
Learning to predict the perceived visual quality of photos,
ICCV11(225-232).
IEEE DOI
1201
BibRef
Ribeiro, F.[Flavio],
Florencio, D.A.F.[Dinei A.F.],
Nascimento, V.[Vitor],
Crowdsourcing subjective image quality evaluation,
ICIP11(3097-3100).
IEEE DOI
1201
BibRef
Guo, A.[Anan],
Zhao, D.B.[De-Bin],
Liu, S.H.[Shao-Hui],
Fan, X.P.[Xiao-Peng],
Gao, W.[Wen],
Visual Attention Based Image Quality Assessment,
ICIP11(3297-3300).
IEEE DOI
1201
See also Stereoscopic Video Quality Assessment Based on Visual Attention and Just-Noticeable Difference Models.
BibRef
Bovik, A.C.,
Perceiving distortions in visual signals,
EUVIP11(149-155).
IEEE DOI
1110
Opinion piece on visual quality assessment research.
BibRef
Tang, H.X.[Hui-Xuan],
Joshi, N.[Neel],
Kapoor, A.[Ashish],
Learning a blind measure of perceptual image quality,
CVPR11(305-312).
IEEE DOI
1106
BibRef
Nishiyama, M.[Masashi],
Okabe, T.[Takahiro],
Sato, I.[Imari],
Sato, Y.[Yoichi],
Aesthetic quality classification of photographs based on color harmony,
CVPR11(33-40).
IEEE DOI
1106
BibRef
Imran, A.S.,
Guraya, F.F.E.,
Cheikh, F.A.,
A visual attention based reference free perceptual quality metric,
EUVIP10(55-60).
IEEE DOI
1110
BibRef
Ponomarenko, N.N.,
Eremeev, O.,
Lukin, V.,
Egiazarian, K.O.,
Statistical evaluation of no-reference image visual quality metrics,
EUVIP10(50-54).
IEEE DOI
1110
BibRef
Lv, X.D.[Xu-Dong],
Wang, Z.J.[Z. Jane],
Shape context based image hashing using local feature points,
ICIP11(2541-2544).
IEEE DOI
1201
BibRef
Earlier:
Reduced-reference image quality assessment based on perceptual image
hashing,
ICIP09(4361-4364).
IEEE DOI
0911
BibRef
Ghanem, B.[Bernard],
Resendiz, E.[Esther],
Ahuja, N.[Narendra],
Segmentation-based Perceptual Image Quality Assessment (SPIQA),
ICIP08(393-396).
IEEE DOI
0810
BibRef
Zhang, M.[Min],
Mou, X.Q.[Xuan-Qin],
A psychovisual image Quality Metric based on multi-scale Structure
Similarity,
ICIP08(381-384).
IEEE DOI
0810
BibRef
Gim, G.Y.[Gi-Yeong],
Kim, H.C.[Hyun-Chul],
Lee, J.A.[Jin-Aeon],
Kim, W.Y.[Whoi-Yul],
Subjective Image-Quality Estimation Based on Psychophysical
Experimentation,
PSIVT07(346-356).
Springer DOI
0712
BibRef
Rao, D.V.[D. Venkata],
Reddy, L.P.[L. Pratap],
Image Quality Assessment Based on Perceptual Structural Similarity,
PReMI07(87-94).
Springer DOI
0712
BibRef
Jumisko-Pyykko, S.,
Reiter, U.,
Weigel, C.,
Produced Quality is Not Perceived Quality:
A Qualitative Approach to Overall Audiovisual Quality,
3DTV07(1-4).
IEEE DOI
0705
BibRef
Fontaine, B.,
Saadane, A.,
Thomas, A.,
Perceptual quality metrics: evaluation of individual components,
ICIP04(V: 3507-3510).
IEEE DOI
0505
BibRef
Wang, Z.[Zhou],
Shang, X.L.[Xin-Li],
Spatial Pooling Strategies for Perceptual Image Quality Assessment,
ICIP06(2945-2948).
IEEE DOI
0610
BibRef
de Freitas Zampolo, R.[Ronaldo],
de A. Gomes, D.[Diego],
Seara, R.[Rui],
Characterization of difference detection thresholds in AWGN-degraded
images by using full reference metrics,
ICIP09(1785-1788).
IEEE DOI
0911
Perceptual difference between a pair of images.
I.e. when people see the difference.
BibRef
de Freitas Zampolo, R.,
Seara, R.[Rui],
A Comparison of Image Quality Metric Performances Under Practical
Conditions,
ICIP05(III: 1192-1195).
IEEE DOI
0512
BibRef
Earlier:
Perceptual image quality assessment based on bayesian networks,
ICIP04(I: 329-332).
IEEE DOI
0505
BibRef
Earlier:
A measure for perceptual image quality assessment,
ICIP03(I: 433-436).
IEEE DOI
0312
BibRef
Basu, A.,
Cheng, I.,
Wang, T.,
Balanced Incomplete Designs for 3D Perceptual Quality Estimation,
ICIP05(I: 617-620).
IEEE DOI
0512
BibRef
Osberger, W.,
Bergmann, N.,
Maeder, A.,
An automatic image quality assessment technique incorporating higher
level perceptual factors,
ICIP98(III: 414-418).
IEEE DOI
9810
BibRef
Foran, D.J.,
Meer, P.,
Papathomas, T.,
Marsic, I.,
Gong, L.G.[Lei-Guang],
Kulikowski, C.A.,
Trelstad, R.L.,
Establishing perceptual criteria on image quality in diagnostic
telepathology,
ICIP96(I: 873-876).
IEEE DOI
9610
BibRef
Govindaraju, V.,
Srihari, S.N.[Sargur N.],
Image quality and readability,
ICIP95(III: 324-327).
IEEE DOI
9510
BibRef
Heeger, D.J.,
Teo, P.C.[Patrick C.],
A model of perceptual image fidelity,
ICIP95(II: 343-345).
IEEE DOI
9510
BibRef
Teo, P.C.,
Heeger, D.J.,
Perceptual image distortion,
ICIP94(II: 982-986).
IEEE DOI
9411
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Image Quality Evaluation, Human Visual System Based, HVS .