15.3.3.2 Ground Plane Detection

Chapter Contents (Back)
Ground Plane.
See also Obstacle Dectection, Objects on the Road.

Lees, D.E.B.[David E. B.], Merchant, J.[John],
Passive range measurement apparatus and method,
US_Patent4,695,959, Sep 22, 1987
WWW Link. Motion sensor gives ground plane, distance from image position. BibRef 8709

Wang, L.L., and Tsai, W.H.,
Camera Calibration by Vanishing Lines for 3-D Computer Vision,
PAMI(13), No. 4, April 1991, pp. 370-376.
IEEE DOI BibRef 9104
And:
Computing Camera Parameters Using Vanishing-Line Information from a Rectangular Parallelepiped,
MVA(3), No. 3, 1990, pp. 129-141. Vanishing Points. Related to their other calibration papers (see above and applications). Generate the vanishing line of the ground plane and derive the camera parameters using a known hexagonal target. BibRef

Li, F.X.[Fu-Xing], Brady, M.[Michael],
Modeling the Ground Plane Transformation for Real-Time Obstacle Detection,
CVIU(71), No. 1, July 1998, pp. 137-152.
DOI Link BibRef 9807

Arrospide, J., Salgado, L., Nieto, M., Mohedano, R.,
Homography-based ground plane detection using a single on-board camera,
IET-ITS(4), No. 2, 2010, pp. 149-160.
DOI Link 1204

See also On-board robust vehicle detection and tracking using adaptive quality evaluation. BibRef

Kwon, J., Dragon, R., Van Gool, L.J.,
Joint Tracking and Ground Plane Estimation,
SPLetters(23), No. 11, November 2016, pp. 1514-1517.
IEEE DOI 1609
Markov processes BibRef

Marcon dos Santos, G.A.[Gilberto Antonio], Ferrão, V.T.[Victor Terra], Noronha Vinhal, C.D.[Cassio Dener], da Cruz Junior, G.[Gelson],
Fast algorithm for real-time ground extraction from unorganized stereo point clouds,
PRL(84), No. 1, 2016, pp. 192-198.
Elsevier DOI 1612
Ground extraction BibRef

Wang, K.[Kangru], Qu, L.[Lei], Chen, L.[Lili], Li, J.[Jiamao], Gu, Y.Z.[Yu-Zhang], Zhu, D.C.[Dong-Chen], Zhang, X.L.[Xiao-Lin],
Ground Plane Detection with a New Local Disparity Texture Descriptor,
IEICE(E100-D), No. 10, October 2017, pp. 2664-2668.
WWW Link. 1710
BibRef

López-Cifuentes, A., Escudero-Viñolo, M., Bescós, J.,
Automatic Semantic Parsing of the Ground Plane in Scenarios Recorded With Multiple Moving Cameras,
SPLetters(25), No. 10, October 2018, pp. 1495-1499.
IEEE DOI 1810
cameras, feature extraction, image motion analysis, image segmentation, image sequences, object detection, video surveillance BibRef

Luo, Z., Mohrenschildt, M.V., Habibi, S.,
A Probability Occupancy Grid Based Approach for Real-Time LiDAR Ground Segmentation,
ITS(21), No. 3, March 2020, pp. 998-1010.
IEEE DOI 2003
Laser radar, Real-time systems, Autonomous vehicles, Measurement by laser beam, ground segmentation BibRef

Zhang, X., Gao, Y., Chen, J., Zhang, K.,
An Efficient Method to Recover Relative Pose for Vehicle-Mounted Cameras Under Planar Motion,
SMCS(51), No. 2, February 2021, pp. 1138-1148.
IEEE DOI 2101
Cameras, Approximation algorithms, Pose estimation, Sensors, Land vehicles, Wheels, Absolute scale, planar motion constraint, two-view geometric model BibRef

Huang, W.X.[Wei-Xin], Liang, H.W.[Hua-Wei], Lin, L.L.[Ling-Long], Wang, Z.L.[Zhi-Ling], Wang, S.B.[Shao-Bo], Yu, B.[Biao], Niu, R.X.[Run-Xin],
A Fast Point Cloud Ground Segmentation Approach Based on Coarse-To-Fine Markov Random Field,
ITS(23), No. 7, July 2022, pp. 7841-7854.
IEEE DOI 2207
Laser radar, Feature extraction, Real-time systems, Classification algorithms, Surface topography, Roads, real-time BibRef

Nishimura, M.[Mai], Nobuhara, S.[Shohei], Nishino, K.[Ko],
View Birdification in the Crowd: Ground-Plane Localization from Perceived Movements,
IJCV(131), No. 8, August 2023, pp. 2015-2031.
Springer DOI 2307
BibRef


Muller, B.R.[Bruce R.], Smith, W.A.P.[William A. P.],
Self-supervised Relative Pose with Homography Model-fitting in the Loop,
WACV23(5694-5703)
IEEE DOI 2302

WWW Link. BibRef
Earlier: Muller, B.R.[Bruce R.], Smith, W.A.P.[William A. P.],
Self-Supervised Ground-Relative Pose Estimation,
ICPR22(3507-3513)
IEEE DOI 2212
Training, Roads, Ultraviolet sources, Semantic segmentation, Pose estimation, Fitting, Semantics, Algorithms: 3D computer vision. Geometry, Feature extraction BibRef

Ghose, S.[Shuvozit], Chowdhury, P.N.[Pinaki Nath], Roy, P.P.[Partha Pratim], Pal, U.[Umapada],
Modeling Extent-of-Texture Information for Ground Terrain Recognition,
ICPR21(4766-4773)
IEEE DOI 2105
Code, Terrain.
WWW Link. Pairwise error probability, Image recognition, Shape, Message passing, Feature extraction, Data mining, Task analysis BibRef

Hickson, S., Raveendran, K., Fathi, A., Murphy, K., Essa, I.,
Floors are Flat: Leveraging Semantics for Real-Time Surface Normal Prediction,
GMDL19(4065-4074)
IEEE DOI 2004
image colour analysis, learning (artificial intelligence), shared model, synthetic data, ground truth surface normals, 3d prediction BibRef

van Crombrugge, I.[Izaak], Ben Azza, I.[Ibrahim], Penne, R.[Rudi], van Barel, G.[Gregory], Vanlanduit, S.[Steve],
Fast Ground Detection for Range Cameras on Road Surfaces Using a Three-Step Segmentation,
ACIVS17(479-490).
Springer DOI 1712
BibRef

Belkhouche, Y.[Yassine], Duraisamy, P.[Prakash], Buckles, B.[Bill],
Ground Extraction from Terrestrial LiDAR Scans Using 2D-3D Neighborhood Graphs,
ISVC15(II: 655-663).
Springer DOI 1601
BibRef

Xu, H.[Hang], Li, K.[Kan], Lv, F.[Fu_Yu], Pei, J.M.[Jian-Meng],
3D Depth Perception from Single Monocular Images,
MMMod15(I: 510-521).
Springer DOI 1501
Generate ground plane and work from there. BibRef

Lang, Y.K.[Yan-Kun], Wu, H.Y.[Hai-Yuan], Amano, T.[Toshiyuki], Chen, Q.[Qian],
An iterative convergence algorithm for single/multi ground plane detection and angle estimation with RGB-D camera,
ICIP15(2895-2899)
IEEE DOI 1512
?-projection; AIC; camera angle estimation; ground detection BibRef

Bator, M.[Marcin], Chmielewski, L.J.[Leszek J.], Orlowski, A.[Arkadiusz],
Heuristic Assessment of Parameters of the Local Ground Approximation from Terrestrial LIDAR Data,
GPID15(88-97).
Springer DOI 1603
BibRef
And:
Where Is the Ground? Quality Measures for the Planar Digital Terrain Model in Terrestrial Laser Scanning,
CIAP15(I:343-353).
Springer DOI 1511

See also Advantages of Using Object-Specific Knowledge at an Early Processing Stage in the Detection of Trees in LIDAR Data. BibRef

Chmielewski, L.J.[Leszek J.], Orlowski, A.[Arkadiusz],
Detecting Changes with the Robust Competitive Detector,
IbPRIA17(353-362).
Springer DOI 1706
BibRef

Chmielewski, L.J.[Leszek J.], Orlowski, A.[Arkadiusz],
Finding Line Segments in the Ulam Square with the Hough Transform,
ICCVG16(617-626).
Springer DOI 1611
BibRef
Earlier:
Ground Level Recovery from Terrestrial Laser Scanning Data with the Variably Randomized Iterated Hierarchical Hough Transform,
CAIP15(I:630-641).
Springer DOI 1511
BibRef

Dragon, R.[Ralf], Van Gool, L.J.[Luc J.],
Ground Plane Estimation Using a Hidden Markov Model,
CVPR14(4026-4033)
IEEE DOI 1409
ground plane; hidden markov model; visual gyroscope; visual odometry BibRef

Rahimi, A.[Amir], Moradi, H.[Hadi], Zoroofi, R.A.[Reza A.],
Single image ground plane estimation,
ICIP13(2149-2153)
IEEE DOI 1402
3D; boosting; ground plane estimation BibRef

Gaspar, J.[José], Realpe, M.[Miguel], Vintimilla, B.X.[Boris X.], Santos-Victor, J.[José],
Mosaicking Cluttered Ground Planes Based on Stereo Vision,
IbPRIA07(II: 17-24).
Springer DOI 0706
BibRef

Zhou, J.[Jin], Li, B.X.[Bao-Xin],
Robust Ground Plane Detection with Normalized Homography in Monocular Sequences from a Robot Platform,
ICIP06(3017-3020).
IEEE DOI 0610
BibRef

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Lane Detection, Lane Following, White Line Detection .


Last update:Mar 16, 2024 at 20:36:19